Individualized Enhanced Adherence Intervention Study in Adults with Diabetes

Julienne K. Kirk, PharmD¹, Greer A. Raggio BA², Beverly A. Nesbit, MA, RD, LDN³, Stephen W. Davis, MA¹, Shannon L. Mihalko, PhD³, Gary D. Miller PhD³, and Mary Ann Sevick, ScD, RN⁴

We would like to report an individualized enhanced adherence intervention study in adults with diabetes. Adherence to a diabetes regimen has led to investigations of behavior in the form of interventions designed to promote self-management. Bandura's social cognitive theory provides a comprehensive theoretical framework for the examination of human behavior.¹ Self-efficacy, defined by Bandura² is a belief in one's capabilities to successfully overcome the demands of a situation in order to achieve a desired outcome. It is a significant predictor of regimen adherence, including areas of blood glucose testing, exercise and diet, and glycemic control.⁴⁻⁶

We utilized a framework of social cognitive theory for our study, <u>Bringing Diabetes General Education to Life (BRIDGE)</u>. We compared the effects of an individualized enhanced adherence intervention (IEAI) for individuals with Type 2 diabetes. We evaluated the effects of the adherence-based intervention (BRIDGE) on glucose control by analyzing SMBG, glycosylated hemoglobin (A1C), and fasting laboratory glucose in this pilot study. An intervention emphasizing follow-up SMBG, exercise and self-management techniques was utilized. Subjects were randomized into an attention control group or the IEAI group. In each of the months 1, 3, and 5, control group participants received a 1-hour educational session that emphasized material previously presented in diabetes education classes. Educational material was also mailed to these participants in the form of a newsletter during months 2 and 4. In contrast, those randomized into the IEAI group received a 6-month behavioral intervention consisting of a series of group and individual sessions. The aim of the program was to employ strategies and techniques for enhancing self-efficacy in carrying out a personal diabetes treatment plan. Blood glucose monitors (Accu-Chek Advantage®, Mannheim, Germany) were provided to the participants and uploaded by computer. Laboratory glucose and A1C by venipuncture were obtained at baseline, 3, and 6 month visits.

We analyzed data using SPSS (Version 11.5). Descriptive statistics were employed to characterize the sample, and simple independent measured t-tests were used to examine potential differences between the intervention and control groups at baseline. Analyses of covariance were performed for intervention versus control group at 3 and 6 months using baseline data as the covariate.

Author Affiliations: ¹Department of Family and Community Medicine, Wake Forest University School of Medicine, ²Wake Forest University, ³Department of Health and Exercise Science, Wake Forest University, ⁴School of Medicine, University of Pittsburgh and Center for Health Equity Research and Promotion, VA Pittsburgh Healthcare System

Corresponding Author: Julienne K. Kirk, Pharm.D., BCPS, CDE, Associate Professor, Department of Family and Community Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1084, Phone: 336-716-9043, Fax: 335-716-9126; email address *jkirk@wfubmc.edu*

In **Table 1** we present our baseline (no statistical difference between groups) and outcome variables. The A1C averages reveal that the control group increased from baseline by an average of approximately 0.5% compared to the intervention group's decreased average of about 0.2%. Morning glucose labs in the control group were at an average value of 144.8 ± 54 mg/dl compared to the intervention group that decreased to 101.5 ± 23.8 mg/dl. The intervention group performed SMBG 2.33 times per day, while the control group tested 1.39 times per day. A significant difference was found between groups at 3 months (p<0.05). Those who underwent the intervention demonstrated greater mean SMBG daily testing (2.47 times per day) at month 3, in comparison to the control group (1.03 times per day, p<0.05). This study indicates that an intervention based on social cognitive theory can have an impact on the behaviors necessary to improve glycemic control. According to Bandura, self-efficacy not only predicts behavior, but also the extent to which the behavior is executed. To read this study in its entirety, visit:

Table 1. Glycemia data for control and intervention (Mean ± SD with 95% CI)			
	Baseline	3-Month	6-Month
	SMBG × 1 Week, mg/dl *		
Control	130.9 ± 27.3 (112.3, 149.4)	143.0 ± 29.3 (121.7, 164.3)	158.0 ± 40.7 (131.5, 184.5)
Intervention	128.7 ± 24.1 (107.6, 149.8)	132.7 ± 30.5 (108.5, 156.9)	123.0 ± 31.6 (93.0, 153.1)
	SMBG AM, mg/dl*		
Control	129.5 ± 26.9 (108.1, 150.8)	143.4 ± 28.3 (123.1, 163.5)	157.4 ± 43.8 (130.2, 184.7)
Intervention	128.8 ± 33.3 (104.6, 153.0)	125.3 ± 27.7 (102.6, 148.0)	122.2 ± 28.7 (91.3, 153.0)
	AM Lab Glucose mg/dl		
Control	131.6 ± 37.4 (101.3, 162)	144.8 ± 54.0 (110.9, 178.7)	142.4 ± 62.3 (104.6, 180.2)
Intervention	135.3 ± 42.1 (100.3, 170.4)	101.5 ± 23.8 (62.4, 140.7)	107.7 ± 18.6 (63.9, 151.4)
	Frequency of SMBG Testing †		
Control	1.39 (1.33, 156)	1.03‡ (0.78, 1.33)	1.43 (1.22, 1.56)
Intervention	2.33 (2.14, 2.57)	2.47‡ (2.29, 2.71)	2.06 (1.86, 2.57)
	Average A1C		
Control	6.9 ± 0.5 (6.3, 7.5)	7.1 ± 0.8 (6.5, 7.8)	7.4 ± 1.0 (6.7, 8.1)
Intervention	7.0 ± 1.0 (6.3, 7.6)	6.4 ± 0.9 (5.7, 7.0)	6.8 ± 0.8 (6.0, 7.5)

http://www1.wfubmc.edu/NR/rdonlyres/10A98B0F-21D4-4C49-83C1-071BB0E0B803/0/BRIDGE12407.pdf

SMBG = Self-Monitoring Blood Glucose, CI = Confidence Interval, *Average SMBG in the morning 1 week prior to visit, ‡Average SMBG testing per day 1 week prior to visit, ‡p<0.05 at 3 months between intervention and control groups

References:

- 1. University of South Florida Community and Family Health. Social Cognitive Theory. Accessed at http://hsc.usf.edu/~kmbrown/Social_Cognitive_ Theory_Overview.htm.
- 2. Bandura, A. Self-efficacy: The exercise control. New York: Worth Publishers Incorporated, 1997.
- 3. Agurs-Collins TD, Kumanyika SK, Ten Have TR, Adams-Campbell LL. A randomized controlled trial of weight reduction and exercise for diabetes management in older African-American subjects. Diabetes Care.1997;20:1503-11.
- 4. Aljasem LI, Peyrot M, Wissow L, Rubin RR. The impact of barriers and self-efficacy on self-care behaviors in type 2 diabetes. Diabetes Educ. 2001;27:393-404.
- 5. Glasgow RE, McCaul KD, Schaafer LC. Barriers to regimen adherence among person with insulin-dependent diabetes. J Behav Med. 1986;9:65-77.
- 6. Wang JS, Wang RH, Lin CC. Self-care behaviors, self-efficacy, and social support effect on the glycemic control of patients newly diagnosed with non-insulin-dependent diabetes mellitus. Kaohsiung J Med Sci. 1998;14:807-15.