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Abstract

Background:
With continuous glucose sensors (CGSs), it is possible to obtain a dynamical signal of the patient’s subcutaneous 
glucose concentration in real time. How could that information be exploited? We suggest a model-based diagnosis 
system with a twofold objective: real-time state estimation and long-term model parameter identification.

Methods:
To obtain a dynamical model, Bergman’s nonlinear minimal model (considering plasma glucose G, insulin I, 
and interstitial insulin X) is extended by two states describing first and second insulin response. Furthermore, 
compartments for oral glucose and subcutaneous insulin inputs as well as for subcutaneous glucose 
measurement are added. The observability of states and external inputs as well as the identifiability of model 
parameters are assessed using the empirical observability Gramian. Signals are estimated for different nondiabetic 
and diabetic scenarios by unscented Kalman filter.

Results:
(1) Observability of different state subsets is evaluated, e.g., from CGSs, {G, I} or {G, X} can be observed and 
the set {G, I, X} cannot. (2) Model parameters are included, e.g., it is possible to estimate the second-phase 
insulin response gain kG2 additionally. This can be used for model adaptation and as a diagnostic parameter 
that is almost zero for diabetes patients. (3) External inputs are considered, e.g., oral glucose is theoretically 
observable for nondiabetic patients, but estimation scenarios show that the time delay of 1 h limits application.

Conclusions:
A real-time estimation of states (such as plasma insulin I) and parameters (such as kG2) is possible, which allows  
an improved real-time state prediction and a personalized model.
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Introduction

Continuous glucose sensors (CGSs) are able to 
measure a subcutaneous glucose concentration with a 
comparatively high sampling frequency, typically in time 
intervals of 5 min. These data can either be evaluated 
online (i.e., in real time), in order to control glucose 
thresholds and to give an alert in cases of hypoglycemia 
or hyperglycemia, or it can be used offline, in order 
to analyze glucose profiles by patient or by physician  
a posteriori, in order to optimize insulin therapy. These 
concepts are summarized as continuous glucose 
monitoring (CGM).1

The disadvantages of a CGS are possible deviations 
in the measured glucose amplitude and a delay of the 
signal compared with plasma glucose.2,3 Concepts such 
as deconvulation4 and Kalman filtering5–10 have been 
developed to determine the plasma glucose more 
accurately with a CGS.

We state that glucose dynamics, which are now available 
from CGSs for the first time in real time, may provide 
much more information on the patient’s glucose–insulin 
system if it is evaluated based on an appropriate 
dynamical model. Figure 1 shows the suggested setup 
of the model-based diagnosis system. For state estimation 
and parameter identification, the same signals are made 
available, which are the interstitial glucose measurement 
from the CGS, the current model information, and,  
if necessary, external inputs. 

But both units work on different time scales. State 
estimation provides real-time information, which is 
required for alerts or for predictions. To develop closed-
loop concepts,11,12 a model-predictive controller may also 
utilize these model-based predictions in real time.13  
The corresponding structure is in line with that 
suggested by El-Khatib and colleagues,14 but we will not 
focus on closed-loop control. The parameter identification 
unit estimates long-term changes of the glucose–insulin 
system. The estimate of model parameters will be used 
for model adaption, which is typically updated in a daily 
rate, and may support a physician in diagnosing the 
development of insulin resistance or diabetes.

Nevertheless, analysis tools and algorithms for both 
units will be developed in the following sections using 
consistent tools. In the next section, a common model 
is defined, which is used for observability analysis and 

real-time estimation. This is then extended to parameter 
identification and input estimation.

Methods

A Mathematical Model of the Glucose–Insulin 
System
In contrast with general model approaches such as 
ARMAX models15–17 or neural nets, we suggest a 
physiological model approach. The first three states 
of the model are the core states of the insulin glucose 
homeostasis and follow the concept introduced by 
Bergman.18–20 The glucose and insulin concentrations in 
the plasma are denoted by G(t) and I(t), respectively 
(see block diagram in Figure 2). Two additional inputs, 
uGV(t) and uGI(t), are introduced such that an intravenous 
glucose tolecance test (IVGTT) and an intravenous 
insulin dosage can be modeled. The insulin-triggered 
glucose degradation is assigned to the interstitial tissue. 
The interstitial insulin concentration is denoted by X(t), 
and its feedback to the glucose system is shown in 
the control block of Figure 2. Note that X(t) is defined 
in the same units as I(t), and all states are defined as 
differences to their basal values. This does not change 
system dynamics but simplifies model equations.

Figure 1. Setup of a model-based diagnosis system. State estimation 
and parameter identification are running in parallel but on different 
time scales. The state estimation provides a real-time estimate of the 
glucose–insulin status, which is required for alerts, prediction, and 
closed-loop approaches. Parameter identification determines long-term 
estimates of the model parameters. They can be used for diagnosis 
and model adjustment.
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We extended Bergman’s model approach using two further 
states in order to distinguish the first- and second-
phase insulin response.21 The transfer functions of this 
pancreatic regulation process are also shown in the 
control block of Figure 2. This realizes the feedback of 
the glucose to the insulin system. The glucose–insulin 
interplay is completely described at this point.

Furthermore, interfaces to model the excitation and 
measurement of this system must be added. The gastro-
enterological system is modeled as a second-order delay 
system (Figure 2). By its input uGO(t), an oral glucose 
tolerance test (OGTT) can be modeled. For diabetes 
patients who apply insulin bolus, input uIS(t) and a 
subcutaneous first-order delay system are added (Figure 2).  
The CGS measures the interstitial glucose concentration. 
In order to consider CGM, an interstitial glucose 
compartment is modeled as a first-order delay system  
with output Y(t) (Figure 2). This way, it is possible to 
include the compensation of the sensor dynamic22 later  
on. In total, we obtain a dynamical mathematical model 
with nine states. They are summarized into state vector

x(t) = [G(t), I(t), X(t), Y(t), v1(t), v2(t), qG1(t), qG2(t), qI(t)]T  (1)

In Table 1, the corresponding states and differential 
equations are summarized, and the model parameters 
are given for the physiological and diabetic cases.  
The nonlinear state space differential equation

dx(t)
dt

 = f(x(t), u(t))                      (2)

with input vector u(t) = [uGV(t), uIV(t), uGO(t), uIS(t)]T,  
is complemented with a linear and time-invariant 
measurement equation,

y(t) = Hx(t),                         (3)

that selects the measurable outputs from the states, e.g., if 
plasma glucose G(t) or interstitial glucose Y(t) can be captured.

State Observability
Observability analysis proves which of the model states 
in x can be estimated theoretically from measurement y.  
For that purpose, the Gramian observability matrix 
WO is determined, which quantifies generalized energy 
transfer EO from initial state x(0) to the output within an 
infinite time horizon:

Figure 2. Block diagram of the dynamical model of the glucose–insulin homeostasis. Dynamic blocks are marked in grey.
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Table 1.
Glucose–Insulin Model Is Defined by a Set of Nine First-Order Differential Equationsa

Compartment Differential equation Maximum 
state xmax

Parameters and inputs 
[typical for diabetes], (source)

1. Plasma glucose  
G(t) in mg/dl

dG(t)
dt

 = – 
1
TG

 G(t) – kxX(t)[G(t) + Gbasal]

+ qG2(t) + uGV(t)

100 mg/dl

TG
= 32.45 [1000] min; glucose time constant  

(Ref. 23: 1/p1)

kX
= 507 x 10–6 ml/µU/mg/dl/min; insulin sensitifity 

(Ref. 23: p3/p2)

Gbasal 
= 90 mg/dl; basal plasma glucose  

(Ref. 23: G(tend))

uGV in mg/dl/min; venous glucose input

2. Plasma insulin 
I(t) in µU/ml

dI(t)
dt

 = – 1
TI

 I(t) – v1(t) + v2(t)

+ qI(t) + uIV(t)

50 µU/ml

TI = 3.33 min; insulin time constant (Ref. 23: 1/n)

uIV input in µU/ml/min; venous insulin input

Ibasal = 9µU/ml; basal plasma insulin, Ref. 23.

3. Interstitial insulin 
X(t) in µU/ml

dX(t)
dt

 = – 
1
TX

 X(t) + 1
TX

 I(t) 10 µU/ml TX
= 47.78 min; interstitial insulin time constant 

(Ref. 23: 1/p2)

4. Interstitial glucose  
Y(t) in mg/dl

dY(t)
dt

 = – 
1
TY

 Y(t) + 1
TY

 G(t) 50 µU/ml TY
= 16.0 min; interstial glucose time constant 
(modified from Reference 4; τ = 20.3 min)

5. First-phase  
glucose response 
v1(t) in µU/ml/min

dv’1(t)
dt  = – 

1
T1

 v’1(t) – 
kG1

T1
2  G(t),

v1(t) = v’1(t) + 
kG1

T1
 G(t)

20 µU/ml/min

T1 = 4.0 min; first-phase time constant (definition)

kG1

= 1.080 [0] dl/mg/µU/ml; first-phase glucose 
sensitivity (definition), remark; kG1 is multiplied 

by factor 20 in case of oral excitation to model 
the incretin effect24

6. Second-phase 
glucose response 
v2(t) in µU/ml/min

dv2(t)
dt  = – 

1
T2

 v2(t) + 
kG2

T2
 G(t) 10 µU/ml/min

T2
= 12.0 min; second-phase time constant 

(definition)

kG2
= 0.107 [0] dl/mg/µU/ml/min; second-phase 

glucose sensitivity (definition)

7. Oral glucose flow (1) 
qG1(t) in mg/dl/min

dqG1(t)
dt  = – 

1
TO1

 qG1(t) + 
1

TO1
 uGO(t) 10 mg/dl/min

TO1 = 15.0 min; first oral time constant (definition)

uGO input in mg/dl/min; oral glucose input

8. Oral glucose flow (2) 
qG2(t) in mg/dl/min

dqG2(t)
dt  = – 

1
TO2

 qG2(t) + 
1

TO2
 qG1(t) 10 mg/dl/min TO2

= 60.0 min; second oral time constant 
(definition)

9. Subcutaneous 
insulin flow 
qI(t) in µU/ml/min

dqI(t)
dt  = – 

1
TS

 qI(t) + 
1
TS

 uIS(t) 30 µU/ml/min
TS

= 20.0 min; subcutaneous insulin time constant 
(definition)

uIS input in µU/ml/min; subcutaneous insulin input 
a Only the first-order differential equation is nonlinear.

EO = ∫
∞

 0

yT(t)y(t)dt = xT(0)WOx(0)            (4)

For the case of a nonlinear system as defined in 
Equation (2), WO can be approximated by the empirical 
observability Gramian.25 We have previously summarized 
its calculation.21 For nonlinear systems, observability 
not only is a system property, but it also depends on 
the specific state trajectory. For the subsequent analysis,  
we normalize each state such that its energy transfer to 
the output is equal to one.

Next, a singular value decomposition of empirical 
observability Gramian λ(WO) allows assessing 
observability. The largest singular value λ rates the 
energy transfer from a single state with the best possible 
observability. On the other hand, the smallest singular 
value λ quantifies the energy transfer from the least 
observable state to the outputs. It characterizes the 

“bottleneck” of observability and will be considered in 
the following. A system is unobservable, if λ is zero. 
We assume that a system is practically observable if the 
energy transfer from the least observable state does not 
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drop below 10%. If λ is less than 0.1 for the normalized 
system, the signal-to-noise ratio might be too small for a 
reliable state estimation.

In a complex system, not all states may be observable 
from measurement, but this is not necessary. Only those 
states in x that are uncertain due to distortion or due 
to unknown initial conditions and those states that are 
corrected by the measurement have to be estimated. 
These states are summarized in xE. To analyze the 
observability corresponding to the state subset in xE, 
the rows and columns in WO corresponding to those 
states not included in xE are removed. This way, the 
observability of different state selections xE can be 
analyzed until the best subset is found.

Real-Time State Estimation
An estimation algorithm allows solving the inverse 
problem of estimating unknown internal states from 
measurement by deploying the model. The central 
unscented Kalman filter (UKF) algorithm is appropriate 
in the case of nonlinear state equations.26 For each time-
discrete iteration, a prediction and a correction step has 
to be processed.27 With respect to the implementation 
under real-time conditions, e.g., on a small micro-
controller platform, the following points should be 
considered:

1. The prediction step has been applied only to 
dynamics states, summarized as xD. States derived 
from parameters or inputs are usually considered 
to be constant in time (see the next subsection) and 
can be omitted. 

2. Complementarily, the correction step has only been 
applied to states xE to be estimated.

3. Output Equation (3) is linear. Therefore, a linear 
Kalman filter is sufficient in the correction step.

4. If there is only a scalar measurement from one 
sensor, e.g., Y(t), no matrix inversion is necessary in 
the correction step.

In order to assess estimation quality, the output residual 
between output y(k) and its estimator prediction ŷ(k) can 
be considered:

res(k) = y(k) – ŷ(k)                     (5)

Extension to the Estimation of Parameters  
and Inputs
It may occur that not only model states are unknown, 
but model parameters or model inputs may also be 
unknown, such that their estimation would be of 
interest. For that purpose, the estimation approach can 
be extended by modification of the estimator model.

In order to change model parameter p into corresponding 
state xp(t), first, the state vector is extended and, second, 
in f, parameter p is replaced by xp(t):

d
dt

x(t)
xp(t)
⎡
⎢
⎣

⎤
⎥
⎦

 = f(x(t), u(t))|xp(t) = p
0

⎡
⎢
⎣

⎤
⎥
⎦
            (6)

In order to change unknown input ui(t) into a state,  
first, ui(t) is separated from remaining input ured(t),

u(t) = ured(t)
ui(t)

⎡
⎢
⎣

⎤
⎥
⎦

                         (7)

second, new state xu(t) is added to state vector x(t); and, 
third, in f, former input ui(t) is replaced by new state xu(t),

d
dt

x(t)
xu(t)
⎡
⎢
⎣

⎤
⎥
⎦

 = f(x(t), ured(t))|xu(t) = ui(t)
0

⎡
⎢
⎣

⎤
⎥
⎦
          (8)

Note that, by these changes, new nonlinearities will be 
introduced into the extended system. Nevertheless, the 
extended system can be deployed for estimation (see 
Real-Time State Estimation) if observability is ensured 
sufficiently (see State Observability).

Results

Prediction
For the purpose of model validation, Figure 3 shows 
four typical simulated scenarios. An IVGTT is simulated 
for a nondiabetic subject as scenario 1. A first and 
second insulin response is observed in I(t), and a fast 
degradation of the plasma glucose peak is shown in G(t). 
Subcutaneous glucose Y(t) follows with a certain delay. 
Scenario 2 simulates the reaction of an oral glucose 
administration to a nondiabetic subject as an OGTT. 
Compared with scenario 1, a delayed response is 
observed as a consequence of two mechanisms; model 
compartments 7 and 8 (see Figure 2) describe a delayed 
oral glucose ingestion. Additionally, an increased first-
phase glucose sensitivity (see Table 1) is damping 
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plasma glucose levels in the case of oral excitation, 
which is necessary to incorporate the incretin effect.27  
A justification for this model parameter adaption will be 
given in Parameter Identification and Model Adaptation. 
In contrast, the diabetic system of scenario 3 is not able 
to reduce glucose after IVGTT sufficiently. Finally, an 
insulin bolus after 30 min is simulated in scenario 4. 
As a consequence, glucose decreases in the subject  
with diabetes.

In Figure 4, simulated scenarios are compared with 
measured data from pigs.11 Starting with a basal plasma 
glucose of Gbasal = 60 mg/dl, the system is triggered by 
oral glucose within the first 40 min. Scenarios 5 and 6  
show that the model characterizes the nondiabetic and 

Figure 3. Simulation of the model defined in Figure 2, with parameters 
shown in Table 1 and sampling time Δt = 1 min. Plasma glucose 
G(t), subcutaneous glucose Y(t), and plasma insulin I(t) are shown. 
Scenarios: (1) IVGTT (red line) and (2) OGTT of a nondiabetic subject 
(green line), (3) IVGTT of a subject with diabetes (blue line), which is 
added in (4) with an insulin bolus (black line).

Figure 4. Simulation scenarios (dashed curves) are compared with 
measured data (solid curves) from pigs.11 The model is defined in 
Figure 2, with parameters shown in Table 1 and sampling time 
Δt = 2.5 min. It is assumed Gbasal = 60 mg/dl. Scenarios: (5) Nondiabetic 
subject with data from Figure 2a of Reference 11 (red line), (6) subject  
with diabetes without insulin bolus with data from Figure 2c of 
Reference 11 (green line), and (7) subject with diabetes with insulin 
bolus with data Figure 3a of Reference 11 (black line).

diabetic cases in good agreement, respectively. In scenario 7,  
an insulin bolus and a further oral glucose dosage after 
300 min is applied. The model is able to simulate the 
impact of the insulin bolus, and the simulated plasma 
glucose keeps below that of scenario 6. Although the 
model parameters are not adjusted to the individual yet, 
characteristic reactions can be reproduced.

Observability
The observability of the system’s states should be 
analyzed according to State Observability for the four 
scenarios introduced in Figure 3. Resulting smallest 
singular values λ(WO) of different state subsets xE are 
shown in Figure 5 as a bar diagram. The observability 
based on the measurement of Y(t), e.g., by a CGS, is 
compared with the direct measurement of only plasma 
glucose G(t).

If Y(t) is measured, one of signals G(t), I(t), or X(t) can be 
estimated beside Y(t) itself, as shown in cases a, b, and c  
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in Figure 5. If plasma glucose and insulin should be 
estimated (cases d and e), this is only possible in the 
nondiabetic system. The estimation of further states 
(cases f and g) mostly violates practical observability.  
The last case (h) illustrates that observability will break 
down if two closely dependent states should be estimated, 
as this is the case for I(t) and X(t). These signals could 
not be separated based on the measurement of Y(t). 
Hence only one of them should be estimated as in cases 
a and c.

The situation can be improved if G(t) is measured directly 
instead of Y(t) in cases d, e, and f, which is shown in 
Figure 5 as empty bars.

Real-Time Estimation
Kalman filter estimation is mostly applied to the glucose 
subsystem only.5,28–30 In order to analyze the signal 
estimation in the whole glucose–insulin system, we recall 
scenarios 5 and 6. An UKF (see Real-Time State Estimation) 
is designed for estimation of state subset xE(t) = [G(t) I(t)]T, 
case d. The details are given in Table 2 and Reference 25.

As could be expected, the estimator filters the measured 
glucose signal soundly (Figure 6). But this is not the main 
achievement of the estimation. Moreover, it provides the 
full state vector throughout the time. As an example, at 
the time point t0 = 60 min, a model-based prediction is 

Figure 5. Scaled smallest singular values of the empirical Gramian 
observability matrix corresponding to state subset xE based on the 
measurement of only Y(t) (filled bars) or of only G(t) (empty bars) for 
scenarios 1 to 4. A subset achieving less than 0.1 is considered to no 
longer observable.

Table 2.
Setup of the Unscented Kalman Filter

Initial states x̂(0) = OT

Maximum states xmax; see Table 1

Initial covariance matrix P^ (0) = diag(x2
max)

State noise covariance 
matrix

Q = diag((0.01xmax)2) for measured state 
multiplied by factor 100

Measurement noise 
covariance matrix R diagonal matrix with ri,i = (3 mg/dl)2

Figure 6. The measurements of Figure 2a of Reference 11 (scenario 5) 
and Figure 2c of Reference 11 (scenario 6) are used for state estimation. 
The estimation (with its standard deviation as dashed curve) filters the 
measurement with sampling time Δt = 2.5 min. At time t0 = 60 min, 
a model-based prediction is started with and without the full state 
information.

started, which might be used to assess therapies. If the 
full state information is used to start the prediction in 
t0, the result is much better than using only the initial 
value for plasma glucose (Figure 6).

Parameter Identifiability
For the long-term identification and adaptation of model 
parameters, their identifiability has to be ensured.  
For assessment, all 13 model parameters (Table 1) 
are converted into states without dynamics following 
Equation (6). We obtain new state vector [x xP]T of 
dimension 22. Of course, not all entries can be identified 
from a single measurement, and we have to determine 
the degree of observability of state subsets xE using 
the methods already applied in Observability. Figure 7  
displays the smallest singular value as measures of 
observability for different subsets xE.
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Starting from case d (also shown in Figure 5), different 
parameters are added for estimation in cases i to o of 
Figure 7. For internal model parameters TI, TX, TG, kG1, 
and kG2, it can be seen that identifiability highly depends 
on the underlying scenario. Where identifiability is ensured 
in the most nondiabetic scenarios (1 and 2), it fails for 
the diabetic scenarios (3 and 4). For scenarios 1 and 2,  
identifiability can be improved if G(t) is measured 
instead of Y(t). 

The identifiability of peripheral model parameters depends 
on the local measurement or excitation. Parameter TY is 
only identifiable if Y(t) is measured (filled bars in case 
m), and TS can only be identified in scenario 4 with a 
subcutaneous insulin excitation (see case n). In the same 
way, parameter TO2 depends on an oral glucose excitation 
and is only identifiable for scenario 2 (see case o).

In Figure 7, these cases are repeated, but the estimation 
of I(t) is removed, which is denoted as cases i*–o*. 
Identifiability is improved in all cases. Especially diabetic 
scenarios gain identifiability; compare, for example, cases  
j and j*.

Figure 7. Scaled smallest singular values of the empirical Gramian 
observability matrix corresponding to state and parameter subset xE 
based on the measurement of Y(t) (filled bars) or of only G(t) (empty bars)  
for scenarios 1–4. A subset achieving less than 0.1 is considered to be 
no longer observable.

Parameter Identification and Model Adaptation
To demonstrate parameter identification, we pick up 
scenarios 5 to 7 based on previous data.11 In Figure 8a,  
the estimation of first-phase glucose sensitivity kG1 according  
to case k* in Figure 7 is shown. Starting with the default 
value of kG1 from Table 1, its value is increasing by 
approximate factor 20. This might be interpreted as 
incretin effect, which is observed in the case of oral 
glucose administration.24

Figures 8b to 8d show the estimation of second-phase 
glucose sensitivity kG2 according to case l* in Figure 7.  
As expected, the initial value of kG2 is only slightly adjusted 
for nondiabetic scenario 5. But in diabetic cases 6 and 7, 
gain kG2 is adjusted within approximately 2 h to almost 
zero, which characterizes the diabetic situation correctly. 

It shows that an individualized parameter adaption and 
a long-term adaptation of the initial model are possible. 
This will allow personalizing an initial standard 

Figure 8. Parameter estimation of kG2 in scenario 6 with data from 
Figure 2c of Reference 11 (a) with sampling time Δt = 2.5 min, 
estimation result starting initially with kG2,0 = 0.107 dl/mg/µU/ml/min 
and ending with kG2,1 = 0.0025 dl/mg/µU/ml/min (with its standard 
deviation as dashed curve). (b) Assessment of estimation by the difference 
of estimation residuals res1 with kG2,1 and res0 with kG2,0 according  
to Equation (5).
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model to a patient-specific profile. The development of 
parameters kG1 and kG2 may also support diagnosis.

Observability of Inputs
Following Equations (7) and (8), model inputs may also 
be estimated if they are not given as known external 
signals. This might be of specific interest in order to estimate 
external glucose input [either intravenous using uGV(t) or 
oral via uGO(t); see Figure 2]. In the same way, it might 
be possible to estimate an insulin bolus for diabetes 
patients [either intravenous using uIV(t) or subcutaneous 
via uIS(t); see Figure 2]. The results of the observability 
analysis of the extended systems are displayed in Figure 9 
for scenarios 1 to 4. Starting from case d, which is also 
shown in Figure 5, each of the four possible inputs is 
added to set xE as cases p to s. As in case d, practical 
observability is only given for nondiabetic scenarios 1 
and 2, but not for diabetic cases 3 and 4. If the estimation 
of plasma insulin I(t) is skipped, practical observability 
is achieved for all inputs and scenarios; see cases  
p* to s* in Figure 9.

Estimation of Inputs
We recall simulated scenarios 1–4. Using the simulated 
output of interstitial glucose concentration Y(t) as 
measurement, we now try to reconstruct the corresponding 
inputs by estimation. For scenarios 1 and 3, it can be 

seen in Figure 10 that the estimation of an intravenous 
glucose application can be estimated successfully. 
Obviously, this is possible for nondiabetic as well as 
diabetic scenarios.

In contrast, the results for scenario 2 are not satisfactory. 
The oral glucose dosage is estimated with a delay of 
approximately 60 min. Here the modeled time delay 
from oral to plasma glucose hinders a timely estimation 
of the oral glucose input, even if this input is practically 
observable. For completeness, Figure 10 also shows 
the estimation of a subcutaneous insulin input within 
scenario 4. The results are unstable, and the estimated 

Figure 9. Scaled smallest singular values of the empirical Gramian 
observability matrix corresponding to state and input subset xE based 
on the measurement of Y(t) (filled bars) or of only G(t) (empty bars) for 
scenarios 1–4. A subset achieving less than 0.1 is considered to be no 
longer observable.

Figure 10. (a)–(d) Estimation of inputs for simulated scenarios 1 to 4 
(mean estimate as solid curve, standard deviation from mean as dashed 
curve) with sampling time Δt = 1 min. (e)–(f) Estimation of oral 
glucose input for scenarios 5 and 6 with sampling time Δt = 2.5 min. 
Data obtained from Figures residual 2a and 2c, respectively, of 
Reference 11 (mean estimate as solid curve, standard deviation from 
mean as dashed curve).
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standard deviation does not converge. But in real 
application, the estimation of insulin will not be of major 
interest, because it is usually known as control signal 
within a diabetes therapy.

These results are supported by the estimations based 
on the measurement of real plasma glucose G(t) data,11 
shown in Figure 10 as scenarios 5 and 6. In both scenarios, 
a glucose input peak is observed correctly that yields 
from the glucose dosage, but it is delayed again for 
approximately 60 min.

This shows the limits of the model-based diagnoses 
based on the measurement of interstitial glucose Y(t) or 
plasma glucose G(t). From these signals, the oral glucose 
input cannot be estimated in time. It will be necessary  
to provide this additionally as external information for 
insulin control.31

Discussion
Using a mathematical dynamical model of the glucose–
insulin homeostasis, it is possible to estimate internal 
model states such as plasma insulin I(t). This can be 
provided for diagnostic purposes. A complete estimate 
of the system’s state is especially required in real time 
for a precise prediction of the signal. Model-predictive 
control (MPC) can be applied to find an optimal insulin 
bolus12,24,32,33 for diabetes patients. The MPC algorithm is 
based on these predictions. Hence the precise estimate 
of the metabolic state is an essential step toward closed-
loop insulin control of diabetes patients.

In parallel, it is possible to identify selected subsets of 
the 13 model parameters. This way, the model can be 
adapted to individual patients. Starting with standard 
models, which may already consider metabolic disorders, 
e.g., diabetes type 2, the model can be adapted to the 
patient within a number of days. The adapted model 
then ensures improved signal estimation. Moreover, the 
development of model parameters can be used for diagnosis, 
e.g., a beta-cell distortion will result in decreasing loop 
gains kG1 and kG2.

Precondition for state observation and parameter 
identification is a time-continuous measurement. With a  
CGS, this is now available for interstitial glucose Y(t). 
Comparing observability between plasma glucose G(t) 
and interstitial glucose Y(t) measurement (empty versus 
filled bars in Figures 5, 7, and 9), it becomes obvious 
that the information from Y(t) is limited. Beside the 
estimation of G(t), only one further state or parameter 

can be estimated, which might be I(t), TG, kG1, kG2, and TY 
in cases d, j*, k*, l*, and m* of Figure 7, respectively. 

It turns out that the estimation of external inputs 
as an oral glucose dosage is limited. It is estimated 
correctly, but with a time delay,34 such that a real-
time compensation will not be possible. This has to be 
provided to an insulin controller separately.

Conclusions
The authors propose that the twofold strategy of real-time 
signal estimation combined with a long-term patient-
specific parameter identification obtains the most profit 
from a CGS.1 It allows a personalized diagnosis of the 
glucose–insulin system. As such, it will be an important 
module within a personalized closed-loop insulin control.

Complementary to the theoretical results presented in 
this contribution, a broader data analysis of a group of 
patients with and without diabetes will be necessary 
in order to find out about the distribution of model 
parameters. Based on this, the most important parameters 
have to be selected, and automated identification 
algorithms can be developed.
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