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Abstract

Background:
The popularity of continuous subcutaneous insulin infusion (CSII), or insulin pump therapy, as a way to deliver 
insulin more physiologically and achieve better glycemic control in diabetes patients has increased. Despite the 
substantiated therapeutic advantages of using CSII, its use has also been associated with an increased risk of 
technical malfunctioning of the device, which leads to an increased risk of acute metabolic complications, such 
as diabetic ketoacidosis. Current insulin pumps already incorporate systems to detect some types of faults, 
such as obstructions in the infusion set, but are not able to detect other types of fault such as the disconnection 
or leakage of the infusion set. 

Methods:
In this article, we propose utilizing a validated robust model-based fault detection technique, based on interval 
analysis, for detecting disconnections of the insulin infusion set. For this purpose, a previously validated 
metabolic model of glucose regulation in type 1 diabetes mellitus (T1DM) and a continuous glucose monitoring 
device were used. As a first step to assess the performance of the presented fault detection system, a Food and 
Drug Administration-accepted T1DM simulator was employed.

Results:
Of the 100 in silico tests (10 scenarios on 10 subjects), only two false negatives and one false positive occurred. 
All faults were detected before plasma glucose concentration reached 300 mg/dl, with a mean plasma glucose 
detection value of 163 mg/dl and a mean detection time of 200 min.

Conclusions:
Interval model-based fault detection has been proven (in silico) to be an effective tool for detecting disconnection 
faults in sensor-augmented CSII systems. Proper quantification of the uncertainty associated with the employed 
model has been observed to be crucial for the good performance of the proposed approach.
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Introduction

According to a meeting1 of insulin pump experts on 
insulin pump safety, which was conducted at the request 
of the U.S. Food and Drug Administration (FDA), insulin 
pump designs have made great progress in improving 
the quality of life of people with diabetes, but much 
more remains to be done to improve safety measures.

Potential safety issues include users disconnecting their 
pumps without first terminating ongoing delivery, which 
results in insulin leakage and miscalculation of the 
amount infused. Another example occurs when, under 
circumstances not detected by the user, the infusion 
set becomes disconnected and prevents insulin from 
reaching the user. Such circumstances include the infusion 
set needle being caught on the infusion site tape or the 
needle being pulled out during sleep. These examples 
show that it is critical that insulin pumps detect and 
inform users about accidental pump or infusion set 
disconnections in a timely manner, a feature that is not 
supported by currently available insulin pumps.

The idea of using fault detection techniques to detect 
failures in insulin pump therapy combined with 
continuous glucose monitoring (CGM) is not new and has 
been previously proposed by other authors. Finan and 
coauthors2 proposed a multivariate statistical technique 
to detect insulin pump leakages and glucose sensor 
bias. Kovacs and associates3 applied a model-based 
technique based on linear parameter varying modeling, 
using the Bergman minimal model,4 in the context of 
critically ill patients. Vega-Hernandez and coworkers5 
employed another model-based fault detection technique 
for increasing security in an artificial pancreas using 
the mathematical model developed by Hovorka and 
colleagues.6 A model-based approach using a Kalman 
estimator for detecting failures in both continuous 
subcutaneous insulin infusion (CSII) and CGM to improve 
safety during overnight glycemic control was presented  

by Facchinetti and associates.7

In this article, we propose, for the first time to our 
knowledge, the use of a validated robust model-based fault 
detection technique8 to detect faults in insulin pump 
therapy in combination with CGM. The proposed robust 
fault detection technique has already been applied 
successfully in other engineering problems such as for 
detecting failures in chemical and petrochemical plants.9

Controlling blood glucose levels in type 1 diabetes mellitus 
(T1DM) is a complex problem incorporating many variables 
with significant levels of variability, such as insulin 
sensitivity, and uncertainty, such as carbohydrates intake 
and exercise.10 Thus existing mathematical models of 
the glucoregulatory system for T1DM subjects4,6 are 
approximations of reality. Furthermore, CGM accuracy11 

is far from being optimal, mainly due to the fact that 
glucose is measured in the interstitial compartment 
instead of in the blood compartment.12 Note that this 
lack of accuracy is currently one of the main barriers 
for mainstream utilization of CGM. Thus dealing with 
all this variability, uncertainty, and lack of accuracy is  
a crucial point in order to build a reliable model-based  
fault detection system to detect failures in insulin pumps.

Unlike other previously proposed model-based approaches, 
our fault detection system is able to handle high levels of 
uncertainty associated with CSII in T1DM. The presented 
approach manages uncertainty by using interval 
analysis13 in the process of modeling and simulation.  
By using interval analysis, our technique is able to 
minimize the false alarms ratio while maintaining a 
high level of fault sensitivity.

Materials and Methods

Analytical Redundancy
Analytical redundancy is a method to detect faults that 
compares the behavior of a real system to a model-
based reference system. A fault is detected when they 
are inconsistent.14 The main problem is that these two 
behaviors are seldom the same, because the model 
is, by definition, inaccurate, i.e., it is an approximate 
representation of the system. This is the consequence 
of the uncertainties of the system and the procedure of 
systems’ modeling. This problem is usually solved by 
setting a threshold for the residual (R; i.e., difference 
between the model behavior and the actual system) 
over which the system is considered to be faulty.  
Figure 1 shows a graphical representation of the 
analytical redundancy concept. Nevertheless, selecting 
such a threshold can be a difficult task because it may 
not be constant over time, and an adaptive threshold 
might be required. One way to overcome this limitation 
is by including the uncertainty of the system in the 
modeling procedure.
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Interval Analysis
One way to account for uncertainty is to take the model 
parameters, measurements, and initial states as interval 
values.13 Intervals only contain information about upper  
and lower bounds; thus, in using intervals, no 
assumptions are made about the probability distribution 
of the uncertainty or about the independence or correlation 
of parameters.

The simulation of a real-valued model produces a trajectory 
for each output variable, which is a curve representing 
the evolution of the variable of the system across time. 
In the case of a model involving interval values, a set of 
curves (a band) represents the evolution of each variable.

For obtaining such a reference band, we used interval 
analysis for solving interval-valued initial-value problems 
(IVPs).13 These methods provide numerically reliable 
enclosures of the exact solution at sample times t0, t1,...,tn. 
However, interval methods have a reputation of yielding 
highly overestimated bands. This is due primarily to 
the dependency (multiple instances of some variables) 
problem, which is inherent in interval arithmetic, and 
the wrapping problem, which arises when interval 
calculations are done in state space.

The approach described here pursues a band that is 
guaranteed to be complete (i.e., includes all the possible 
behaviors of the model), but without the large over-
estimation associated with interval methods that would 
make the approach impractical. For obtaining this complete, 
slightly overestimated band, we propose the use of modal 
interval analysis (MIA; for a complete introduction, see 
Reference 15), which has been proven to be an effective 
way to reduce overestimation in interval computations.16

Interval Model-Based Fault Detection
We consider a model-reference described by the following 
nonlinear, ordinary differential equation (ODE) model:

x’ = f(x,q),x(0) = x0,                     (1)

y = h(x,q),                           (2)

where x is the m-dimensional state vector, q is a 
p-dimensional time-invariant parameter vector, and y is 
the r-dimensional output vector. Output measurements 
ŷj at t = tj are available with error vj = ŷj – yj, where  
yj = h(xj,q) and xj = x(tj). The initial states x0 are assumed 
to lie in a known interval X0. The parameter vector q 
is assumed to be constant and to belong to a known 

interval Θ, which represents the set of parameter values 
for a fault-free system.

The measurement error vj is bounded and assumed to 
belong to a known interval Vj at each tj. Therefore the 
output vector yj belongs to a known box Yj = ŷj – Vj. 
The structure of the model, that is, the function f(x,q), 
is assumed to be known (if the model structure is not 
known with certainty, or if the model structure is poorly 
chosen, wider parameter intervals may be needed to 
fully capture normal behaviors). We assume that f and 
h are continuously differentiable with respect to the 
uncertain quantities x (initial states x0 and parameters q).

The simulation of a model produces a trajectory for 
each output variable, which is a curve representing 
the evolution of the variable of the system across time:  
y(t),t = t0, ... , tn. In the case of an interval model, as it is 
a set of models indeed, a set of curves (a band) represent 
the evolution of each variable. The limits of the band are

Y(t) = [min(y(t)), max(y(t))], t0, ... , tn.            (3)

The band of system output, generated using the parametric 
model with the set of parameter values, describes the 
fault-free system behavior. A fault is reported when the 
output y(t) lies outside the boundary of the band. The goal 
is to report faults as soon as possible and to avoid false 
alarms. A fault is detected when the measurement ŷ(t)  
of the output y(t) is not contained in the estimated 
output band Y(t). That is,

ŷ(t) ∉ Y(t).                              (4)

Note that we can only say that a fault occurs when 
the previous statement is satisfied, but we cannot say 
that the system is not faulty if the previous statement 

Figure 1. Analytical redundancy diagram. Given the same input for 
the actual system and a model of the system, the measured output 
is compared with the estimated output (residual). If the residual  
(R) is bigger than a predefined threshold, the system is considered to 
be faulty.
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is not satisfied. This is due to the fact that a fault can 
be masked by its own dynamics. Furthermore, two 
simultaneous faults could counteract each other, resulting 
in an apparently normal behavior.

In fact, if y(t) can be measured ŷ(t), the measurement 
is, in general, not accurate because of the uncertainty 
associated to the measuring procedure. If this inaccuracy 
is not considered, false alarms can be generated. One 
option to take this inaccuracy into account is to use 
interval measurements Ŷ(t). Then a fault is detected 
when the intersection of the two bands is empty. That is,

Ŷ(t) ∩ Y(t) = ø.                       (5)

Thus the previously stated fault detection problem 
is reduced to solving an initial IVP with interval-
valued parameters and/or initial values.17 Nevertheless, 
this is, in general, a challenging problem due to the 
overestimation phenomenon associated with interval 
computations. This drawback can be lessened using an 
error-bounded estimation18 of the exact band Y(t) since a 
fault is also detected if

Ŷ(t) ∩ Yout(t) = ø,                      (6)

where Yout(t) is an external error-bounded estimation of 
Y(t), i.e., Y(t) ⊆ Yout(t), which usually is much easier to 
obtain than Y(t) although it detects less faults than Y(t). 
If determining Yout(t) is still very time consuming, its 
computation can stop either when a fault is detected 
or when a predefined timeout is reached. Figure 2 
graphically describes our interval model-based fault 
detection approach.

Sliding Time Windows
When simulating ODE systems, the goal is to estimate 
the states of a system knowing some initial ones and the 
inputs to the system. Therefore, as the simulation goes on, 
the time distance between the time point, which is being 
estimated, and the initial one is always increasing. In the 
case of an IVP with interval-valued parameters and/or 
initial values, this would mean that the computing effort 
is also increasing together with the overestimation, and 
at some time point, the problem may become intractable.  
This problem can be solved by using a sliding time 
window.8

In fault detection, data from the system is needed to 
compare the real system behavior and the reference one, 

Figure 2. Graphic representation of an interval model-based fault 
detection approach. In the upper graph, the blue solid curve represents 
the interval measurements and the red dashed curve represents the 
estimated output. In the lower graph, the black short bar indicates the 
time the fault occurs and the red long bar indicates the time the fault 
is detected. Note that the moment the fault is detected is when the 
two bands are not intersecting.

which is obtained analytically. Therefore, any time point 
can be considered as an initial one, and the estimation of 
the value of a variable at time point t can be calculated 
starting from the initial time point  t0 = 0 , which is 
represented by Y(t|t0), or Y(t|tj) from any other time 
point tj, 0 < tj < t. So the necessary computing effort can 
be limited by fixing a maximum length w = t – tj. This is 
especially important in real-time applications, where the 
computation time is limited by the sample time.

The fault detection results obtained using several 
window lengths is better, i.e., there are fewer missed 
alarms (false negatives), than the ones obtained using 
a single window length, whatever the length is in the 
latter case. The reason for this improvement lies in the 
fact that a fault can be detected, or not, depending on 
the window length.

As the necessary computing effort to calculate Y(t|t – w1)  
is greater than the one to calculate Y(t|t – w2) when  
w1 > w2, the logical strategy is to first use the shortest 
window length, and if no fault is detected, then use 
the second shortest window length and so on until 
the maximum window length is reached, thus saving 
computing effort and minimizing the rate of false 
negatives. Note that the number of used windows and 
their lengths depend on the available computing time.
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Experimentally, it has been observed that longer windows 
have longer detection times. Then it could seem that 
shorter windows are better. This is not true. For instance, 
shorter windows do not detect slow drifts, because the 
envelope “follows” the measurement. The experiments 
show that longer windows do not detect short duration 
faults, because the duration of the fault is shorter than 
the detection time. On the other hand, longer windows 
tend to be wider, because the uncertainty is accumulated 
though the window. Therefore, there are faults that can 
only be detected with shorter windows. Note that the 
analytical determination of the optimal window length 
remains an open problem.

The algorithm implementing our interval model-
based fault detection system is summarized in Table 1.  
Where, Data is a vector containing system inputs and 
measurements, Windows is a vector of sliding time 
window lengths, Yout is an external approximation of the 
band encompassing all the possible dynamic behaviours 
of the ODE system, Solver is an interval-based IVP solver 
(see Solving Initial-Value Problems Using Modal Interval 
Analysis), and Ŷ(t) is the current interval measurement.

Table 1.
Interval Model-Based Fault Detection Algorithm

Fault detection algorithm (in: model, data, windows; out: fault)

1. for each sample time t do
2. Fault = false;
3. for each sliding time window length i do
4. Yout (t|t – windowi) = Solver(Model, Data, windowi)
5. if Yout (t|t – windowi) ∩ Ŷ(t) = ∅ then
6. Fault = true; break
7. endfor
8. endfor

Type 1 Diabetes Subject Model
Several metabolic models of different complexities have 
been proposed to represent the glucose–insulin dynamics 
of a T1DM subject.4,6,19 However, their suitability depends 
on the purpose for which they are used. For instance, 
the sophisticated model proposed by Dalla Man and 
coauthors19 is suitable for creating a T1DM subject 
simulator20 but is not a useful prediction model for a 
model predictive controller since its complexity makes 
it difficult to identify its parameters. On the other 
hand, the minimal model proposed by Bergman and 
colleagues4 may not be sophisticated enough to be used 
in a T1DM simulator, but it may be suitable for model 
predictive control and other algorithms that require 
glucose estimation, such as the current model-based fault 
detection approach.

In the present work, a composite metabolic model formed by 
the endogenous minimal model,4 the glucose absorption 
model, and the subcutaneous insulin absorption model6 
have been employed. A linear version of this model was 
successfully used by Gillis and associates21 to predict 
glucose levels using a Kalman filter state estimation with 
meal announcement and a prediction horizon of 45 min.

The Bergman minimal model is represented by the 
following equations:

Ġ(t) = –[SG + X(t)]G(t) + SGGb + 
Ra(t)
VG

,          (7)

Ẋ(t) = –p2X(t) + p2SI[I(t) – Ib],               (8)

where G is plasma glucose concentration with G(0) = Gb;  
I is plasma insulin concentration with I(0) = Ib, where 
b denotes basal values; X is insulin action on glucose 
production and disposal with X(0) = 0; VG is the 
distribution volume; and SG, SI, and p2 are model 
parameters. Specifically, SG is the fractional (i.e., per unit 
distribution volume) glucose effectiveness, which measures 
glucose ability per se to promote glucose disposal and 
inhibit glucose production; SI is the insulin sensitivity;  
p2 is the rate constant describing the dynamics of insulin 
action; and Ra is the rate of glucose appearance.

In order to represent the subcutaneous insulin infusion, 
an existing model of subcutaneous insulin absorption 
was incorporated into the Bergman minimal model.6 
This model is expressed by

İ(t) = –keI(t) + 
S2(t)

VItmaxI
                   (9)

Ṡ1(t) = u(t) – 
S1(t)
tmaxI

                     (10)

Ṡ2 = 
S1(t) – S2(t)

tmaxI
                       (11)

where ke is the first-order decay rate for insulin in 
plasma, u(t) subcutaneous insulin infusion rate, VI is the 
distribution volume of plasma insulin, tmaxI is the time 
to maximum insulin absorption, and S1(t) and S2(t) are 
a two-compartment chain representing absorption of 
subcutaneously administered short-acting (e.g., lispro) 
insulin.

In order to represent the glucose absorption after the 
ingestion of a mixed meal, a modified version of 
the Hovorka gastrointestinal absorption model6 was 
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incorporated to the Bergman minimal model. The model 
was modified because the original one was not able to 
represent the glucose absorption dynamics of certain 
mixed meals, especially the ones where a second 
absorption peak is observed due to a delayed absorption. 
The modified model equations are

Ḟ(t) = 
1

tmaxG
(–F(t) + AGDG(t) + (0.9 – AG)DGd(t)),   (12)

Ṙa(t) = 
1

tmaxG
(–Ra(t) + F(t)),           (13)

where Ra is the plasma appearance of glucose; F is 
the glucose appearance in the first compartment;  
DG is the amount of carbohydrates ingested at time t; 
DGd is the amount of carbohydrates absorbed at time 
tmeal + tdelay during a certain time interval tinterval = [tmeal 
+ tdelay, tmeal + tdelay + interval], being DGd(tinterval) = DG(tmeal)/
interval and interval fixed to 60 min; AG is carbohydrate 
bioavailability; and tmaxG is the time of maximum 
glucose rate of appearance in the accessible glucose 
compartment. Note that interval was empirically fixed 
to 60 min in order to smooth the transition between the 
two absorption peaks, but it could also be an additional 
parameter to identify.

Solving Initial-Value Problems Using 
Modal Interval Analysis
As already mentioned in Interval Analysis, interval 
computations have the problem of overestimating results 
because of the multiple instances of variables. In order 
to compute, in an efficient way, a tight external 
approximation of the model output (G(t)), MIA was 
employed. For this purpose, the model presented in 
Type 1 Diabetes Subject Model was discretized using a 
first forward difference derivative approximation (1 min  
step size). Such an approximation was proven to provide 
equivalent results to the continuous form of the model. 
Then symbolic manipulations were carried out in order 
to eliminate multiple instances of variables. Finally, 
optimality theorems from MIA15 were applied to 
minimize the overestimation due to the multiple instances 
of variables that could not be eliminated. Thus the 
following equations were obtained:

S1(k + 1) = S1(k) + 
⎛
⎜
⎝
u(k) – 

dual(S1(k))
tmaxI

⎞
⎟
⎠
TS      (14)

S2(k + 1) = S2(k) + 
S1(k) – dual(S2(k))

tmaxI
 TS,       (15)

I(k + 1) = I(k)(1 – keTS) + 
S2(k)

tmaxIVI
 TS,        (16)

F(k + 1) = F(k) +
⎛
⎜
⎝

1
tmaxG

 (AGDg(k) – dual(F(k)) + (0.9 – AG) DGd(k))
⎞
⎟
⎠
TS, (17)

Ra(k + 1) = Ra(k) + 
F(k) – dual(Ra(k))

tmaxG
 TS,      (18)

X(k + 1) = X(k) + p2(SII(k) – dual(X(k)))TS,      (19)

G(k + 1) = G(k)(1 – X(k)) TS +

SG(Gb – dual(G(k))TS + 
Ra(k)
VG

 TS, (20)

where k indicates the current sample, TS is the sample 
time (i.e., 1 min), and dual is a modal interval operator 
defined as dual([a,b]) := [b,a], with a being the lower bound 
of an interval and b the upper bound. Note that, despite 
using the same notation, variables and parameters in 
Equations (14)–(20) are their interval counterparts.

In order to solve the previous interval ODE system, the 
initial states were set to zero, with the exception of G(0) 
and I(0), which were set to their basal values (Gb and Ib).  
The algorithm for solving the interval ODE system 
consists of an iterative loop that sequentially evaluates 
Equations (14)–(20) using MIA arithmetic. For this purpose, 
a MIA arithmetic library16 was implemented in Matlab®. 
Since most of Equations (14)–(20) satisfy optimality 
conditions of MIA,15 the resulting interval computations 
do not produce much overestimation. In the case that  
these optimality conditions would not have been satisfied, 
the f* algorithm16 could have been employed to reduce 
such overestimation.

When using the sliding time window strategy presented 
earlier, at each simulation step, the states of the model 
are set to their corresponding values at the beginning of 
the simulation window (e.g., X(0) = X(k – window)), with 
the exception of G(0), which is set to the actual glucose 
measurement at the beginning of the window (i.e.,  
G(0) = Ĝ(k – window)) with the corresponding uncertainty.

Regarding the length of the sliding time window, a 
single 60 min window length was selected. The selection 
of a 60 min window was done experimentally by trying 
different window lengths (e.g., 30, 60, and 90 min) and 
taking the one that provided better results in terms of 
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shortest detection times and less false negatives. Since 
the studied problem only presents one type of fault (i.e., 
pump disconnection) and the window length depends 
on the type of fault and its duration, the utilization 
of multiple sliding time windows was considered 
unnecessary.

Finally, note that estimated blood glucose G(k + 1) in 
Equation (20) corresponds to Yout in Table 1 and that the 
continuous glucose measurements (Gcgm) correspond to Ŷ 
in Table 1.

Estimation of Interval Parameters
One common difficulty when using interval analysis 
for solving IVPs is to define the intervals associated 
with model parameters and initial conditions of the 
ODE system. One way to tackle this problem is to use 
parameter identification techniques based on interval 
analysis.22 However, these techniques, even if they are 
numerically sound, are usually very conservative in 
terms of the size of the provided intervals. Another 
technique to define such intervals consists of using 
classic parameter identification techniques (i.e., least 
squares) over different sets of data and to take the 
minimum and maximum identified value for each 
parameter.23 In the present work, since the T1DM 
simulator20 does not incorporate intrasubject variability, 
interval parameters were only used to deal with the 
errors introduced in the modeling process and the errors 
associated with measurements. In order to define such 
intervals, classic parameter identification techniques 
were employed to calculate the center of such intervals. 
Then the width of the intervals was defined based on 
empirical and experimental evidence.24 Even if some 
degree of experimental evidence was used to set the 
magnitude of the intervals, the main criteria consisted 
of ensuring that the interval model estimate was able to 
encompass, as much as possible, the reference behavior 
during the identification phase (see Figure 3).

Center of Interval Parameters
For calculating the center of the interval parameters, 
the fmincon optimization algorithm from the Matlab 
Optimization Toolbox (2010b, The Matworks, Natick, MA) 
was used to minimize the sum of squared errors between  
a discrete version of the T1DM model [Equations (14)–(20)] 
and the experimental data. Note that the three employed 
models were identified separately in order to avoid 
identification problems.

To identify the glucose absorption model parameters 
(tmaxG, tdelay, and AG), meal protocol (i.e., carbohydrates 

Figure 3. Interval estimation of Ra (solid green linecurve) versus 
reference value from the T1DM simulator (dotted red linecurve).  
The data corresponds to a scenario with three meals.

and intake times) and glucose rate of appearance (Ra) 
data were used, respectively, as input and output data. 
Note that Ra data are difficult to obtain in normal 
clinical practice because it requires the use of a complex 
multitracer oral glucose protocol.25 However, different 
approaches26,27 have been proposed for estimating 
from plasma glucose and plasma insulin concentration 
data that could be used for this purpose. For the sake of 
simplicity, reference Ra data from the T1DM simulator20 
were used in this work. To identify the subcutaneous 
insulin absorption model parameters (ke, VI, and tmaxI), 
CSII data and plasma insulin measurements (Ip) from 
the T1DM simulator were used. Finally, CSII data, meal 
protocol, and CGM data were employed to identify the 
parameters of the endogenous model (SI, VG, SG, and p2).  
Note that previously identified model parameters for Ra 
and subcutaneous insulin absorption models were used 
for identifying the endogenous model parameters.

Width of Interval Parameters
Table 2 shows the selected uncertainty for each of 
the parameters and inputs of the model. Note that 
parameters and inputs with higher variability,24 such 
as insulin sensitivity (SI), time to maximum insulin 

Table 2.
Uncertainty on Model Parameters and Inputs of 
the Type 1 Diabetes Mellitus Model Expressed  
in Percentage

SI
10

p2
5

VG
3

SG
3

tmaxI
10

VI
3

Gb
5

ke
5

AG
5

tmaxG
5

BW
1

u
1

DG
10

Ib
5
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absorption (tmaxI), and carbohydrate intake (DG), have 
higher uncertainty than other parameters with less 
variability, such as glucose and insulin distribution 
volumes (VG and VI), body weight (BW), and insulin 
infusion (u). The corresponding intervals can be easily 
obtained as X = [x – n%x, x + n%x], where x is the 
estimated value and n is the corresponding percentage 
uncertainty.

Figure 3 shows an example of Ra interval estimation 
together with the reference value from the T1DM simulator. 

It is important to mention that, in a real clinical scenario, 
this uncertainty should be individualized to each diabetes 
subject in order to cope with intrasubject variability.  
For this purpose, the method proposed by Kirchsteiger 
and associates23 could be employed.

As far as the error associated with the continuous glucose 
measurements (Gcgm) is concerned, a ±20 mg/dl error 
was considered.11 Nevertheless, the CGM noise model of 
the T1DM produces differences with respect to plasma 
glucose values up to 40%, which can be considered 
unrealistic for current CGM devices. Finally, note that 
the dynamic lag between the plasma and interstitial 
glucose compartments has not been modeled. However, 
the considered uncertainty associated with the CGM 
measurement already incorporates the error due to 
modeling approximation.

In Silico Protocol
As a first step to assess the performance of the presented 
fault detection system, a FDA-accepted T1DM simulator 
was employed.20 It must be noted that the model 
implemented in the T1DM simulator19 is much a more 
sophisticated model than the one employed in the present 
work (i.e., 11 versus 35 parameters). Despite the mismatch 
with the reality being shown to be larger, the T1DM 
simulator is a suitable platform for testing the proposed 
fault detection approach because it is able to replicate 
this mismatch to a certain degree.

Thus the T1DM simulator was used to generate the 
required data (i.e., plasma insulin, plasma glucose, 
and glucose rate of appearance) for the testing of the 
fault detection technique. For this purpose, 10 adult 
subjects of the academic version of the simulator were 
selected. In order to tune the basal–bolus therapy, a 
protocol consisting of adjusting the basal insulin 
rate in order to get a basal glucose level (Gb) close to  
100 mg/dl and adjusting the insulin-to-carbohydrate 
ratio in order to minimize the postprandial peak and to 

avoid hypoglycemia was used. Two meal protocols (i.e., 
different meal ingestion times and different amounts of 
ingested carbohydrates) were employed (see Table 3). 

Table 3.
Meal Protocols Used to Identify the Model 
Parameters (Protocol 1) and Testing the Fault 
Detection Algorithm (Protocol 2)

Protocol Breakfast Lunch Dinner

1 6 am (30 g) 2 pm (60 g) 8 pm (45 g)

2 6 am (60 g) 1 pm (70 g) 7 pm (30 g)

Protocol 1 was used to identify the model parameters 
while protocol 2 was used to test the fault detection 
technique. The idea of using two different protocols 
for tuning the model and testing the fault detection 
algorithm was to create a more realistic benchmark. 
Nevertheless, it is important to emphasize that the T1DM 
simulator is an approximation of the glucose–insulin 
dynamics of a T1DM subject and it does not include  
the variations of insulin sensitivity during the day and 
other perturbations such as physical exercise or stress.

For each subject, 10 random faults were generated in 
a period of 24 h. However, a 30 h simulation period 
was used in order to have enough time to detect faults 
occurring at the end of the 24 h period. The faults 
represented a complete suppression of the insulin infusion, 
which is equivalent to the disconnection of the infusion 
system. To evaluate the performance of the algorithm, 
different metrics were employed: time interval between 
the occurrence fault and its detection (time); plasma 
glucose concentration at the moment of detection; insulin 
not delivered until the fault is detected (lost insulin); 
and false negatives and false positives, where a false 
negative is defined as a fault not detected before 400 
min. Finally, although there is no consensus definition of  
what constitutes diabetic ketoacidosis in terms of plasma 
glucose concentration,28 a threshold of 300 mg/dl was 
established as a safety limit to evaluate the performance 
of the fault detection system.

Results
Table 4 shows a summary of the results. Despite the 
detection interval being occasionally long, all faults 
were detected before the plasma glucose concentration 
reached the predefined safety limit (300 mg/dl). Note 
that the variability of the results between subjects is 
significant. This is due to the very different glucose–
insulin dynamics of the subjects. Also noticeable was 
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the low ratio of false negatives (2 out of 100 faults) and 
false positives (1 out of 1257 h of nonfaulty simulation), 
which demonstrates the robustness of the proposed 
approach. Figure 4 shows an example of fault detection 
corresponding to subject adult 3, and Figure 5 shows  
an example of a false positive in subject adult 6.

Table 4.
Fault Detection Results for the 10 Adult Subjects of 
the Type 1 Diabetes Mellitus Simulatora

Subject Time (min)
Moment of 
detection
(mg/dl)

Lost insulin 
(U)

False negative/
false positive

1 390 ± 59 185 ± 38 11.7 ± 1.8 1/0

2 204 ± 28 128 ± 32 6.4 ± 2.5 0/0

3 191 ± 24 176 ± 31 6.4 ± 2.8 0/0

4 161 ± 33 163 ± 52 4.7 ± 1.5 0/0

5 297 ± 52 161 ± 36 9.2 ± 5.8 0/0

6 170 ± 33 170 ± 33 7.6 ± 4.2 0/1

7 160 ± 32 156 ± 15 4.4 ± 0.6 0/0

8 196 ± 39 155 ± 13 7.1 ± 1.6 0/0

9 318 ± 49 210 ± 33 11.2 ± 2.6 1/0

10 330 ± 86 162 ± 55 10.8 ± 4.0 0/0

Total 200 ± 43 163 ± 34 7.3 ± 2.7 2/1
a Results are expressed as median ± standard deviation.

Figure 4. Example of fault detection in subject adult 3. In the upper 
graph, the black short bar indicates carbohydrate intakes (time and 
amount), the red dashed curve represents the interval measurements, 
and the green solid curve represents the estimated interval output.  
In the lower graph, the black short bar indicates the time the fault 
occurs and the long red bar indicates the time the fault is detected.

Figure 5. Example of false positive in subject adult 6. In the upper 
graph, the black short bar indicates carbohydrate intakes (time and 
amount), the red dashed curve represents the interval measurements, 
and the green solid curve represents the estimated interval output.  
In the lower graph, the black short bar indicates the time the fault 
occurs, and the long red bar indicates the time the fault is detected. 
Note that, around 900 min, the estimated interval output falls slightly 
below the interval measurement, producing a false positive.

Discussion
Interval model-based fault detection has been proven to 
be an effective robust tool for detecting faults in CSII 
systems using CGM. In particular, disconnection of the 
insulin infusion set, which currently available insulin 
pumps are not able to detect, has been successfully detected. 
The proposed technique has been validated using a FDA-
approved T1DM simulator, which is an accepted method for 
in silico testing of glucose controllers before clinical trials.

The proposed fault detection technique uses the well-
known principle of analytical redundancy. Interval analysis 
has been used to account for uncertainties in model 
parameters, measurements, and inputs. In particular, 
MIA was successfully used to deal with the problem 
of numeric overestimation associated with interval 
computations, which can make the fault detection technique 
less sensitive or even useless if the overestimation is too 
big. Although it is not addressed in this article, MIA 
allows quantifying such overestimation by computing an 
inner approximation of the exact band. Then, by comparing 
the outer and inner approximations, it is possible to have 
an estimate of such overestimation.

Although interval analysis approaches have the reputation  
of being computationally complex, this is not the case 
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for the current application thanks to the use of MIA. 
Note that the same problem could not be solved using 
standard interval arithmetics due to the extreme 
overestimation of the results (i.e., trumpet effect).  
An alternative to MIA could be the use of Taylor models 
combined with interval analysis17 or the use of interval 
constraint propagation combined with branch-and-
bound techniques.22 However, the comparison of these 
techniques with MIA is out of the scope of this article.

Intervals associated with model inputs, measurements, 
and model parameters were selected based on technical 
specifications of the employed medical devices and 
clinical knowledge. However, some of these intervals 
were readjusted in order to guarantee that the interval 
model estimate was able to encompass the reference 
behavior during the identification phase. It is important 
to remark that, in a real clinical scenario, these intervals 
should be adjusted according to physiological and metabolic 
characteristics of the subject. In the case of parameters 
that have a strong intraday variability, such as insulin 
sensitivity, different interval values could be used along 
the day since trying to cope with all the variability in a 
single interval would lead to low fault sensitivity.

Of the 100 in silico tests, only two false negatives and one 
false positive occurred. These results demonstrate the 
robustness and high sensitivity of the proposed approach. 
However, the used T1DM simulator does not account for 
intrasubject variability and other perturbations such as 
physical exercise or psychological stress. For this reason, 
more tests using actual clinical data need to be carried 
out for a final validation of the proposed method.

Although the presented technique has only been used to 
detect one type of fault in CSII systems (i.e., disconnection 
of the insulin infusion set), it could also be used to detect 
other types of fault in the insulin infusion set such as 
leakages. Furthermore, the same approach could be  
used to detect faults in the CGM system (i.e., sensor drift 
or loss of sensitivity) or even to detect unexpected 
variations in the T1DM subject glucose dynamics (i.e., 
illness). However, these types of faults may take longer 
to detect due to their slower dynamics.

It is important to remark that this fault detection method 
only detects discrepancies between the model and the 
real system. So in a general setting where different faults 
can occur, it can only detect if there is a fault in the 
system but cannot determine which one. In order to 
diagnose which fault is causing the discrepancy, a fault 
diagnosis module could be employed.14

Commercially, the proposed fault detection technique 
could be easily integrated in a dual CSII–CGM (sensor-
augmented pump) system such as the Paradigm Veo  
(Medtronic, Northridge, CA) or Vibe (Animas Corporation, 
Westchester, PA). However, in order to integrate the 
proposed techniques with such technology, a certain 
level of user intervention would be required in order 
to account for the amount of ingested carbohydrates 
and the type of absorption of the ingested meal (e.g., 
slow, medium, and fast). Since estimating the type of 
absorption of a meal is not common in standard insulin 
therapy, a library of different types of mixed meal29 
could be provided to the user in order to facilitate this 
task. Furthermore, some tuning of the fault detection 
algorithm would be required before its utilization. First of 
all, the employed model would need to be individualized 
for each subject using retrospective clinical data. In real 
practice, this could be done using retrospective CGM 
data, basal insulin infusion rates, times and amounts 
of insulin boluses obtained from the subjects’ insulin 
pumps, and subject-reported estimates of the times and 
carbohydrate content of meals.30 Then a graphical user 
interface would be provided to the clinicians in order to 
upload such data. Finally, an algorithm would automatically 
analyze these data, determine the center of intervals  
(i.e., parameter identification), and quantify the width of 
the intervals based on the variability of data. 

Another parameter that could be tuned is the length of 
the sliding time window. Once a fault has been detected, 
an alarm (i.e., acoustic or vibration signal) could be used 
in order to alert the user.

Finally, the proposed technique has been used to supervise 
the current basal–bolus therapy in CSII, but it could also 
be easily integrated in an artificial pancreas framework.10

Conclusions
Interval model-based fault detection has been proven 
(in silico) to be an effective tool for detecting faults in 
sensor-augmented CSII systems. Although the presented 
methodology is numerically sound (i.e., robust), the 
wrong quantification of the involved uncertainty 
may lead to the occurrence of false negatives or false 
positives. Therefore, setting the right size of the intervals 
associated with model inputs, measurements, and model 
parameters is crucial for the good performance of the 
approach proposed.
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