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Abstract
Background:
Estimates for delays in the interstitial fluid (ISF) glucose response to changes in blood glucose (BG) differ 
substantially among research groups. We review these findings along with arguments that continuous glucose 
monitoring (CGM) devices used to measure ISF delay contribute to the variability. We consider the impact 
of the ISF delay and review approaches to correct for it, including strategies pursued by the manufacturers 
of these devices. The focus on how the manufacturers have approached the problem is motivated by the  
observation that clinicians and researchers are often unaware of how the existing CGM devices process the ISF 
glucose signal.

Methods:
Numerous models and simulations were used to illustrate problems related to measurement and correction of  
ISF glucose delay.

Results:
We find that (1) there is no evidence that the true physiologic ISF glucose delay is longer than 5–10 min and 
that the values longer than this can be explained by delays in CGM filtering routines; (2) the primary impact 
of the true ISF delay is on sensor calibration algorithms, making it difficult to estimate calibration factors and  
offset (OS) currents; (3) inaccurate estimates of the sensor OS current result in overestimation of sensor glucose  
at low values, making it difficult to detect hypoglycemia; (4) many device companies introduce nonlinear 
components into their filters, which can be expected to confound attempts by investigators to reconstruct 
BG using linear deconvolution; and (5) algorithms advocated by academic groups are seldom compared to 
algorithms pursued by industry, making it difficult to ascertain their value.

continued  
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Introduction

Subcutaneous (SC) interstitial fluid (ISF) continues to 
be the preferred site for glucose sensing, as it is easily 
accessed and carries a lower risk of infection than the 
blood stream per se. However, two problems continue 
to affect the performance of sensors that probe this site: 
(1)  changes in SC ISF glucose are delayed with respect to 
changes in blood glucose (BG) and (2) electrochemical 
sensors based on glucose oxidase often have a nonspecific 
background offset (OS) current. Both problems can 
result in sensors that fail to detect hypoglycemia and 
underestimate hyperglycemia. The problems have been 
discussed at length in scientific literature, with studies 
looking to correct for OS current focusing primarily on 
calibration (e.g., one- versus two-point1,2) and studies 
looking to address the delay focusing on signal processing 
algorithms (e.g., model-based deconvolution3,4 and Kalman 
filtering5–8). The origin of the OS current has not been 
determined definitively, although it has long been known 
that the OS observed in vitro is not necessarily the same 
as that observed in vivo, indicating that the biological 
environment contributes some unknown factor or factors. 

This article reexamines these issues with emphasis on  
how manufacturers have addressed them.9–12 The focus 
on the approaches used by the medical device industry 
follows the basic reasoning that (1) it is of interest to 
the clinical community to understand the devices being 
used routinely and (2) signal processing and calibration 
algorithms advocated in the academic engineering 
community are unlikely to be implemented into industry 
products without being compared to the algorithms in  
place or under development. On the latter point, we note 
that the prevailing view in the academic community 
is that the signal processing/calibration can be 
improved. For example, in a survey of scientists at the  

2009 Glycemic Modeling Working Group meeting,5 
only 19% indicated that they believe existing continuous 
glucose monitoring (CGM) devices are suitable for 
performing closed-loop insulin delivery, whereas more 
than twice that many (41%) believe improvements in the 
calibration and filter routines will allow this goal to be 
achieved. The feasibility of using the SC site remains in 
question, with 40% of respondents believing ISF glucose 
to be substantially delayed and just 30% believing the 
maximum rate of change of ISF glucose has been well 
characterized.5 Virtually everyone agreed that modeling 
can aid in the understanding and development of new 
algorithms.

Metabolic Simulations Models 
Model simulations are being used increasingly to elucidate 
the behavior of medical devices, with simulations now 
being accepted for review by the U.S. Food and Drug 
Administration13 in lieu of preclinical animal data. Here, 
modeling/simulation was used to illustrate problems 
related to the measurement of ISF delay. A simulated BG 
profile is used throughout the article to highlight how 
different groups and companies have approached the  
problem. The glucose excursion published by Boyne et al.14

was used to obtain parameters for the Medtronic Virtual 
Patient15,16 model, with data and model fit shown in 
Figure 1. We assumed meals were given at 8:40, 12:50, 
and 15:15 with corresponding insulin boluses concurrent 
with each meal (identified as near zero for the first 
meal) and a correction bolus at hour 12. Equations are 
publically available for the simulation model,15 the BG  data 
of Figure 1 was easily extracted, and fitting routines 
for identifying model parameters are available in the 
software package MLAB (http://www.civilized.com).

Abstract cont.

Conclusions:
The absence of any direct comparisons between existing and new algorithms for correcting ISF delay and 
sensor OS current is, in part, due to the difficulty in extracting relevant details from industry patents and/or  
extracting unfiltered sensor signals from industry products. The model simulation environment, where all 
aspects of the signal can be derived, may be more appropriate for developing new filtering and calibration 
strategies. Nevertheless, clinicians, academic researchers, and the industry would benefit from collaborating 
when evaluating those strategies.

J Diabetes Sci Technol 2010;4(5):1087-1098
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Using the model-simulated profile in Figure 1 allowed 
the SC ISF concentrations to be obtained from equations 
describing glucose transport across the capillary17 
(Figure  2A). In the glucose transport model, K12 and 
K21 represent fractional rate constants describing the 
movement of glucose across the capillary and K02 
represents fractional clearance of glucose from the ISF 
fluid compartment, possibly insulin dependent (glucose 
shown with closed circles, insulin with closed triangles, 
and the insulin receptor with inverted triangle). The 
model was originally validated in canines in which 
ISF obtained from lymph was frequently sampled.17 
The  identifiable model parameters, delay and gradient, 
were shown not to be affected by insulin,18 arguing 
that SC ISF is not derived from insulin-sensitive tissue. 
The magnitude of the ISF delay in human subjects 
during rapid hyperglycemic19 and insulin-induced 
hypoglycemic20 excursions was estimated to be no more 
than 5–10 min. These studies utilized a CGM system in 
which the filters normally used to remove sensor noise 

were disabled. The  argument at that time, revisited here, 
is that the filters per se add delay.21 The model has been 
independently used by Facchinetti and associates4,22 and 
Wei and coworkers.23 

For the ISF glucose profile simulated here, the blood to 
ISF gradient was arbitrarily set to be 0.8 and the ISF  
delay to be 12 min (Figure 2B). This is a smaller gradient 
than that reported using microdialysis24 and a slightly 
longer delay than typically reported for ISF glucose when 
identified in the absence of filters18 (see  Reference  21 
for comments on the delay reported in Reference  24). 
We  note that the model (Figure 2A) defines a very 
specific type of delay: one in which ISF glucose is expected 
to begin changing immediately after a change in plasma 
glucose. This type of delay is analogous to the delay 
obtained when giving gas to a car in that the car 

Figure 2. (A) Two-compartment model of blood (capillary) and ISF 
glucose dynamics.17,18 (B) Simulated blood (G1) and ISF (G2) glucose 
profiles for the data in Figure 1.
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responds immediately to a step increase in gas but does 
not reach final speed for some seconds. The delay can be 
characterized by a “time constant” (τ), which is defined 
as the time to reach 63% of the final speed. Time to 
reach 50% (T1/2), 90% (T90), or 95% (T95) can be obtained 
by multiplying τ by 0.693, 2.303, and 3, respectively. 
Sensor delays and the time of action for many drugs 
(e.g., insulin) are often reported using similar notation. 
A time constant can be contrasted to what is sometimes 
referred to as transport lag (TD) in which there is no 
response for a finite amount of time (TD). An example 
of transport lag would be the administration of drug 
in an intravenous line that is upstream of the patient.  
With transport lag, there is no increase in the amount of 
drug reaching the body until the fluid in the intravenous 
line is advanced to the body, and then the full increase is 
realized at once. An estimate of TD would be obtained 
by dividing the volume in the line (ml) by the flow rate 
(ml/min). For transport lag, the concept of T1/2, T90, or T95 
has no meaning (systems can have both transport lag 
and multiple time constants). Generally, transport lag is 
much harder to correct in real time but easier to identify 
retrospectively. Accepted methods for identifying TD 
include cross correlation or measuring the time between 
the peak values in two signals. 

Separating Interstitial Fluid Delay from 
Sensor Delay 
Estimating the delay associated with a time constant is 
much more difficult and requires specialized software to 
identify parameters embedded in differential equations. 
For example, in the model of Figure 2, the differential 
equation is:

 (1)

Here, G1 is BG and G2 is ISF glucose. The ISF delay is 
defined by the time constant τ = 1/q2, with q2 =  K02 + K12 
defined in Figure 2A. A direct measure of G2 is difficult 
to obtain experimentally but can be replaced by the 
sensor signal if the sensor responds to the ISF glucose 
(G2) with no appreciable delay, as is the case for many 
amperometric glucose-oxidase-based sensors. For a sensor 
with OS, the current (ISIG) would be given as

 (2)

where m is the sensor sensitivity (typically nA per mg/dl) 
and OS is the offset (nA). From Equations (1) and (2), 
a differential equation describing ISIG can be obtained:

 (3)

where q2, the product m  ‧ q1, and the product q1 ‧ OS are 
identifiable from BG (G1) and sensor current (ISIG) using 
appropriate software (e.g., MLAB).

In theory, the time constant 1/q2 can be identified from 
blood glucose (G1) and a calibrated sensor4,23 profile if the 
sensor glucose (SG) is available as an unfiltered signal. 
In the absence of filter delay, SG can be obtained by 
multiplying Equation (2) by the sensors calibration factor 
(CF) to obtain

 (4)

Here, q2, K1  =  CF·m·q1 and K2 = CF·q1·OS are identifiable. 
Facchinetti and colleagues4 and Wei and associates23 
used an equation similar to Equation (4) to estimate ISF 
delay but assumed the sensors to have zero OS current 
(K2  =  0) and the filter delay to be negligible. With those 
assumptions, Facchinetti and colleagues4 concluded the 
ISF delay to be 23.4 min, with a range of 17.9 to 33.8  min,  
and Wei and associates23 argued the delay to be 15.8  min 
with range of 10.8 to 21.4 min. The study by Wei et al.23 
used the Medtronic Guardian system and speculated that 
the longer delay estimated in their study versus other 
studies17–20 could be attributed to the filter. The study by 
Facchinetti and colleagues4 used the Abbott Navigator 
system, assuming the device tracks ISF glucose with no 
added filter delay.

We argue that the longer delay estimated by Facchinetti 
and colleagues4 can be attributed to device filters and 
possibly OS, both of which were unaccounted for.  
We support this argument with Monte Carlo simulations. 
Using the ISF profile in Figure 2, 500 sensor profiles were 
simulated, each of which was assumed to be measured 
with a sensor having a sensitivity of 20 nA in 100 mg/dl  
and 2 nA OS. To each of the 500 profiles, 15% noise was  
added and a one-point calibration was performed (example 
profile Figure 3A). The delay was identified using
Equation (4). As expected, this resulted in 500 delay 
estimates centered about the true mean of 12 min  
(Figure 3B, blue distribution), effectively demonstrating 
that the identification method produces an unbiased 
estimate of ISF delay. However, when the same profiles 
were filtered to remove noise, the delay was increased to  
~16.5 or 21 min (green and magenta distributions), 
depending on the level of filtering. To filter the data, 
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infinite impulse response (IIR) filters were used with 
bandwidths set at 1.5 or 3 c/h, similar to the preferred 
settings described in Medtronic9 and DexCom11 patents 
and consistent with a finite impulse response (FIR) 
filter averaging 15 min of data described by Abbott25 
(bandwidth = 1.675 c/h). The Abbott filter is described 
as being able to switch to a faster 2 min back in time 
filter (bandwidth = ~9.325 c/h) when glucose is changing 
rapidly, making it difficult to estimate precisely the delay 
that would be added. Still, what is important to note  
is that, as the filter cutoff is reduced, the apparent 
ISF delay is increased. As the filter removes noise, 
the distribution of parameter estimates first narrows  
(green distribution more peaked than blue) and then 
increases as the filter results in an inability of the ISF 
model to fit the profile. Nonlinear least squares routines 
typically report estimates of this width as fractional 
standard deviation (identifications performed with routines 
available in MLAB).

Impact of Interstitial Fluid Delay 
on Continuous Glucose Monitoring 
Performance 

The 12-min time constant simulated here represents an 
upper bound to the true ISF delay previously reported, 
with shorter delays of 5–10 min being more commonly 
observed19,20 and targeted by Medtronic for correction.9 
It can be argued that a 5–10 min ISF time constant is 
unlikely to have a substantial impact on the day-to-day 
treatment decisions made by individuals with type  1 
diabetes. Still, the ISF delay can introduce substantial 
errors in calibration, making it particularly difficult to 
estimate OS. On the latter point, it is noteworthy that,  
if the OS is estimated from a random sample of BG  
and ISIG values in the example here, the OS can be 
estimated as 6 nA or more even when the simulated 
value is zero (Figure 4). The average OS current in the 
Medtronic MiniMed Guardian monitor was estimated 
to be 5.3  nA26 using a similar linear regression to that 
shown in Figure  4, but it is unclear in that study if the 
OS is related to delay per se (as simulated in Figure 4) 
or intrinsic to the sensor (i.e., would exist if all glucose 
measures were taken at steady state). Also unclear is 
whether the current used was filtered or unfiltered.

Effectively, in the presence a 5–10 min time constant, 
the OS is virtually impossible to estimate without a 
substantial number of reference BG values taken under 
near-steady-state conditions spanning high and low values. 
When estimating sensor CFs and OS, a correction for 
transport lag is often made by simply pairing BG values

Figure 4. Linear regression estimate of OS current using BG–ISIG pairs 
(circles) randomly selected from all possible pairs (line). Regression 
artificially indicates the OS to be 6.7 nA even though the true 
(simulation) vale was zero.
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with future ISIG values. This was done in the report 
by Youssef and coworkers26 and is common to many 
calibration algorithms. It is not clear, however, that such a 
shift will allow an unbiased estimate of either the CF or 
OS if the system responds with a time constant rather 
than a transport lag. If the OS cannot be estimated in 
real time, it can be set to a value that generates the lowest 
sensor error in the population. Using this latter approach, 
Youssef et al.26 estimated the optimal OS to be 4 nA. 
The value is not typically reported by device manufacturers. 
Device manufacturers may set the value in proportion 
to sensor sensitivity (see Figure 13 of Reference 10). 
Still, any mismatch between the true OS and the value 
used in the calibration algorithm will result in a CGM 
sensor that is unbiased at the calibration value (by 
definition) but underestimates BG above the calibration 
point and over-estimates the value below the point.  
For example, a sensor reading 20 nA at 100 mg/dl  
but with 5 nA OS, calibrated at 150 mg/dl, would 
yield the BG versus SG regression shown in Figure 5 
(data points simulated with 3% glucose error and 5% signal 
error). Regions of over-estimation and underestimation 
(shaded and unshaded) can be obtained by comparing 
the regression line to the unbiased SG = BG line.
Although the regression line shown in Figure 5 was 
obtained using standard least squares analysis, the 
expected slope and intercept can readily be derived from 
the algebraic steps used in calibration. That is, for a  
one-point calibration with an assumed OS of 0 nA, 
SG is calculated as

 (5)

where BGCAL and ICAL refer to the calibration values. 
If  the sensor has an OS, both the calibration current (ICAL) 
and sensor signal (ISIG) can be replaced by the relation in 
Equation (2):

 (6)

where the expected straight-line relation between BG 
and SG is

 (7)

Here it is easily seen that the slope is less than 1 and 
intercept greater than zero whenever the OS is greater 
than zero and that, if the OS is zero, the desired 
SG = BG relation is obtained. The bias in slope and OS 

can have substantial impact on the ability of a CGM 
system to detect hypoglycemia. For example, the current 
relationship estimated by Youssef and coworkers26 
(ISIG = 0.0904 BG + 5.33) would be expected to yield an 
SG–BG regression with slope 0.63 and intercept 37 mg/dl. 
Thus, to obtain a 50% detection rate for glucose less than 
60 mg/dl, the alarm would need to be set at ~75 mg/dl  
(0.63 × 60 + 37), which can be expected to result in a 
substantial number of false alarms. It is difficult to determine 
how significant the OS problem is among manufacturers 
as, for the most part, studies reporting the relationship 
between BG and SG have replaced regression analysis 
with Clarke error grid analysis (see References 27–29 
for examples of the DexCom,27 Abbott,28 and Medtronic29).

How Has Industry Responded?

This section reviews how sensor manufacturers have 
approached OS and delay correction. Virtually all sensor 
manufactures filter their sensor signals. As many readers 
may not be familiar with the design and implementation 
of filters, a brief review of some of the underlying concepts 
and technology is provided here. A critical design  
concept underlying classical filter design is “bandwidth.” 
A signal’s bandwidth can be obtained by describing the 
signal as the sum of individual frequency components 
(ΣAi  sin(2πfi + φi), where Ai is the magnitude of each 

Figure 5. Effect of sensor OS on the BG–SG regression. Sensor is 
unbiased at the calibration point (150 mg/dl) but underestimates 
glucose above the calibration and overestimates it below the 
calibration point.
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component and fi and φi are frequency and phase, 
respectively. Values for Ai can be obtained from 
Fourier analysis (Ai  shown in Figure  6B with signal 
reconstruction shown in Figure  6A). From this analysis, 
the signal bandwidth can be estimated as ~1.5 c/h. 
Glucose profiles that change more rapidly than the 
example would require a higher cutoff.

The bandwidth, or cutoff frequency, forms a key 
component in designing filters as the objective is 
to “pass” bands that are below the cutoff and “reject” 
those above as noise. Generally, filters with lower cutoff 
frequencies produce smoother signals but are less likely 
to follow rapid changes in glucose and more likely 
to introduce large delays. DexCom reports a preferred 
IIR embodiment with cutoff of 1.5 c/h (passes signals 
with 40 min period).11 Medtronic reports a preferred FIR 
embodiment with cutoff specified between 1.5 and 3 c/h.9 
Abbott reports a FIR structure averaging 15 min of 
data but with the ability to switch to a 2 min back in 

time when glucose is changing rapidly (corresponding to 
cutoff frequencies of 1.675 and 9.325  c/h, respectively).25 
All of these filters will pass the required components to 
reconstruct the example profile used in this article but 
will introduce delay. Generally, FIR filters delay each 
frequency component a fixed amount, referred to as 
phase delay, whereas IIR filters delay each component by 
slightly different amounts, referred to as phase distortion 
and quantified as group delay. Structurally, FIR filters 
are weighted averages of past sensor values, whereas  
IIR filters are weighted averages of past sensor values 
and past filtered sensor values (see Reference 7 for 
added discussion). 

To obtain a filter that removes noise and compensates for  
ISF delay, Medtronic has patented a filter that infers G1 

from the ISF glucose (G2 in Figure 2A) (compare Figure 21
of Reference 9 and the Appendix of Reference  18). 
The design follows Wiener filter theory in which FIR filter 
coefficients are obtained by minimizing the sum square 

Figure 6. (A) Glucose data obtained from Boyne and colleagues14 together with Medtronic Virtual Patient model fit (red line) and reconstruction
 based on frequency components in the bandwidth <1.5 c/h. (B) Magnitude of frequency components assuming the sensor signal is sampled at 
60 c/h (1/min). MVP, Medtronic Virtual Patient.
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error between SG and BG in the presence of noise.30 
That is, Wiener filter theory works by obtaining FIR  
filter coefficients [c0, c1, … cp] that minimize the 
difference between SG(t),

 (8)

and the corresponding BG values [BG(t1), BG(t2) … BG(tN)]. 
Filter coefficients can be chosen to suppress frequency 
components above the signal bandwidth (1.5 c/h;  
Figure 6); for example, if noise is added at frequencies 
above 1.5 c/h to the example sensor profile in this 
report, the filter coefficients [c0, c1, … cp] can be obtained 
as [ATA]-1AT BG, where A is the N x p + 1 matrix of 
sensor current values in Equation (8). In the simulation 
environment, all values of current and BG are known, 
making it relatively straightforward to obtain a filter that 
satisfies given design parameters (e.g., correct frequencies 

below 1.5 c/h for an ISF delay of 12 min and remove 
frequency components above 1.5 c/h). In practice, the 
filter coefficients are more likely to be obtained in a 
large population of real subjects, some of whom may 
require higher bandwidth to reconstruct their glucose 
excursions and have different ISF delays. Nonetheless,  
the simulation example works to demonstrate that critical 
aspects of the design depend only on the specified 
bandwidth (1.5 c/h for the example data) and ISF delay 
(simulated as 12 min). Choosing p = 13 (arbitrary) shows 
the resulting filter corrects delay and removes noise 
(Figure 7B, black line largely superimposing of the red 
BG line). While the example serves to demonstrate the 
design method, more optimal choices for p, bandwidth, 
and ISF delay may exist, and other design methods may 
be used to obtain the filter coefficients (see Reference 13).

The Wiener filter is generally considered to be one of 
the first “model-based” filters and is closely related to the  
better known Kalman filter. As the Kalman filter is 
frequently advocated by leading research groups,6–8 we 
review what the relationship is. Briefly, both approaches 
incorporate models in their design. The salient difference 

Figure 7. (A) Simulated blood and SG in the presence of noise. (B) Sensor glucose calculated after applying Wiener or two different Kalman filter 
designs.
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between the Kalman and Wiener filters is that the 
Wiener filter looks only to estimate the current glucose 
value whereas the Kalman filter looks to predict a future 
glucose value. In the Kalman filter, the idea is to switch 
between the prediction and the measurement depending 
on a time-varying estimate of statistical certainty.  
Kalman filters typically use models based on previous 
values of the measurement to make the prediction of 
the future measurement. However, if the sensor over-
estimates or underestimates BG (see Figure 5), the model 
may make a good prediction of the future sensor value 
without necessarily having a good estimation of the true  
blood value. In the Wiener filter presented here, which is 
typical of the Wiener approach,30 the model does not 
characterize the future sensor value as a function of prior 
sensor values; rather the model describes ISF glucose as a  
function of BG. The Wiener filter then performs what is 
essentially an inverse model calculation30 on frequency 
components within the glucose bandwidth to obtain  
an estimate of the current BG from the past and current  
ISF glucose values. The filter itself is actually no more 
than a fixed coefficient FIR filter; it does not make a 
prediction of future glucose, and its behavior does not 
vary with time.

Both the Wiener and Kalman filters can remove noise 
from a signal depending on how they are configured, 
and both can correct for delay depending on the model 
used. We show this by applying the Kalman filters 
proposed by Bequette and colleagues7 (labeled Kalman 1 
in Figure 7) and by Facchinetti and associates8 (labeled 
Kalman 2) to our example profile. In the first case 
(Kalman 1), noise in the ISF signal is removed, but the 
delay is not corrected (blue line, panel B) as no internal 
model of ISF glucose delay is incorporated in the design. 
This result can be compared to the approach put forth 
by Facchinetti and associates,8 where a discrete version 
of Equation (4) was used as the model and the delay 
was corrected (Figure 7B, green line, for the most part 
superimposing over the BG and Wiener filter lines).  
A more comprehensive evaluation in which all the filters 
are compared using a large clinical data set is, however, 
necessary to avoid any bias introduced by using a single 
data set to both derive and evaluate the filter.

In addition to being able to switch between measurement 
and prediction, Kalman filters can be configured to adapt 
to changes in the model. For example, the Kalman filter 
by Facchinetti and associates8 adapts to changes in the 
sensor calibration as does a version of the Kalman filter 
proposed by Kuure-Kinsey and coworkers.31 A third 
Kalman filter, proposed by Knobbe and Buckingham6 

(not simulated here), includes components that adapt to 
both changes in sensitivity and changes in time delay. 
None of the Kalman designs reviewed here, however, 
attempted to adapt to different or time-varying changes 
in OS. In the Wiener approach, changes in sensor  
sensitivity and OS would most likely be tracked by 
the calibration algorithm. This strategy tends to be more 
common in the existing CGM monitors, where the 
sensor current signal is first filtered and then calibrated.  
The calibration algorithm can be configured to use a 
recursive least squares32 procedure to estimate the 
regression shown in Figure 4 once the confounding effect 
of the delay is removed. In doing so, it may also be 
possible to modify the regression to include errors in 
both the sensor current and measured BG.33 Wiener filter 
coefficients can be made to adapt to changes in the ISF 
time constant by recasting Equation (8) in recursive 
form. However, the recursive least squares formulation 
requires a gain similar to the Kalman gain. A high gain 
can potentially result in complete adaptation as the 
number of new blood samples approaches the number of  
coefficients in the filter; however, in practice, this is not 
done, as it makes the parameter updates very sensitive 
to noise. This is pointed out here to emphasize that any 
adaptive process is unlikely to perform well, if CGM 
systems strive to reduce the number of calibration points.

Generally, model-based approaches to filtering that rely 
on prediction of future values can be expected to improve 
performance whenever those values are well estimated. 
For systems described by deterministic equations, for 
example, falling objects described by laws governing 
gravity, the future prediction can be quite accurate, 
with the benefit being achieved whenever the model is 
more accurate than the measurement. In other systems, 
for example, daily weather patterns or the DOW Jones 
industrial average, the prediction of future values may  
never be more reliable than the measurement. Of the 
CGM patent literature reviewed here, the only medical 
device manufacturer to describe a specific embodiment of 
the Kalman filter is Abbott Diabetes Care, who describes  
the use of the Bergman minimal model to predict glucose 
from knowledge of meals and insulin25 (i.e., the model 
used here to fit the Boyne data in Figure 1). To our 
knowledge, no medical device company has implemented  
a Kalman filter to improve glucose estimation.

Conclusions 
In this article, we reexamined the arguments that the 
glucose response in the SC ISF is delayed by any more 
than 5–10 min with respect to BG, taking care to review 
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methods being pursued in the medical device industry, 
as described in patents, together with proposals from 
engineers in academia. Our focus on industry was 
motivated by the observation that clinical researchers  
are often unaware of how different CGM devices process 
the ISF glucose signal and how these processes might  
be contributing to their conclusions regarding ISF glucose 
delay. Our findings and arguments can be summarized 
as follows:

  i.	There is no evidence that the ISF glucose time 
constant is longer than 5–10 min. Delay estimates 
longer than this can typically be explained by the 
delay associated with the device filters (Figure 3).

 ii.	The impact of a 5–10 min time constant on treatment 
decisions is unlikely to be of major importance; 
however, if the delay is compounded by an additional 
5–15 min filter delay, the impact to the patient could 
be substantial.

iii.	The ISF delay creates problems in obtaining an 
accurate calibration, making the real-time estimate 
of OS particularly difficult (Figure 4) and reducing 
the ability to detect hypoglycemia (Figure 5). 

iv.	Signal processing algorithms advocated to recon-
struct BG from the ISF glucose using linear 
deconvolution25 will have error if applied to systems 
that have nonlinear filters (e.g., filters described in 
patents10,25).

Undoubtedly, part of the problem academic research groups 
face when attempting to use CGM devices for research 
purposes is that device manufacturers may not provide 
the necessary details to reconstruct what the device does  
outside its intended use. Device manufacturers may be 
reluctant to provide the unfiltered current values needed 
to identify delays. Advances in metabolic modeling 
techniques can potentially circumvent some of these 
issues; we note, for example, that the extended Kalman  
filter proposed by Facchinetti et al.8 was derived entirely 
from simulated data as were all the examples presented 
in this report. We believe the simulation environment 
may actually be superior in some ways to having “real” 
sensor signals in which the signal has been preprocessed 
with an unknown filter. The simulation environment 
provides clear advantages as a starting point for 
developing new filter and calibration algorithms in that 
theoretical properties of a filter can be easily validated 
and an infinite number of subjects can be simulated. 
Simulation studies never lack power to detect differences 
between algorithms.

Although the simulation environment has many ideal 
properties, we believe it is essential that the simulated 
glucose profiles have a signal bandwidth not statistically 
different from the general population and that the model 
used to simulate ISF glucose have delays not statistically 
different from those observed in studies in which it has 
been measured without device delay. Thus we would 
rather have seen the Facchinetti filter derived using a 
5–10 minute ISF delay and have seen results in which OS  
was identified. Once clinical data does become available, 
a comparison of different filters should be conducted  
on the clinical rather than the model-simulated data. 
Simulations should be considered a training or develop-
mental step, and clinical data should be used for final  
evaluation and validation. When comparing filter 
algorithms, it will also be important to ensure each 
algorithm is optimally configured; for example, we draw 
no conclusions regarding the comparison in Figure 7, 
as we did not derive an optimal Wiener filter and  
expect that each of the Kalman filters might undergo 
further refinement.

Although patents provide a substantial amount of 
information, algorithms described in them may not 
necessarily be the same algorithms that exist in the 
product. Algorithms may be patented well before they 
appear in a product. If a product is to be evaluated  
outside of its intended use, academic researchers should 
be willing to involve industry when designing and/or  
conducting the studies. We believe the reluctance of 
investigators to involve industry has resulted in a 
substantial number of studies in which the conclusions  
are predicated on an incomplete understanding of what 
the devices actually do. Further, if academic investigators 
were to compare their algorithms to approaches described 
in the patent literature, the potential impact of their 
work would be enhanced. Clearly, many investigators 
believe new calibration and filtering strategies can be 
developed to address problems with the sensor signals. 
Many of these investigators (41%) believe that, if such 
improvements are made, the existing sensor technology 
would be sufficient to achieve closed-loop control.5 
It  remains to be determined what the actual level of 
sensor performance will need to be to create a product.
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