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Abstract

Background:
The diabetic foot, one of the most serious complications of diabetes mellitus and a major risk factor for 
plantar ulceration, is determined mainly by peripheral neuropathy. Neuropathic patients exhibit decreased  
stability while standing as well as during dynamic conditions. A new methodology for diabetic gait pattern 
classification based on cluster analysis has been proposed that aims to identify groups of subjects with similar 
patterns of gait and verify if three-dimensional gait data are able to distinguish diabetic gait patterns from one  
of the control subjects.

Method:
The gait of 20 nondiabetic individuals and 46 diabetes patients with and without peripheral neuropathy 
was analyzed [mean age 59.0 (2.9) and 61.1(4.4) years, mean body mass index (BMI) 24.0 (2.8), and 26.3 (2.0)].  
K-means cluster analysis was applied to classify the subjects’ gait patterns through the analysis of their ground 
reaction forces, joints and segments (trunk, hip, knee, ankle) angles, and moments.

Results:
Cluster analysis classification led to definition of four well-separated clusters: one aggregating just neuropathic 
subjects, one aggregating both neuropathics and non-neuropathics, one including only diabetes patients, and  
one including either controls or diabetic and neuropathic subjects.

Conclusions:
Cluster analysis was useful in grouping subjects with similar gait patterns and provided evidence that there were 
subgroups that might otherwise not be observed if a group ensemble was presented for any specific variable.  
In particular, we observed the presence of neuropathic subjects with a gait similar to the controls and diabetes 
patients with a long disease duration with a gait as altered as the neuropathic one.
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Introduction

The World Health Organization warned that, in 
2000, as many as 33 million Europeans suffered from 
diabetes, and approximately 15% of these patients will 
likely develop foot ulcers and approximately 15% to 
20% will face lower-extremity amputation.1 The diabetic 
foot, one of the most serious complications of diabetes 
mellitus and a major risk factor for plantar ulceration, 
is determined mainly by peripheral neuropathy, foot 
trauma, foot deformity, increased foot pressures, and 
callus.1,2 Distal symmetric sensorimotor polyneuropathy 
is primarily confined to the axons of small- and large-fiber 
sensory afferents. It can be defined as the presence of  
symptoms and/or signs of peripheral nerve dysfunction in 
people with diabetes, after exclusion of other causes.3 
The result is a “stocking feet” pattern of sensory loss 
that begins in the toes and progresses proximally.3 
Peripheral neuropathy patients exhibit decreased stability 
while standing4–6 as well as during dynamic conditions.7 
Several authors8–13 found gait pattern alteration in 
the sagittal plane in diabetes patients with diabetic 
neuropathy (DPN) and in diabetes patients without 
diabetic neuropathy (NoDPN).

Nevertheless, alterations of the proprioceptive system, 
like DPN, could affect walking not only because there 
is reduced peripheral sensory information available to 
local peripheral systems but also because this reduced 
information imposes a burden on the higher cortical 
centers involved in the processing of sensory information.

Several hypotheses suggest that the integrity of higher 
cortical/central factors is of significance for posture and 
gait control.12 Authors14,15 have identified changes in some 
gait parameters that appear to be specific in diabetes: 
shorter stride length, reduced walking speed, and altered 
lower limb and trunk mobility. These observations 
highlight the need for an objective and quantitative 
measurement of the relevant aspects of the gait of diabetes 
patients. Such data should ultimately lead to a better 
understanding of interrelated foot/limb function, foot 
management, and both kinetic and kinematics elements 
during gait.

Despite the importance of diabetes in gait alterations, 
previous research examining gait in diabetic subjects 
adopted ensemble averages as a standard method of 
describing the kinematics and kinetic patterns observed. 
A problem inherent with the use of ensemble averaging is 

that significant variations in both kinematics and kinetics 
patterns in each population of subjects (for instance, 
DPN, control subjects (CS), and NoDPN) may not be 
observed. Thus an ensemble average may not provide an 
accurate representation of the gait seen across individuals. 
Cluster analysis is a technique developed to identify natural 
groupings that may exist in a population of interest.16 
This technique places individuals into a cluster that 
contains other individuals with similar characteristics. 
Similarities and dissimilarities are determined by the 
analysis of descriptive variables for each individual. 
Most gait studies involving DPN and NoDPN subjects 
have been performed grouping population by age, 
body mass index (BMI), and diagnosis of neuropathy 
parameters. To our knowledge, no studies have been 
done on diabetic subjects stratified for biomechanical 
parameters; meanwhile, this has been performed in 
healthy young adults and elderly.17–19 Here we describe 
DPN biomechanical impairment during walking, grouping 
population stratified by their gait patterns. Furthermore, 
cluster analysis has the advantage that several parameters 
can be taken into account at the same time rather than 
a single one for each individual.18 Thus, in this study, 
it was also employed to identify if there were some 
gait parameters able to distinguish the gait patterns of 
diabetic or neuropathic subjects from those of controls. 
In this case, cluster analysis can be used to identify from 
the parameters determined with gait analysis those that  
best describe gaits of diabetic subjects. Considering that 
cluster analysis divides data into meaningful or useful 
groups (clusters), if meaningful clusters are the goal, 
then the resulting clusters should capture the “natural” 
structure of the data. As opposed to classical data 
interpretation, relying on human a priori knowledge 
and experience and therefore being exposed to biased 
results and to missed valuable information, cluster 
analysis could be employed as a data mining technique.  
We define data mining to be the discovery of useful, but 
nonobvious, information or patterns in large collections 
of data. Data mining has been shown to provide a more 
complete and unbiased picture of the phenomenon under 
investigation.20,21

Therefore the aims of this study were to (1) verify if 
a standard method of describing the kinematics and 
kinetic patterns by means of ensemble averages could be 
adopted efficiently in the diabetic population, (2) verify if 
three-dimensional gait data would be able to distinguish 
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the gait patterns of DPN and NoDPN subjects from those 
of CS, and (3) identify both clinical and biomechanical 
characteristics of the natural groupings observed in the 
population of interest.

Materials and Methods

Patient Recruitment
Subjects were consecutively recruited among the patients 
attending the outpatient clinic of the Department of 
Metabolic Disease of the University of Padova, Italy. 
Inclusion criteria were type 1 and 2 diabetic subjects with 
walking ability and no history of ulcers, neurological 
disorders (apart from DPN), orthopedic problems, or lower 
limb surgery. The CS were recruited among hospital 
personnel. On the basis of these criteria, 66 patients  
were evaluated; 20 nondiabetic individuals [CS, mean age 
59.0 (2.9), mean BMI 24.0 (2.8)], 20 NoDPN [mean age  
63.8 (5.4), mean BMI 26.3 (2.0)], and 26 DPN [mean age 
63.2 (6.0), mean BMI 25.6 (2.9)] were selected. All subjects 
gave written informed consent. The protocol was approved 
by the local ethics committee. The sample size was 
calculated with Altman Nomogram.22

Clinical Assessment and Postural 
Examination
The feet were checked for skin lesions, bone deformities, 
ulcerations, signs of infection, and previous amputations. 
Height (m) and weight (wearing only slips, without shoes) 
were recorded and BMI (kg/m2) calculated.

The neurological evaluation included the assessment 
of symptoms and signs compatible with peripheral 
nerve dysfunction. The Michigan Neuropathy Screening 
Instrument questionnaire, which evaluates motor and 
sensory symptoms (subjects were classified as pathologic 
if 3 positive scores out of 15 were found), was filled.23 
The physical examination consisted of (1) patellar and 
ankle reflexes, with the patient in the sitting position; 
(2) assessment of muscle strength by ability to walk 
on heels, bilateral dorsiflexion–plantar flexion of the 
feet, flexion–extension of legs, abduction–adduction 
of both forearms and fingers, all against resistance; 
(3) sensory testing carried out on the index finger and 
on the hallux (pinprick with a disposable 25/7 mm 
needle), touch (10 g Semmens Weinstein monofilament, 
pathologic if no response on 3 out of 10 sites), and 
vibration perception threshold (128 MHz tuning fork and 
biothesiometer, pathologic if >25 V); (4) pain sensitivity; 
(5) electroneurophysiological study; and (6) Winsor index 

(ankle-to-brachial index). The cardiovascular autonomic 
tests were also performed, namely, deep breathing test, 
lean-to-standing test, Valsalva maneuver, and orthostatic 
change in blood pressure. If two or more tests were  
abnormal, the patient was considered to have autonomic 
neuropathy.

Hemoglobin A1c values in the preceding 10 years were 
collected. Each patient had at least an ophthalmologic 
examination, a urinary albumin-to-creatinine ratio  
(0–30 mg/g normal, 30–300 mg/g microalbuminuria, 
>300 mg/g macroalbuminuria), a carotid artery Doppler 
examination, and an electrocardiogram in the preceding 
three months.

Subjects underwent foot morphological examination to 
assess type of foot (cavus, planus, normal), foot deformity 
evaluation (hallux valgus/normal/rigitus, claw and hammer 
toes, limitation of dorsiflexion of the great toe fifth 
abducted/adducted toe, overlapping toes), and pre–post 
surgery ulcers lesions (bunions, callosity, scars, soft 
corn). Hip–knee–ankle joint mobility was also assessed. 
The magnitude of sagittal curvature was measured 
(considering the pelvic structure on the sagittal plane, 
both a forward or a backward displacement of the point 
tangential to the scrum–coccyx plane was estimated), 
and the pelvic cingulum (pelvic translation, pelvic 
rotation, pelvic bascule), cingulum scapular rotation 
(rotation of the clavicular acromion with respect to the 
contralateral side), cingulum scapular flexion (fall of the 
clavicular acromion with respect to the contralateral side), 
leg length asymmetry (a tape is placed on the umbilicus 
and stretched to each medial malleolus and a measure 
recorded, and the differences between the right and left 
leg measurements are then considered) superior of 5 mm, 
heel position, and plantar foot arch during bipedal load 
were evaluated.15,24,25

Motion Analysis Methodology
Gait analysis was performed using a 120–160  Hz 
six-camera stereophotogrammetric system (BTS S.r.l, 
Padova) and two force plates (Bertec Corporation).  
The signals coming from all systems were synchronized. 
Fifty-two reflective markers were placed on the subjects 
in correspondence of either anatomical landmarks or 
technical clusters of trunk, thigh, shank, foot, and pelvis 
(six clusters, each of them formed by four markers).15 
The protocol is based on the CAST technique26 and 
represent a modified existing version.15,27 Almost each 
anatomical landmark was calibrated using a static 
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acquisition without the aid of a pointer.15,26 The following 
anatomical landmarks were considered for direct marker 
placement:

•	 Trunk—right and left acromions, spinous process 
of seventh cervical vertebrae (C7), spinous 
process of fifth lumbar vertebrae (L5).

•	 Foot—right and left calcaneus, right and left first 
metatarsal head, right and left second metatarsal 
head, right and left fifth metatarsal head.

The following anatomical landmarks were considered 
for direct marker placement and were calibrated with 
respect to a local cluster of marker by means of a static 
acquisition:

•	 Thigh—right and left lateral and medial 
epicondyle.

•	 Shank—right and left tibial tuberosity, right and 
left head of the fibula, right and left lateral and 
medial malleolus.

Four extra markers were applied on the thigh, pelvis, 
and shank in order to create the clusters that were used 
to calibrate the position of each segment anatomical 
landmarks.15,26 

The following anatomical landmarks were calibrated 
with the aid of a pointer:15,26

•	 Pelvis—right and left anterior superior iliac spine, 
right and left posterior superior iliac spine.

•	 Thigh—right and left greater trochanter.

•	 Shank—right and left tibial tuberosity, right 
and left head of the fibula, right and left lateral 
malleolus, right and left medial malleolus.

The center of the femoral head was assumed to coincide 
with the center of the acetabulum. The latter was 
reconstructed by means of a functional method proposed 
by Cappozzo and colleagues.26

Anatomical reference frames for the body segments 
were defined according to previous work.15,27 
Standard coordinate systems28 were adopted for each 
joint, which entails defining flexion–extension as the 
relative rotation about mediolateral axis of the proximal 

segment, internal–external rotation as the relative rotation 
about the vertical axis of the distal segment, and 
abduction–adduction as the relative rotation about a 

“floating” axis orthogonal to these two at each collected 
sample. The joint angles considered for the kinematics 
analysis were the flexion–extension, abduction–adduction, 
and internal–external rotation of trunk, pelvis, hip, and 
ankle. In particular, when considering the ankle joint, 
these three rotations were referred to respectively as 
dorsiflexion–plantar flexion, inversion–eversion, and 
internal–external rotation. With respect to the knee in 
the report of joint rotations, only the flexion–extension 
angle was reported; abduction–adduction and internal–
external rotation were not considered although the model 
accounts for their values, because these joint rotations 
were not shown to be feasible when reconstructed 
through markers placed directly on the skin.15,29 In the 
postprocessing of the kinetics parameters, the flexion–
extension, abduction–adduction, and internal–external 
rotation moments of trunk, hip, knee, and ankle were 
considered together with the mediolateral, vertical, and 
anteroposterior forces.15

During gait analysis, the patients walked at a self‑selected 
speed along a runway. Subjects were asked to walk along 
the walkway so that the target foot would naturally 
land on the force plates. Three walking trials, with three 
right and three left foot contacts on the force plate, were 
conducted.

Velocity, stride, and step parameters (namely, gait velocity, 
stride length, stride period, and step period) were 
calculated together with all angular displacements and 
internal joint moments.15 A static acquisition was also 
performed.14

Kinematic and kinetic parameters were estimated and 
compared with those obtained with the data of a 
control population (mean age of 59 ± 2.9 years, mean 
BMI of 24 ± 2.8) by means of k-means cluster analysis.30 
The function kmeans (Matlab software, R2008b) was 
used, and the standard euclidean distance was chosen in 
forming the clusters. kmeans uses an iterative algorithm 
that minimizes the sum of distances from each object 
to its cluster centroid over all clusters. This algorithm  
moves objects between clusters until the sum cannot be 
decreased further. In this context, the optimal number of 
cluster was identified with the following procedure:

1.	 The first number of cluster is guessed (in this 
case, the first number of cluster chosen was 
equal to 2).
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2.	 The optional “display” parameter (Mathlab 
software) is used to print information about each 
iteration, and the total sum of distances is 
evaluated. The latter may vary at each iteration 
as kmeans reassigns points between clusters and 
recomputes cluster centroids.

3.	 A silhouette plot for each solution is generated 
in order to evaluate which solution generates 
clusters that are better separated than previous 
solutions. The silhouette value for each point is 
a measure of how similar that point is to points 
in its own cluster compared to points in other 
clusters. This measure ranges from +1, indicating 
points that are very distant from neighboring 
clusters, through 0, indicating points that are 
not distinctly in one cluster or another, to -1, 
indicating points that are probably assigned to 
the wrong cluster. It is defined as

S(i) = (min(b(i,:),2) - a(i))/max(a(i),min(b(i,:),2)),

where a(i) is the average distance from the ith 
point to the other points in its cluster, and b(i,k) 
is the average distance from the ith point to 
points in another cluster k.

4.	 In order to overcome the problem that kmeans 
solution often depends on the starting points, 
the optional “replicates” parameter (Mathlab 
software) is used. Thus the number of “replicates” 
is indicated, and the “display” parameter (Matlab 
software, R2008b) to print out the final sum of 
distances for each of the solutions is used. So far, 
the final solution that kmeans returns is the one 
with the lowest total sum of distances over all 
replicates.

5.	 The number of cluster is increased at each 
solution until an empty cluster is created.

6.	 The solution that generates clusters that are better 
separated than previous solutions is chosen.

The following variables were considered: joint moments 
(trunk, hip, knee, ankle), joint angles (trunk, hip, knee, 
ankle), and ground reaction force (GRF) components 
(anterior–posterior, mediolateral, vertical) for their values 
in NoDPN, DPN and CS. The knee internal–external 
and abduction–adduction angles were not considered 
as in previous studies.15 So far, the clustering kmeans 
algorithm was applied to 1675 curves (each curve 

represents 100 samples, which are the variable’s value 
in each percentage of the gait cycle or the stance phase 
of gait). Through visual inspection of each silhouette  
plot, the optimal solution was defined for each variable. 
Afterward, the clusters generated by the variables in 
which kmeans reaches an optimal solution were chosen 
and analyzed; the mean, range, and standard deviation 
of kinematics, kinetics, and time and space parameters 
of each cluster were computed, together with the clinical 
outcome.

One-way analysis of variance (ANOVA) (Matlab software, 
R2008b) was performed for joint rotation angles, moments, 
and forces in order to identify significant differences  
(p < .05) among each cluster’s set of variables. Hence, 
one-way ANOVA14 was computed between paired groups 
of subjects: DPN versus NoDPN, DPN versus CS, 
NoDPN versus CS, and between subjects in each cluster 
versus subjects in the other clusters. A t-test (Matlab 
software, R2008b) was used to compare the following 
variables (between paired groups of subjects—DPN  
versus NoDPN, DPN versus CS, NoDPN versus CS, and 
between subjects in each cluster versus subjects in the other 
clusters): velocity (m/s), stride period (s), stride length (m), 
and stance period (s).

Results
The clinical characteristic of the subjects, the mean 
and standard deviation of GRF values, joint angles and 
moments, and time and space parameters according to 
the clinical subdivision of the subjects are reported in 
Tables 1 and 2.

While considering results of cluster analysis, its 
classification led to definition of four well-separated 
clusters when applied to each GRF component: the trunk 
flexion–extension moment, the knee flexion–extension 
moment, the ankle abduction–adduction moment, and 
the ankle internal–external rotation moment.

The estimates of the mean and standard deviation of 
kinematics, kinetics, and time and space parameters 
of each family are reported in Table 3. The clinical 
characteristics of each family are reported in Table 4.

It should be noticed that 100% of the CS group was 
completely identified by one cluster that also comprised 
a smaller percentage of DPN and NoDPN subjects.  
Meanwhile, subjects of the NoDPN group were equally 
distributed among three clusters: 40% of NoDPN in the  
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Table 1.
Clinical Characteristics and Time and Space Parameters (Mean and Standard Deviation) of the Diabetic 
Neuropathic Group, Diabetic Non-Neuropathic Group, and Control Groupa

NoDPN DPN CS
DPN versus 

NoDPN
t-test (p)

DPN versus 
CS

t-test (p)

NoDPN versus 
CS

t-test (p)

Subjects (%) 30.3 39.4 30.3 — — —

Age (years) 63.8 (5.4) 63.2 (6.0) 59.0 (2.9) 0.70 0.004b 0.01b

BMI (kg/m2) 26.3 (2.0) 25.6 (2.9) 24.0 (2.8) 0.4 0.2 0.02b

Duration of disease 
(years)

17.2 (11.7) 22.1(14.3) — 0.2 — —

Sex 
(% of subjects)

F
30

M
70

F
42.3

M
57.7

F
35

M
65

F
0.19

M
0.07

F
0.31

M
0.77

F
0.17

M
0.24

Diabetic retinopathy  
(% of subjects)

40.0 65.4 — 0.04b — —

Microalbuminuria  
(% of subjects)

25.0 34.6 — 0.1 — —

Peripheral vascular 
disease (% of subjects)

15.0 19.2 — 0.6 — —

Autonomic neuropathy 
(% of subjects)

0 23.0 — 0.02b — —

Type 1 diabetes  
(% of subjects)

15.0 42.3 — 0.02b — —

Type 2 diabetes 
(% of subjects)

85.0 57.7 — 0.02b — —

Hemoglobin A1c (%) 7.7 (1.1) 7.6 (1.7) — 0.1 — —

Gait velocity (m/s) 1.10 (0.2) 1.10 (0.2) 1.27 (0.1) 0.9 0.003b 0.003b

Stride period (s) 1.13 (0.1) 1.19 (0.1) 1.1 (0.1) 0.3 0.3 0.4

Stride length (m) 1.23 (0.1) 1.20 (0.2) 1.4 (0.1) 1.0 0.000b 0.002b

Stance period (s) 0.66 (0.1) 0.73 (0.1) 0.5 (0.1) 0.1 0.000b 0.000b

a The reported p values indicate the results of the comparison between the DPN and NoDPN groups, the DPN and CS 
groups, and the NoDPN and CS groups.

b A value of p < .05 was considered statistically significant.

first cluster (together with CS and DPN), 40% of NoDPN 
in the second cluster (including only NoDPN), and 40%  
of NoDPN in the third cluster (together with DPN). 
Finally, subjects of the DPN group were identified 
by three clusters; the 11.5% were included in the first 
cluster (together with CS and NoDPN), the 57.7% in the 
third cluster (together with NoDPN), and the 30.7% in 
the fourth cluster, including only DPN. In particular,  
cluster 1 was characterized by the lowest trunk range 
of motion on each plane but registered the highest 
knee and ankle ranges of motion in the sagittal plane.  
Also, only in this cluster, CS were identified at variance 

with the other family clusters. Oppositely, cluster 2, 
which included just NoDPN subjects, showed the highest 
range of motion at the hip joint both in the sagittal and 
transverse plane, together with the highest trunk range 
of motion in the coronal plane. The subjects of this 
cluster also exhibited the highest mean GRF values.

Cluster 3 registered the highest hip range of motion 
and mean joint moment together with the lowest trunk 
range of motion and joint moment in the coronal plane. 
Furthermore, the subjects in this class registered the 
highest mean stride and stance period together with the 
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Table 2.
Mean and Standard Deviation Results for Ground Reaction Forces, Joint Rotation moments, and Angles 
Computed over, Respectively, the Stance Phase of Gait and the Gait Cycle on the Diabetic Neuropathic Group, 
Diabetic Non-Neuropathic Group, and Control Groupa

CS NoDPN DPN P1 P2 P3

Forces (%body weight) 
mean (standard deviation)

Mediolateral 3.4 (2) 2.9 (1) 1.2 (1) 0.4 0.4 0.4

Vertical 82.4 (25) 89.2 (27) 82.6 (25) 0.4 0.4 0.4

Anterior–Posterior 1.1 (8) 0.3 (6) 0.6 (8) 0.1 0.7 0.7

Moments (%BMI*height) 
mean (standard deviation)

Trunk abduction–adduction 5.6 (3) 0.8 (1) 1.1 (1) 0.001b 0.001b 0.4

Trunk internal–external rotation 0.1 (0.2) 0.9 (0.2) 5.8 (2) 0.4 0.04b 0.04b

Trunk flexion–extension -0.9 (0.4) -0.1(0.3) -0.1 (0.3) 0.4 0.4 0.7

Hip abduction–adduction 1.2 (3) 2.4 (2) -4.7(12) 0.4 0.04b 0.01b

Hip internal–external rotation 3.4 (2) -14.8 (4) 4.3 (2) 0.0001b 0.4 0.0001b

Hip flexion–extension 0.7 (0.5) 1.3 (1) 2.0 (0.4) 0.04b 0.03b 0.4

Knee abduction–adduction -0.8 (1) -0.4 (1) -0.2 (1) 0.3 0.4 0.4

Knee internal–external rotation 0.1 (0.2) -0.5 (0.2) 3.0 (1) 0.1 0.04b 0.01b

Knee flexion–extension 1.3 (0.5) -0.0 (0.2) 2.2 (1) 0.04b 0.5 0.001b

Ankle abduction–adduction 2.9 (2) 1.8 (2) 0.9 (1) 0.04b 0.04 0.02b

Ankle internal–external rotation -0.8 (0.1) 0.9 (1) 3.9 (1) 0.05 0.04 0.001b

Ankle flexion–extension 0.4 (0.3) 0.1 (0.1) -1.2 (0.3) 0.05 0.04 0.04b

Rotation (deg) mean (standard deviation)

Trunk abduction–adduction 0.4 (3) -1.2 (6) 1.4 (3) 0.001b 0.04b 0.05

Trunk internal–external rotation 1.3 (4) -1.9 (3) 0.1 (3) 0.04b 0.05 0.05

Trunk flexion–extension 2.5 (1) -1.4 (0.1) 3.4 (0.6) 0.001b 0.002b 0.05

Hip abduction–adduction 8.8 (4) 3.7 (4) -4.7 (9) 0.1 0.04b 0.04b

Hip internal–external rotation 10.7 (2.9) -0.0 (0.4) 2.7 (2) 0.001b 0.0001b 0.04b

Hip flexion–extension 15.9 (18) -0.8 (1) 4.6 (12) 0.00001b 0.00001b 0.01b

Knee flexion–extension 23.1 (20) 9.3 (24) 13.5 (19) 0.05 0.04b

Ankle abduction-adduction 2.4(5) -6.7(2) -1.2(6) 0.001b 0.05 0.01b

Ankle internal-external rotation 1.1(1) 0.0(2) -4.4(1) 0.05 0.04b 0.05

Ankle flexion-extension 2.5(8) -6.0(7) -0.5(5) 0.001b 0.01b 0.0001b

a Results of one-way ANOVA performed among variables belonging to each group of subjects has been reported. P1, 
comparison between CS and NoDPN; P2, comparison between CS and DPN; P3, comparison between DPN and NoDPN.

b A value of p < .05 was considered significant.
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Table 3.
Biomechanical Characteristics of Each Cluster: Ground Reaction Forces, Joint Rotation Angles, Joint Rotation 
moments, Time and Space Parameters, Mean and Standard Deviation of the Diabetic Neuropathic Group, 
Diabetic Non-Neuropathic Group, and Control Groupa

CL 1 CL 2 CL 3 CL 4
CL1–2 

(p)
CL1–3 

(p)
CL1–4 

(p)
CL2–3 

(p)
CL2–4 

(p)
CL3–4 

(p)

Forces (%body 
weight)

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

ML 2.90 (1.2) 28.90 (13.1) 1.22 (1.1) 20.42 (1.1) 0.04b 0.04b 4E-16b 4E-03b 0.9 4E-04b

V 89.20 (27.2) 161.30 (17.1) 82.6( 24.8) 149.7 (24.9) 2E-10b 0.8 1E-10b 1E-03b 0.08 1E-04b 

AP 0.33 (6.5) 7.79 (59.2) 0.57 (7.6) 3.55 (7.5) 1E-10b 0.4 0.5 0.001b 0.001b 0.7

Moments
(%BMI*H)

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Trunk AA 5.46 (2.3) -2.05 (0.7) 1.73 (2.5) -2.23 (0.6) 0.7 0.3 0.7 0.9 1E-03b 0.001b

Trunk IE -0.08 (0.4) -0.14 (0.3) -0.83 (0.6) -0.11 (0.1) 0.8 0.6 0.8 0.6 9E-03b 0.05

Trunk FE -0.04 (0.2) -0.06 (0.2) -0.39 (0.3) 0.05 (0.1) 0.6 0.9 0.6 2E-03b 1E-03b 8E-05b

Hip AA 5.91 (2.3) 4.15 (1.8) 26.99 (8.9) 0.65 (0.5) 0.2 4E-08b 9E-03b 0.001b 4E-08b 1E-10b

Hip IE -2.66 (2.2) -1.67 (4.1) -5.15 (14.5) -0.69 (1.8) 0.8 0.7 0.4 0.05 0.2 0.1

Hip FE -5.42 (2.2) -5.54 (1.5) -21.99 (6.5) -2.71 (0.9) 0.7 0.9 0.03 0.4 2E-04b 0.04b

Knee AA -0.43 (0.98) -0.47 (1.7) -0.98 (1.3) 0.14 (0.6) 0.7 0.1 0.7 0.1 0.04b 0.04b

Knee IE -0.76 (0.5) -1.27 (0.4) -0.79 (0.5) 0.07 (0.1) 0.7 0.7 0.1 0.04b 0.1 0.04b

Knee FE -0.12 (0.3) 0.28 (0.5) -1.03 (0.8) 0.01 (0.1) 0.02b 0.09 7E-04b 0.08 0.001b 0.007b

Ankle AA 2.91 (2.3) 2.56 (2.3) 0.67 (0.6) 0.96 (1.0) 0.7 0.5 0.3 0.0002b 0.7 0.0002b

Ankle IE 0.59 (0.6) 0.76 (0.8) -0.34 (0.6) 0.69 (0.5) 0.4 0.3 0.04b 0.3 0.004b 0.7

Ankle FE -0.17 (0.1) -0.13 (0.1) -0.15 (0.2) 0.01 (0.1) 0.1 0.2 0.5 0.3 0.0001b 0.0001b

Rotations (deg) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Trunk AA 0.71 (1.6) -0.60 (2.9) -1.22 (5.0) 3.21 (2.4) 0.4 0.3 0.07 0.1 0.2 0.04b

Trunk IE -0.36 (2.3) 1.29 (2.6) -0.21 (4.4) -0.58 (1.5) 0.4 0.9 0.7 0.8 0.04b 0.5

Trunk FE -0.49 (3.0) -1.29 (3.5) 2.31 (5.8) 1.62 (0.5) 0.5 0.5 0.8 0.3 0.6 0.6

Hip AA 2.98 (3.1) 1.14 (4.4) 1.33 (5.0) -1.81 (2.2) 0.1 0.1 0.5 0.1 0.3 0.5

Hip IE -0.16 (4.5) -0.42 (4.9) -2.60 (5.2) -1.00 (2.7) 0.4 0.09 0.9 0.2 0.1 0.9

Hip FE 12.16 (3.9) 34.76 (4.9) -1.13 (12.2) 13.5 (2.5) 0.02b 0.8 0.01b 0.08 1E-03b 0.9

Knee FE 21.57 (6.6) 62.92 (6.5) 13.84 (12.0) 23.22 (13.9) 0.04b 0.8 0.04b 0.02b 1E-03b 0.3

Ankle AA -1.12 (4.4) -3.05 (2.6) -1.20 (7.4) -18.89 (20.8) 0.4 0.7 0.02b 0.5 0.9 0.6

Ankle IE -1.26 (1.9) -0.99 (1.7) -6.96 (10.1) 28.21 (18.5) 0.03b 0.6 0.02b 0.8 0.006b 0.8

Ankle FE -1.78 (4.1) 7.49 (13.9) 0.28 (24.7) 39.81 (68.6) 0.6 0.04b 0.7 0.6 0.01b 0.01b

a Results of one-way ANOVA performed among variables belonging to each cluster (CL) have been reported. SD, standard 
deviation; ML, mediolateral; V, vertical; AP, anterior–posterior; AA, abduction–adduction; IE, internal–external rotation;  
FE, flexion–extension.

b A value of p < .05 was considered significant.
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Table 4.
Clinical Characteristics and Time and Space Parameters (Mean and Standard Deviation) within Each Cluster a

CL1 CL2 CL3 CL4
CL1–2 

(p)
CL1–3 

(p)
CL1–4

(p)
CL2–3 

(p)
CL2–4 

(p)
CL3–4 

(p)

Subjects (% of subjects 
within the total number of 
subjects)

47 12 35 12 0 0.08 0 0.001b 0.5 0.001b

CS (% of CS within the 
specific cluster)

64 0 0 0 0 6E-04b 6E-04b — — —

NoDPN (% of NoDPN 
within the specific cluster)

26 100 35 0 1E-04b 0.2 0.05 7E-04b 0 0.03b

Age (years) 62.9 (5) 61.8 (4) 65.1 (6) 65.0 (6) 0.4 0.003b 0.003b 0.003b 0.003b 0.4

BMI (kg/m2) 25.7 (2) 24.5 (2) 25.8 (3) 25 (4) 0.4 0.4 0.4 0.4 0.4 0.4

Duration of disease 
(years)

19.8 
(14)

12.0  
(11)

26.0 
(10)

15.5  
(9)

0.08 0.8 0.1 0.009b 0.1 0.01b

Sex (F/M, % of subjects 
within the specific cluster)

39 61 50 50 26 74 50 50 0.3 0.3 0.2 0.2 0.3 0.3 0.5 0.5 0.1 0.1 0.1 0.1

DPN (% of DPN subjects 
within the specific cluster)

10 0 65 100 0.2 0 0 7E-04b 0 0.03b

Diabetic retinopathy  
(% of subjects within the 
specific cluster)

13 25 52 50 0.8 9E-04 0.01b 0.09 0.1 0.4

Microalbuminuria  
(% of subjects within the 
specific cluster)

10 0 22 25 0.2 0.1 0.1 0.07 0.06 0.4

Peripheral vascular 
disease (% of subjects 
within the specific cluster)

3 25 4 50 0.02b 0.4 2E-04b 0.04b 0.1 0.001b

Autonomic neuropathy 
(% of subjects within the 
specific cluster)

0 0 22 50 — 0.003b 0 0.07 0.01b 0.06

Type 1 (% of subjects 
within the specific cluster)

13 25 30 37.5 0.8 0.06 0.05 0.4 0.3 0.4

Type 2 (% of subjects 
within the specific cluster)

23 75 70 62.5 0.002b 3E-04b 0.01b 0.4 0.3 0.3

Hemoglobin A1c (%) 7.9 (1) 7.8 (1) 7.5 (1) 7.0 (1) 0.3 0.9 0.3 0.3 0.9 0.2

Mean velocity (m/s)
1.13 
(0.2)

1.04 
(0.1)

0.95 
(0.3)

1.10 
(0.05)

0.5 0.6 0.5 0.1 0.4 0.8

Stride period (s)
1.14 
(0.1)

1.10 
(0.1)

1.18 
(0.1)

1.10 
(0.04)

0.8 0.9 0.6 0.4 0.03b 0.8

Stride length (m)
1.30 
(0.1)

1.10 
(0.1)

1.15 
(0.2)

1.40 
(0.3)

0.8 0.1 0.7 0.2 0.01b 0.8

Stance period (s)
0.60 
(0.1)

0.60 
(0.03)

0.75 
(0.1)

0.60 
(0.04)

0.8 0.1 0.1 0.4 0.7 0.9

a The percentage of subjects displaying each clinical characteristic as given in the table represents the percentage of 
subjects within the considered cluster (CL). Results of the comparison among the clusters’ clinical characteristics and time 
and space parameters (t-test, z-test, R Statistic software) have been reported in terms of p value.

b A value of p < .05 was considered statistically significant.
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lowest gait velocity (Table 4). In particular, it included 
both DPN and NoDPN subjects. Finally, cluster 4, which 
included only DPN subjects, was identified. This was 
characterized by excessive GRF values as well as the 
highest ankle range of motion in each plane. The longest 
stride length was also registered in this cluster, together 
with the lowest hip and knee joint moments in each plane.

Discussion
In this article, we have demonstrated, for the first time, the 
advantage of describing DPN and NoDPN biomechanical 
alteration starting from their gait pattern characteristics 
by means of cluster analysis. Rather than grouping 
subjects according to their metabolic control, duration 
of the disease, gender, BMI, and age, we chose to 
stratify subjects according to their biomechanical 
characteristics. K-means cluster analysis was chosen 
using gait parameters only, and it produced four well-
separated clusters. This was successfully obtained by  
seven variables. The effectiveness of such a classification 
was confirmed by the one-way ANOVA results, which 
revealed statistically significant differences among 
variables of different clusters. Furthermore, not only the 
variables that defined well-separated clusters but also 
other variables displayed important differences among 
subjects of different clusters (see Table  3). Four families 
were identified, thus accomplishing the primary purpose  
of this study, which was to verify the presence of more 
than one gait pattern in DPN and NoDPN subjects.  
The need for such data was evident given the limitation 
of procedures used for data analysis undertaken in 
previous research. As such, until now, it was difficult 
to appreciate differences within DPN or NoDPN gait 
patterns occurring during the stride cycle, thus allowing 
the possibility of statistical errors and undermining the 
validity of the comparison. It has been stated that, if 
different movement strategies exist, then statistical power 
will be lowered, and there is a greater likelihood of falsely 
supporting the null hypothesis in group comparison 
statistical procedures.31,32 In this article, we chose a 
technique able to detect the presence of other subgroups 
in data, thus allowing the possibility of making valid 
comparisons. Hence our results showed the presence of 
seven variables that defined three different patterns of 
gait either in DPN or NoDPN subjects. Moreover, most 
of the DPN subjects were included in cluster 3, which 
contained both DPN and NoDPN subjects. This is an 
important result if we consider that the majority of the 
studies analyzed averaged data obtained by DPN subjects 
separated from NoDPN subjects, hypothesizing a single 
gait pattern for each pathologic population. It should 

be further mentioned that, in cluster 3, an important 
presence of diabetes complications was noticed together 
with a long duration of the disease. Gait parameters 
of its subjects showed an important role played by the 
hip joint with respect to the ankle joint. This seems to 
suggest a changing in the walking strategy from the 
ankle to the hip joint13,33 in relation to a long duration of 
the disease and the presence of complications. This was  
also confirmed by previous research that assessed a  
change in the walking strategy as one of the consequences 
of diabetes.13–33 Nevertheless, a nice correlation has 
already been reported between diabetes complications 
and the presence of alteration in the gait pattern of a 
group of DPN and NoDPN subjects.15

In analyzing the results of the present classification, 
the identification of cluster 1 should be mentioned for 
being characterized either by pathologic subjects or CS. 
This shows how a sample of pathologic subjects can 
display a gait pattern similar to CS. With respect to 
the other families, this cluster displayed a lower number  
of subjects with diabetes complications, thus confirming 
their important role in altering the gait pattern of 
diabetes patients. This was also confirmed by the higher 
GRFs registered in clusters 2 and 4 that included a 
larger proportion of vasculopathic subjects. Indeed, it 
has been demonstrated that motor dysfunction occurs in 
peripheral vascular disease subjects, where inadequate 
blood flow to the lower limb may result in reduction 
of physiological capacity, lower limb mobility, walking 
performance, physical activity levels, and decreased 
health-related quality of life.15,34 It should be further 
mentioned that, although the proposed methodology 
allowed identifications of more than one gait pattern 
in the studied subjects, two families (clusters 2 and 4) 
including, respectively, only DPN and NoDPN subjects  
were identified. This demonstrated the possibility of 
distinguishing gait patterns of DPN and NoDPN 
subjects from those of CS exclusively by means of gait 
data. These families were characterized by excessive GRF 
components that confirmed the important role played 
by either glycosylation and diabetes complications. 
Glycosylation alters the gait pattern in diabetic subjects 
by reducing the ability to accomplish shock absorption 
during gait. This was also reported in previous literature,  
even though classical statistic methodologies were 
adopted in assessing diabetic and neuropathic gait 
alterations.1,8–15,33–36

Despite its potential usefulness, cluster analysis has not 
been widely used in clinical biomechanics. This may be 
due to unfamiliarity and/or concerns among biomechanists 
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regarding procedural problems associated with this 
technique.31 One of the main drawbacks of the cluster 
analysis method is that it is sensitive to variations in  
the gait trials, especially where reproducibility may be 
difficult to attain,16,18 particularly in the neuropathic 
subjects. The trials of a new subject may not be grouped 
together but, rather, may be located anywhere in the 
different clusters, and at the same time, adding new 
subjects can perturb the clustering. It is also possible 
that the trials of a diabetes subject may be located in 
one of the CS clusters. Inversely, the trials of a control 
individual could end up within the cluster of the 
diabetes subjects. This study was susceptible to this type 
of perturbation. However, considering that the principal 
aim of the present project was observing the natural 
grouping of subjects in order to display the presence 
of more than one gait pattern in each of the observed 
populations, this type of perturbation does not represent 
a critical source of error. Furthermore, the variability 
expressed by the standard deviation in the kinematics 
and kinetics parameters was always larger in the DPN 
group than in the CS group, thus emphasizing the 
possibility of different families of neuropathic gaits, but  
not CS one. However, this possibility was in agreement 
with the aims of this article.

In conclusion, this methodology clearly provided results 
that could be hidden if only a group ensemble is presented 
as DPN or NoDPN for any biomechanic variable.

Conclusions
Biomechanical issues involved in the various phases of 
treating foot problems in people with diabetes1–15 have 
been recognized to be clinically relevant.

This article proposed a method that allows automatic 
detection of diabetic gait alterations and enabled the 
identification of a group of NoDPN subjects that displayed 
similar alterations to DPN subjects. Such a result could 
have important clinical outcomes. Indeed, this family of 
subjects was characterized by long disease duration and 
several diabetes complications. This seems to suggest that 
the presence of these characteristics has an important 
role in altering the gait pattern of diabetic subjects. 
Furthermore, the family including only NoDPN subjects 
displayed higher GRF components, thus highlighting 
how diabetes reduces the ability to accomplish shock 
absorption during gait.
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