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Abstract

Background:
Estimation of the magnitude and duration of effects of carbohydrate (CHO) and subcutaneously administered  
insulin on blood glucose (BG) is required for improved BG regulation in people with type 1 diabetes mellitus 
(T1DM). The goal of this study was to quantify these effects in people with T1DM using a novel protocol.

Methods:
The protocol duration was 8 hours: a 1–3 U subcutaneous (SC) insulin bolus was administered and a 25-g CHO meal 
was consumed, with these inputs separated by 3–5 hours. The DexCom SEVEN® PLUS continuous glucose 
monitor was used to obtain SC glucose measurements every 5 minutes and YSI 2300 Stat Plus was used to 
obtain intravenous glucose measurements every 15 minutes.

Results:
The protocol was tested on 11 subjects at Sansum Diabetes Research Institute. The intersubject parameter 
coefficient of variation for the best identification method was 170%. The mean percentages of output variation 
explained by the bolus insulin and meal models were 68 and 69%, respectively, with root mean square error  
of 14 and 10 mg/dl, respectively. Relationships between the model parameters and clinical parameters were  
observed.

Conclusion:
Separation of insulin boluses and meals in time allowed unique identification of model parameters. The wide 
intersubject variation in parameters supports the notion that glucose-insulin models and thus insulin delivery 
algorithms for people with T1DM should be personalized. This experimental protocol could be used to refine 
estimates of the correction factor and the insulin-to-carbohydrate ratio used by people with T1DM.
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Introduction

The presentation of knowledge of the dynamic 
behavior of a system may take a variety of forms, 
e.g., flowcharts with logical statements, or sets of 
mathematical equations. The decision on how to present 
this information depends upon the purpose of the model, 
and who needs to understand the model. In the case of 
glucose-insulin models, the purpose of the model can be 
for measurement, simulation, prediction, and control.1 
The people who need to understand the model range 
from scientists and engineers to physicians and people 
with diabetes mellitus.

Physicians treating people with type 1 diabetes mellitus 
(T1DM) are modeling in order to improve glycemia.  
Over the course of therapy, a patient with T1DM will 
be assigned a correction factor (CF) and an insulin- 
to-carbohydrate ratio (ICR). The person with diabetes will 
attempt to regulate their blood glucose (BG) using the 
CF and ICR, along with additional dynamic information 
available in the form of insulin-on-board (IOB) decay 
curves,2 which may be used by their insulin pump to 
recommend an insulin bolus size.3 When used properly, 
these clinical parameters are sufficient for reducing the 
prevalence of diabetic complications.4

Given the difficulty in maintaining successful open-loop 
control and the development of continuous glucose 
monitoring (CGM) sensors and continuous subcutaneous 
insulin infusion (CSII) pumps, new models have been 
developed for control.1 Studies have used nonlinear 
models developed using tracers and intravenous (IV) 
measurements.5–8 Personalization of these models is 
expensive and not practical to extend to all people with 
T1DM. Minimal models have been considered, but may 
require IV measurements.9–11 Empirical models using 
only subcutaneous (SC) glucose, insulin delivery, and 
carbohydrate (CHO) records have been investigated12,13 
and have also been used as the basis for closed-loop 
control algorithms in clinical trials.14 The unique 
identification of parameters from ambulatory data is 
problematic due to the nature of the data itself: people 
with T1DM often take boluses and meals simultaneously; 
simultaneous input excitation may lead to incorrect sign  
of gain from a statistically optimal parameter estimate.15 
As such, these empirical models need further heuristics to 
ensure that they are suitable for their intended purpose.

A nonlinearity assessment has suggested that adequate 
control of BG can be obtained using linear methods.16 
An application such as closed-loop insulin delivery requires 
an interdisciplinary approach to the development of a 
functional device. In this article, we therefore propose a 
linear model with a small number of clinically meaningful 
parameters to approximate this complex, nonlinear process. 
A novel clinical trial was implemented in order that 
the model parameters could be uniquely identified.  
The relationship between the model parameters and 
clinical parameters was then revealed.

Methods

Experimental Protocol
Clinical data were obtained from 11 adult subjects 
with T1DM, 6 females and 5 males, using protocol 
approved by the Institutional Review Board at the 
Sansum Diabetes Research Institute, Santa Barbara, CA.  
Informed, witnessed consent was obtained from subjects. 
Eleven sets of data were obtained.

Subjects began the experiment under conditions assumed 
to be steady state, i.e., no insulin boluses, basal changes, 
or meals within at least the last four hours. The two 
inputs considered were a test meal and an insulin bolus; 
these inputs were not given simultaneously. The order 
in which the inputs were given was dependent upon 
arrival conditions and safety considerations. After the 
test meal was consumed, no bolus or basal changes were  
made in at least the next two hours. After the bolus was 
administered, no meals were consumed or basal changes 
made in at least the next three hours.

The test meal was a mixed meal with 25-g CHO, and was 
identical for each subject. The insulin bolus was 1–3 U, 
depending upon the subject’s ICR, CF, and latest glucose 
measurement, and was administered using the subject’s 
CSII pump. The size of these inputs was chosen such that 
symptomatic hypoglycemia and hyperglycemia would 
be avoided during the experiment. It is important to 
note that no insulin bolus was given at the time of meal 
ingestion. The insulin bolus was only given to correct for 
the elevated BG after conditions corresponding to steady 
state were obtained.
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The subject’s CF and ICR were obtained before the 
experiment. Data collected during the experiment 
consisted of YSI 2300 Stat Plus (Yellow Springs Instruments, 
Yellow Springs, OH) IV glucose measurements every  
15 minutes, and DexCom SEVEN® PLUS  (DexCom, 
San Diego, CA) SC glucose measurements every 5 minutes.

Model Structure
The model type was a continuous time transfer function 
consisting of a component for modeling SC insulin 
effects and another component for modeling CHO effects 
on BG. Transfer functions are a powerful engineering 
tool used to reduce the relatively complex properties 
and solution of ordinary differential equations (ODEs) 
to the simpler solution process associated with algebraic 
equations (AEs). The time domain variable, t, is replaced 
with the frequency (or Laplace) domain variable, s, and 
standard transformations of ODEs into AEs exist in the 
scientific literature.17 The structure of each component 
was first order plus time delay with integrator. The first 
component, the model of bolus insulin effects on BG, 
was

YB(s) = KBexp(–qBs)
s(tBs + 1)

 UB(s)                   (1)

where  is the Laplace variable, YB is the deviation BG 
due to bolus insulin, and UB is the insulin delivery. 
The second component, the model of meal CHO effects 
on BG, was

YM(s) = KMexp(–qMs)
s(tMs + 1)

 UM(s)                (2)

where YM is the deviation BG due to meal CHO, and 
UM is the meal CHO amount. K is the model gain, t is 
the model time constant, and q the model time delay 
for bolus insulin and meal CHO effects denoted by 
subscripts B and M, respectively. The model components 
described in Equation (1) and Equation (2) are summed 
to give the complete model, which is

Y(s) = YB(s) + YM(s)                     (3)

where Y is the deviation BG due to both bolus insulin 
and meal CHO effects.

Parameter Estimation
The model parameters K, t and q were estimated 
using heuristics and least-squares optimization.17,18 
The heuristics used to estimate each parameter were as 
follows:

1. K was the ratio of the greatest deviation of the 
output y(t) from steady state to the magnitude of 
the deviation of the input u(t) from steady state, 
thus

K = 
ymax – yss

umax – uss
                        (4)

2. q was defined as the time at which y(t) first exceeded 
3% of its maximum response subject to the input 
u(t), thus

y(t = q) = 0.03Kumax                    (5)

3. t was defined as the time at which y(t) first attained 
63.2% of its maximum response subject to the input 
u(t), thus

y(t = t + q) = 0.632Kumax                   (6)

These rules are summarized graphically in Figure 1, 
where a system is subject to a unit impulse input at time 
zero. In this example, there is no measurement noise, 
and thus there is no output change until time q has 
passed. Also, note that if the input had magnitude other 
than unity, i.e., M = umax – uss, then the final output 
response would be KM = ymax – yss.

Figure 1. Diagram showing how parameters K, t, and q are determined 
using heuristics from the output response y(t) to a hypothetical unit 
impulse at time zero to an integrating system.

Performance Metrics
The FIT metric was used to quantify the model 
performance, and is defined as:
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where i is the sample index, n is the number of samples, 
yi is the BG measurement, ŷi is the model estimate of 
BG, and y  is the mean BG measurement. The FIT metric 
corresponds to the percentage of the variation in the 
data explained by the model; a perfect FIT is 100%, while 
a value of 0% implies that equivalent model performance 
would be attained by predicting the mean measurement 
value. The root mean square error (RMSE) was also used, 
defined as

RMSE =    ∑(yi – ŷi)2

n

n

i=1                      (8)

Relationship between Model Parameters and 
Clinical Parameters
Dimensional analysis of the model gains, K, indicated 
relationships with the clinical parameters CF and ICR. 
The insulin bolus model gain, KB, has units of [(mg/dl) 
per U], which is equivalent to those of the CF, which 
is the drop in BG from one unit of rapid-acting insulin, 
thus

KB = – CF                          (9)

The meal model gain, KM, has units of [(mg/dl) per g 
CHO]. ICR, which is the amount of CHO compensated 
for by one unit of rapid-acting insulin is usually 

Table 1.
Summary of Data Collected from Protocol for Each Subject

Subject Start time of data
YSI data CGM data

First impulse
Response duration (min)

Bolus Meal Bolus Meal Bolus Meal

1 9:30 AM Yes Yes Yes Yes Meal 300 130

2 9:30 AM Yes Yes No No Meal 300 130

3 9:25 AM Yes Yes Yes Yes Meal 285 130

4 8:15 AM No Yes Yes Yes Bolus 210 210

5 9:25 AM No Yes Yes Yes Meal 225 135

6 8:45 AM No Yes Yes Yes Meal 315 180

7 9:40 AM Yes Yes Yes Yes Bolus 150 210

8 9:20 AM Yes Yes Yes Yes Bolus 195 120

9 8:40 AM Yes Yes Yes Yes Bolus 195 120

10 9:10 AM Yes Yes Yes Yes Bolus 195 180

11 9:05 AM Yes Yes Yes Yes Bolus 210 195

expressed as a ratio of units of insulin to g CHO, which 
as a decimal would have units of [U per (g CHO)]; the 
product of CF and ICR has units of [(mg/dl) per g CHO], 
thus

KM = CF · ICR                      (10)

Results

Clinical Data
Table 1 summarizes the implementation of the protocol 
carried out on the 11 subjects. For subject 2, no CGM 
data were available due to CGM failure. For subjects 4, 5, 
and 6, no YSI data were available due to occlusion of the 
IV line. The CGM and venous plasma glucose assessed 
using the YSI data were compared using the point 
error grid analysis (pEGA)19 and rate error grid analysis 
(rEGA).20 According to pEGA, shown in Figure 2, 99% of 
data pairs were in regions A and B, where A indicates 
accurate, and B indicates benign. According to rEGA, 
shown in Figure 3, 97% of data pairs were in regions A 
and B.

The data collected for subjects 1–11 are shown in Figure 4 
and Figure 5. These results show that there is often a 
disparity between YSI and CGM measurements, whether 
at low or high BG. Also, high frequency noise in CGM 
measurements for subject 3 and subject 8, along with 
CGM failure in subject 2 indicate that CGM devices 
are not as reliable as manual YSI measurement.  
Table 2 summarizes analysis of bias in the comparison 
of YSI and CGM data. Using a paired t-test at the 
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95% significance level, there was no absolute bias in  
8 out of 10 data sets, increasing to 9 out of 10 at the 99% 
significance level. Four out of 10 data sets showed no 

evidence of a nonzero intercept and nonunity slope at 
the 95% significance level, increasing to 6 out of 10 at the 
99% significance level.

Model Parameters
Six parameters were identified for each data set.  
The mean parameter values and coefficient of variation 
for each identification method and data set are given 
in Table 3. For the bolus insulin model, the mean of 

Figure 2. Summary of YSI and CGM data collected from all trials 
using the point error grid analysis.19 Points were distributed as follows: 
76% zone A, 23% zone B, 0% zone C, <1% zone D, 0% zone E.

Figure 3. Summary of YSI and CGM data collected from all trials 
using the rate error grid analysis.20 Prefix l indicates lower, prefix u 
indicates upper. Subscript R indicates rate. Points were distributed as 
follows: 78% zone AR, 21% zone BR, 2% zone CR, < 1% zone DR, < 1% 
zone ER.

Table 2.
Statistical Analysis of Bias between YSI and CGM 
Data Collecteda

Subject
Absolute bias

Nonzero 
intercept

Nonunity slope

95% 99% 95% 99% 95% 99%

1 Yes No Yes No No No

2 N/A N/A N/A N/A N/A N/A

3 No No Yes Yes Yes Yes

4 No No Yes No No No

5 Yes Yes Yes Yes Yes Yes

6 No No No No Yes No

7 No No No No Yes No

8 No No Yes Yes Yes Yes

9 No No Yes Yes Yes Yes

10 No No No No No No

11 No No No No No No

No bias 
(% of data 

sets)
80 90 40 60 40 60

a Absolute bias was based on a paired two-tail t-test, intercept 
and slope bias was based on confidence intervals of the 
regression line. Percentages given are significance levels.

Table 3.
Summary of Mean (Coefficient of Variation %) of 
Model Parameters Obtained through Heuristics 
and Optimization from YSI and CGM Data

Parameter
Heuristics Optimization

YSI CGM YSI CGM

KB (mg/dl per U) -95(33) -72(66) -320(88) -270(160)

tB (min) 150(22) 110(32) 550(80) 440(100)

qB (min) 6.4(120) 33(170) 53(230) 31(160)

KM (mg/dl per g 
CHO)

3.6(40) 3.5(34) 3.9(46) 3.5(39)

tM (min) 59(34) 41(52) 48(71) 37(88)

qM (min) 10(92) 21(79) 12(59) 22(72)
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Figure 4. Glucose data for subjects 1–6, with meal consumption and bolus administration indicated relative to experimental time.
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Figure 5. Glucose data for subjects 7–11, with meal consumption and bolus administration indicated relative to experimental time.
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the gains and time constants identified from YSI and 
CGM data using optimization were three to four times 
greater than the corresponding parameters identified 
from heuristics. The coefficient of variation for the gain  
and time constant from the bolus insulin model obtained 
using optimization was greater than 100%. The meal 
CHO model parameters differed by less than a factor of 
two for each set of data and method used.

Comparison of Model Parameters with Clinical 
Parameters
The bolus insulin model gains and the subject’s CF are 
compared in Figure 6. The bolus insulin model gains 
identified using heuristics lie closer to the 45° line than 
those identified by optimization. The meal CHO model 
gains and the product of the subject’s CF and ICR are 
compared in Figure 7. Both identification methods 

Figure 6. Comparison of the clinical parameter CF with the experimentally determined gain KB from both YSI and CGM data. 
Left: parameters determined from heuristics. Right: parameters determined from optimization. Note different axis scaling.

Figure 7. Comparison of the product of the clinical parameters CF and ICR with the experimentally determined gain KM from both YSI and 
CGM data. Left: parameters determined from heuristics. Right: parameters determined from optimization.
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show similar results. The correlation coefficients, r, were 
calculated and a hypothesis test was performed to 
determine the statistical significance of any correlation 
between these parameters. The null hypothesis was that 
there was no correlation. The correlation coefficients 
and p values for each correlation are shown in Table 4. 
The range of correlation coefficients was 0.7–65%. In each 
case, the p value was greater than .05, thus the null 
hypothesis was not rejected, so at the 95% significance 
level there was no correlation between KB and CF, 
and KM and CF·ICR.

Figure 8 compares the normalized BG response of the 
bolus insulin models identified using heuristics with 
a range of nonlinear IOB decay curves of 2–8 hours.2 
The five-hour IOB decay curve lies within the range of 
the normalized responses of the bolus insulin models 
developed from YSI and CGM data. Figure 9 compares 
the normalized BG response of the meal CHO models 
identified using heuristics with the normalized glucose 
absorption amount from the meal CHO model presented 
by Hovorka and colleagues.22 The normalized glucose 
absorption response amount lies within the range of 
the normalized responses of the meal CHO models 
developed from YSI and CGM data.

Model Performance
The bolus insulin response and model outputs for 
subjects 1–11 are shown in Figure 10 and Figure 11. 
The models derived from CGM and YSI data with 
parameters identified from heuristics models capture the 
low frequency characteristics of the data over a five-
hour window better than the clinical model based 
upon the subject’s correction factor and five-hour IOB 
decay curve. The meal response and model outputs for 
subjects 1–11 are shown in Figure 12 and Figure 13. 

Table 4.
Summary of Correlation Coefficients and p values 
for Hypothesis Test of Nonzero Correlation between 
Clinical Parameters CF and ICR and Estimated 
Model Parameters KB and KM Obtained through 
Heuristics and Optimization from YSI and CGM 
Data.

Method Data type
–KB vs CF KM vs CF·ICR

r (%) p r (%) p

Heuristics YSI 65 .081 33 .33

Heuristics CGM 14 .7 36 .3

Optimization YSI 0.7 .99 41 .21

Optimization CGM 15 .68 27 .44

Figure 8. Comparison of the range of normalized bolus insulin model 
glucose responses to insulin from IOB curves,2 where the bolus 
insulin model dynamics were identified from heuristics from YSI and 
CGM data.

Figure 9. Comparison of the range of normalized meal CHO model 
glucose responses to CHO with Hovorka meal model response,21 
where the meal CHO model dynamics were identified using heuristics 
from YSI and CGM data.

The model derived from clinical parameters and the 
Hovorka meal response characteristic captured the low 
frequency characteristics over the three-hour time span.  
The model performance was assessed using the FIT 
metric (Figure 14) and the RMSE value (Figure 15).

Discussion
The protocol designed was simple to execute; the most 
challenging aspect was the use of an IV line for IV 
blood samples for the YSI. The YSI and CGM data 
were strongly correlated, as shown by the pEGA and 
rEGA analysis, indicating that the experiment may be 
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Figure 10. Deviation glucose data and models for subjects 1–6, where a 1 U insulin bolus was administered at time 0.
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Figure 11. Deviation glucose data and models for subjects 7–11, where a 1 U insulin bolus was administered at time 0.
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Figure 12. Deviation glucose data and models for subjects 1–6, where a 25 g CHO was administered at time 0.



1226

Modeling the Effects of Subcutaneous Insulin Administration and Carbohydrate Consumption on Blood Glucose Percival

www.journalofdst.orgJ Diabetes Sci Technol Vol 4, Issue 5, September 2010

Figure 13. Deviation glucose data and models for subjects 7–11, where a 25 g CHO was administered at time 0.
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Figure 14. Mean and standard deviation of the FIT metric for each 
model, derived from both YSI and CGM data, based on heuristics, 
optimization, and clinical parameters.

Figure 15. Mean and standard deviation of the RMSE metric for each 
model, derived from both YSI and CGM data, based on heuristics, 
optimization, and clinical parameters.

implemented reliably without any IV samples to obtain 
similar results. There were noticeable differences in YSI 
and CGM samples, such as offset and a lead/lag of one 
measurement against another; however, these differences 
were not consistent, and according to the pEGA and 
rEGA, these differences were not clinically significant. 
However, when considering bias through statistical 
methods, although there was little evidence in support 
of absolute bias, there was evidence that half of the  
data sets showed significant bias in terms of slope and 
intercept of the regression line. These biases then led to  
differences between the parameters that were estimated 
from CGM and YSI measurements. This could be because 
of the lead/lag between venous blood glucose and 
interstitial fluid glucose, or because of unreliable sensors. 
Without a gold standard measurement for SC glucose,  
it is not possible to determine which was the case.

The main assumption underlying the validity of the 
models and parameter estimates was “steady state.” 
Although steady state does not exist in a mathematical 
sense, it does exist in a practical sense. In this case, 
steady state meant a clinical judgment on when the rate 
of change of BG was less than it would have been due to 
meal CHO or bolus insulin.

The comparison of clinical and model parameters 
indicated a disparity between the two, but did not indicate 
one parameter being more valid than any other in a 
general sense. The model parameters fit the data better, 
but given that the clinical parameters may have been 
developed from more data, the clinical parameter could 
be more appropriate for any future day. Although the 
clinical parameter appears to have the same units and the 
model parameter, the manner in which the parameter is 
determined would affect the value, i.e., was it developed 
with an engineering definition of steady state in mind, 
or was it developed with the objective of a return to 
euglycemia as fast as possible? In the case of the latter, 
the occurrence of hypoglycemia may be prevalent 
without a small compensatory snack.

The comparison of the model dynamics with those 
of IOB and the Hovorka glucose absorption amount 
showed that these published dynamics were comparable 
to the models developed from these clinical data.  
Although there were intersubject variations, the critical 
low and high bandwidth frequencies of the responses 
were captured.

The model proposed in this article was conceived for 
a very different purpose than those models developed 

from tracer experiments.5–7 These prior works have yielded 
excellent simulation models for testing insulin delivery 
protocols, and have yielded insight into glucose-insulin 
kinetics and variation in a population. However, they 
are not readily adaptable to an individual. The model 
presented here can be personalized based on two 
circumstances that frequently occur for individuals with 
T1DM, namely a snack without a bolus and a correction 
bolus.

The performance of a model-based controller is dependent 
upon the quality of the model used.23 Physicians have 
knowledge of this system, the patient, based upon their 
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experiences. The engineering models developed to control 
such a device should be accessible to the clinicians, by 
using physically intuitive parameters. If models with 
physically meaningful parameters adequately describe 
the essential characteristics of the patient, the model 
will be trusted by the physician, who is ultimately the 
authority on what constitutes an appropriate algorithm  
for insulin delivery.

Conclusion
Low-order continuous time transfer function models 
have parameters with an intuitive meaning for describing 
SC insulin and CHO effects on BG in people with 
T1DM. These model parameters can be estimated using 
heuristics. The clinical parameters CF, ICR, and IOB 
decay time have similar characteristics to these model 
parameters. The protocol described could be used to 
determine CF, ICR, and IOB decay time for people with 
T1DM in place of trial-and-error methods currently 
used. For the purpose of modeling for control, both the 
model and clinical parameters provide a simple means 
of characterizing the principal pharmacodynamics of  
SC insulin and CHO on BG for someone with T1DM.

Funding:

Juvenile Diabetes Research Foundation Grants 22-2009-796 and  
22-2009-797, Institute for Collaborative Biotechnologies Grant DAAD 
19-03-D-004 from the U.S. Army Research Office, and National 
Institutes of Health Grant R01-DK085628.

Acknowledgements:

This research was conducted with support from the Investigator-
Initiated Study Program of LifeScan, Inc. and product support from 
DexCom, Inc.

References:

1. Steil GM, Reifman J. Mathematical modeling research to support 
the development of automated insulin-delivery systems. J Diabetes 
Sci Technol. 2009;3(2):388-95.

2. Walsh J, Roberts R. Pumping insulin. 4th ed. San Diego (CA): 
Torrey Pines Press; 2006.

3. Zisser H, Robinson L, Bevier W, Dassau E, Ellingsen C, Doyle FJ, 
Jovanovič L. Bolus calculator: a review of four “smart” insulin 
pumps. Diabetes Technol Ther. 2008;10(6):441-4.

4. Wake N, Hisashige A, Katayama T, Kishikawa H, Ohkubo Y,  
Sakai M, Araki E, Shichiri M. Cost-effectiveness of intensive 
insulin therapy for type 2 diabetes: a 10-year follow-up of the 
Kumamoto study. Diabetes Res Clin Pract. 2000;48(3):201-10.

5. Dalla Man C, Camilleri M, Cobelli C. A system model of oral 
glucose absorption: validation on gold standard data. IEEE Trans 
Biomed Eng. 2006;53(12 Pt 1):2472-8.

6. Dalla Man C, Toffolo GM, Basu R, Rizza RA, Cobelli C. Use of 
labeled oral minimal model to measure hepatic insulin sensitivity. 
Am J Physiol Endocrinol Metab. 2008;295(5):E1152-9.

7. Hovorka R, Shojaee-Moradie F, Carroll PV, Chassin LJ,  
Gowrie IJ, Jackson NC, Tudor RS, Umpleby AM, Jones RH. 
Partitioning glucose distribution/transport, disposal, and endogenous 
production during IVGTT. Am J Physiol Endocrinol Metab. 
2002;282(5):E992-1007.

8. Wilinska ME, Chassin LJ, Schaller HC, Schaupp L, Pieber TR, 
Hovorka R. Insulin kinetics in type-1 diabetes: continuous and 
bolus delivery of rapid acting insulin. IEEE Trans Biomed Eng. 
2005;52(1):3-12.

9. Bergman RN, Ider YZ, Bowden CR, Cobelli C. Quantitative 
estimation of insulin sensitivity. Am J Physiol Endocrinol Metab 
Gastrointest Physiol. 1979;236(6):E667-77.

10. Bergman RN, Phillips LS, Cobelli C. Physiological evaluation 
of factors controlling glucose tolerance in man: measurement 
of insulin sensitivity and beta-cell glucose sensitivity from the 
response to intravenous glucose. J Clin Invest. 1981;68(6):1456-67.

11. Roy A, Parker RS. Dynamic modeling of free fatty acid, glucose, 
and insulin: an extended “minimal model”. Diabetes Technol Ther. 
2006;8(6):617-26.

12. Eren-Oruklu M, Cinar A, Quinn L, Smith D. Estimation of future 
glucose concentrations with subject-specific recursive linear 
models. Diabetes Technol Ther. 2009;11(4):243-53.

13. Finan DA, Palerm CC, Doyle III FJ, Seborg DE, Zisser H, Bevier WC, 
Jovanovič L. Effect of input excitation on the quality of empirical 
dynamic models for type 1 diabetes. AIChE J. 2009;55(5):1135-46.

14. Percival MW, Grosman B, Dassau E, Zisser H, Jovanovič L,  
Doyle III FJ. Automated insulin delivery system demonstrates safe 
and efficacious control of glycemia. Proceedings of the American 
Diabetes Association 69th scientific sessions, poster 3-LB; 2009 Jun 
5–9; New Orleans, LA.

15. Finan DA, Zisser H, Jovanovič L, Bevier WC, Seborg DE. Practical 
issues in the identification of empirical models from simulated 
type 1 diabetes data. Diabetes Technol Ther. 2007;9(5):438-50.

16. Hernjak N, Doyle III FJ. Glucose control design using nonlinearity 
assessment techniques. AIChE J. 2005;51(2):544-54.

17. Seborg DE, Edgar TF, Mellichamp DA, Doyle III FJ. Process 
dynamics and control. 3rd ed. Hoboken, NJ: John Wiley & Sons; 
2011.

18. Ljung L. MATLAB System Identification Toolbox 7. Natick (MA): 
The MathWorks, Inc; 2009.

19. Clarke WL, Cox D, Gonder-Frederick LA, Carter W, Pohl SL. 
Evaluating clinical accuracy of systems for self-monitoring of 
blood glucose. Diabetes Care. 1987;10(5):622-8.

20. Kovatchev BP, Gonder-Frederick LA, Cox DJ, Clarke WL. 
Evaluating the accuracy of continuous glucose-monitoring sensors: 
continuous glucose-error grid analysis illustrated by TheraSense 
Freestyle Navigator data. Diabetes Care. 2004;27(8):1922-8.

21. Hovorka R, Canonico V, Chassin LJ, Haueter U, Massi-Benedetti M,  
Federici MO, Pieber TR, Schaller HC, Schaupp L, Vering T, 
Wilinska ME. Nonlinear model predictive control of glucose 
concentration in subjects with type 1 diabetes. Physiol Meas. 
2004;25(4):905-20.

22. Hovorka R. Management of diabetes using adaptive control. Int J 
Adapt Control. 2005;19(5):309-25.

23. Morari M, Zafiriou E. Robust process control. Englewood Cliffs 
(NJ): Prentice Hall; 1989.


