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Abstract

Background:
The use of telemedicine for diabetes care has evolved over time, proving that it contributes to patient self-
monitoring, improves glycemic control, and provides analysis tools for decision support. The timely development  
of a safe and robust ambulatory artificial pancreas should rely on a telemedicine architecture complemented  
with automatic data analysis tools able to manage all the possible high-risk situations and to guarantee the 
patient’s safety.

Methods:
The Intelligent Control Assistant system (INCA) telemedical artificial pancreas architecture is based on a 
mobile personal assistant integrated into a telemedicine system. The INCA supports four control strategies  
and implements an automatic data processing system for risk management (ADP-RM) providing short-term and 
medium-term risk analyses. The system validation comprises data from 10 type 1 pump-treated diabetic 
patients who participated in two randomized crossover studies, and it also includes in silico simulation and 
retrospective data analysis.

Results:
The ADP-RM short-term risk analysis prevents hypoglycemic events by interrupting insulin infusion.  
The pump interruption has been implemented in silico and tested for a closed-loop simulation over 30 hours. 
For medium-term risk management, analysis of capillary blood glucose notified the physician with a total of 
62 alarms during a clinical experiment (56% for hyperglycemic events). The ADP-RM system is able to filter 
anomalous continuous glucose records and to detect abnormal administration of insulin doses with the pump.

Conclusions:
Automatic data analysis procedures have been tested as an essential tool to achieve a safe ambulatory 
telemedical artificial pancreas, showing their ability to manage short-term and medium-term risk situations.
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Introduction

The aim of an artificial pancreas is to calculate the 
optimum insulin delivery to maintain the patient in 
a normoglycemic state, taking the blood glucose (BG) 
concentration as the main input of the algorithm.  
An ambulatory artificial pancreas requires using the 
subcutaneous route, both for glucose measurement 
and for insulin delivery, due to the invasiveness of the 
intravenous route. However, the major difficulties facing 
closed-loop systems based on the subcutaneous route 
are the insulin absorption time and delays associated 
with subcutaneous glucose with respect to the glucose 
concentration in the blood.

In recent decades, two main types of closed-loop control 
algorithms have been employed in clinical studies: the 
classical feedback control method known as proportional-
integral-derivative controller1,2 and model predictive control 
(MPC).3,4 Other techniques include adaptive control,5 
adaptive inverse control,6 fuzzy control,7 neural predictive 
control,8 and robust control.9,10 Glucose control after meals is 
usually poor mainly because of the delays associated with 
glucose measurement and insulin action, but the control is 
improved when used at night under fasting conditions.3

Up until now, all the clinical studies with closed-loop 
algorithms have been conducted in a hospital setting 
under tight supervision. During clinical experiments, 
risk management becomes crucial in order to minimize 
health hazards for patients. Several mechanisms have to 
be considered to avoid data loss, device malfunction, or 
wrong decision making that might affect the patient’s 
health. These circumstances lead to the development  
of appropriate automatic procedures to manage all the 
possible high-risk situations to guarantee patients’ safety.

The complexity of a fully automated artificial pancreas 
makes the in-hospital evaluation scenario the only possible 
option over the coming years. However, research must 
be carried out to apply some of the artificial pancreas 
benefits to ambulatory scenarios, while managing all 
the possible high-risk situations and guaranteeing the 
patient’s safety. The first step is to postpone the idea of 
having a 24-hour fully automated ambulatory artificial 
pancreas and to start looking for hybrid solutions that 
combine closed-loop algorithms with the prediction of 
hypo- and hyperglycemia, decision support tools, and 
hand-held terminals to provide patients with mobility, 
decision support, reminders, and feedback from health 
care providers.

The use of telemedicine systems for diabetes care enables 
assessment of the patient’s condition and presents 
relevant clinical data for physicians to detect the need 
for therapy changes. The contribution of telemedicine 
systems to diabetes care has evolved over time. Earlier 
experiences with telemedicine were aimed at facilitating 
remote monitoring of a patient’s BG levels from home 
through their transmission to the hospital.11–13 Most 
interactive telemedicine services have been developed using 
a distributed approach to integrate patient applications, 
implemented on a personal computer or a hand-held 
device, and medical workstations used by physicians  
and nurses at the hospital.14–16

Telemedicine provides an integrated approach to 
information technology tools, which enhances cooperation 
between users and information and knowledge sharing, 
and is able to support the infrastructure required to build 
a safe ambulatory artificial pancreas. The architectural 
design has to guarantee the interoperability between 
patient and professional environments and between 
different devices of the platform. It is recommended that 
open source platforms and plug-and-play hardware and 
software connectivity systems be included to make 
middleware development easier.17

The latest generation of telemedicine platforms implements 
distributed architectures that spread the users’ interaction 
mechanisms and integrates advanced systems based 
on more powerful, portable, and easy-to-use terminals 
and applications for patients, such as electronic diaries 
implemented in Web applications,18–20 mobile phones,21 
or smart personal assistants22 to register BG, insulin, diet, 
physical exercise, and so on.

Some electronic data management experiences that could be 
useful for risk management can be found in the literature: 
(1) the use of predictors of hypo- and hyperglycemic events 
that help the user anticipate his/her actions by predicting 
near-future BG values,23–25 (2) the automatic generation 
of alarms after the detection of anomalous situations,26  
(3) decision support tools to help professionals in therapy 
planning,27 (4) decision support tools for patients, such 
as computer-assisted insulin delivery systems,28–33 and 
(5) clinical reminder systems that have been studied 
extensively34 showing positive effects in diabetes. 
Our approach combines several of these strategies 
through a telemedicine system. The aim is to hasten 
the implementation of a telemedical artificial pancreas.
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The personal assistant runs in a PDA using a mobile 
network to access the remote loop and supports tele-
monitoring, telecare, and remote information services.22 
The personal assistant is able to work as a stand-alone 
system, supported by its own local application and data 
repository, and communicates with different medical 
devices through a personal wireless network that provides 
the patient with mobility and independence in his/her  
daily life.

The personal assistant is able to act upon patients’ local 
requests for information retrieval and medical device 
operation and upon remote requests originated by 
physicians. It interacts with remote components of the 
telemedical system at the telemedicine central server 
without intervention of the patient.

Communications are activated on user demand in two 
scenarios: (1) to force bidirectional data exchange between 
the telemedical information system and the personal 
assistant and (2) to carry out remote control of medical 
devices through the telemedicine server when demanded  
by patients or physicians through Web access. The mobile 
personal assistant is the central user device for the 
control of patients’ conditions, for adjustment of medical 
parameters, and for communication with physicians.

The INCA platform has been designed following a 
modular approach that makes the integration of different 
medical devices and/or control algorithms possible. 
The system has integrated communications with three 
different medical devices (glucose meter OneTouch 
Ultra®, LifeScan) that communicates via a serial cable or  
BluetoothTM, Disetronic D-TRONTM plus insulin pump 
(Disetronic, Burgdorf, Switzerland) that communicates 
with the personal assistant using the infrared port, and 
a continuous glucose sensor prototype based on micro-
dialysis that communicates via Bluetooth. The personal 
assistant integrates a closed-loop control module that 
implements an algorithm based on a nonlinear MPC 
with Bayesian learning that has been tested previously.36

The four control strategies have been evaluated 
technically in the laboratory with prototype devices. 
Additionally, we completed two clinical experiments37,38 
that tested control strategies #1 and #2. Their results 
provided useful information about difficulties in the use of 
personal assistant technology and the impact of CGM 
on patients’ metabolic control. The clinical evaluation of 

This article describes the risk management and supervision 
procedures implemented in the Intelligent Control Assistant 
system (INCA) telemedical infrastructure to support a 
robust and safe artificial pancreas for ambulatory use. 
The preliminary results of short-term and medium-term 
data analyses are reported.

Methods

The Intelligent Control Assistant System
The INCA is a telemedical architecture that integrates a 
personal digital assistant������������������������������������     (PDA)-based personal assistant for 
patients, which manages a continuous glucose monitoring 
(CGM) sensor and an insulin pump. The telemedicine 
system supports several loops of control and offers Web-
based access to CGM and continuous insulin infusion 
data to diabetic patients and physicians.35

The INCA concept defines four control strategies, each 
of which is supported by a special setup of the personal 
assistant:

1. Patient control: the patient can monitor data coming 
from different medical devices (insulin pump, sensors 
in glucose monitors, glucose meter) and decide to 
change his/her insulin pump programming. The process 
is supervised a posteriori by physicians through the 
telemedical information system.

2. Doctor control: health care professionals suggest changes 
in the therapy after checking monitoring data with a 
remote access. Patients then operate the devices to follow 
the physician’s advice.

3. Personal loop control algorithms: closed-loop algorithms 
implemented in a portable device provide a real-time control 
of the insulin pump based on continuous glucose data.

4. Remote loop control algorithms: medical devices can 
be programmed remotely through a portable device 
according to physicians’ prescriptions or by automatic 
control procedures implemented in the telemedical 
information system.

Implementation of these personal and remote control 
strategies led to development of a robust system provided 
with real-time bidirectional communication for remote 
interaction with the patient’s medical devices from either 
the patient’s personal network or long distance from the 
hospital.
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strategies #3 and #4 remains to be completed due to the 
current reliability and availability of CGM sensors and 
insulin pumps with real-time reading and remote control  
in ambulatory conditions.

Automatic Data Processing for Risk Management 
(ADP-RM) and Decision Support
The architecture of the telemedical system implements an 
automatic data processing system for risk management 
and decision support that exploits available monitoring 
data. The ADP-RM system is very flexible, allowing  
the use of different communication channels with the users. 
In case of abnormal situations, alarms are notified through 
short message service messages, email messages, and/or 
Web-based messages. The mode of alarm reception is 
configured by the user according to his/her preferences 
or depending on the degree of importance.

In our case, data analysis is performed on two different 
timescales: (1) short-term risk analysis and (2) medium-
term analysis of the patient’s metabolic state.

1. Short-term risk analysis: The goal is to prevent 
risky events, detect them, and react when required.  
As a result, notifications are sent to patients and operation 
of the medical device is modified (i.e., interruption of 
insulin infusion). The ADP-RM is performed in real time 
by the personal assistant whenever a new measurement 
is recorded and uses the following input as CGM and 
insulin infusion data.

Detection of hypoglycemic events and pump 
interruption: Insulin infusion is interrupted when the 
glucose level has a negative trend and goes below a 
threshold (G ≤100 mg/dl). The insulin pump infusion 
is restarted when the glucose trend is positive and 
rises to the pump reactivation threshold (G ≥80 mg/dl).  
If the pump is interrupted for more than 1 hour, a 
minimum microbolus is administered to prevent 
the crystallization of insulin in the catheter. Other 
alternatives for pump suspension could consider 
hypoglycemia prediction algorithms39 or, instead of 
using a glucose threshold, start the pump interruption 
when output of the closed-loop algorithm is a negative 
insulin infusion, reflecting an insulinemia excess.40

Detection of glucose sensor failure: Our design of 
clinical closed-loop experiments requires patients to 
wear two redundant CGM sensors. In this scenario, 
the system performs an automatic comparison between 
the paired sensor samples. A sensor failure event is 
activated when discrepancies are greater than 25%. 

•

•

An alarm is triggered to get a capillary BG reading 
that helps decide whether, despite the differences 
between the two sensors, sensor #1 is still working 
acceptably or if it is possible to switch to the backup 
sensor while the active sensor is being recalibrated.  
If both sensors need to be recalibrated, it is necessary 
to stop the automatic closed-loop control.

Prediction: A glucose forecast model based on artificial 
neural networks is applied to CGM data.41 The input 
information is the current time and the glucose 
recorded during the preceding 20 minutes, and the 
output of the network is the glucose prediction at 
the prediction horizon time. The predictor model is 
trained individually for each patient. A Levenberg–
Marquardt back propagation optimization training 
algorithm is used. This training algorithm takes 
between 1.5 and 2.5 hours, depending on parameter 
adjustments, on a standard person computer, for a  
training data set of six CGM daily profiles per patient 
(288 glucose readings per day). We considered the 
accuracy between original and predicted continuous 
glucose profiles, calculated as the root mean square 
error, and the mean delay to assess the performance 
of the predictor.

2. Medium-term analysis of the patient’s metabolic 
state: The goal is to get a complete overview of the 
patient’s daily patterns and changes over time. The results 
are therapy adjustments or modifications in the closed-
loop running parameters. The ADP-RM is carried out 
within the telemedicine central server and is activated  
or triggered periodically by the reception of new data.

Assessment of the patient’s control. Remote ADP-RM 
procedures are based on data recorded in the server. 
Continuous glucose measurements, BG measurements, 
and insulin data concerning doses administered by 
patients have been considered to be the most important 
parameters in detecting anomalous patterns.

Capillary BG measurements. The ADP-RM system 
reminds patients to send BG data after 4 days 
without data being sent and detects anomalous 
situations regarding hypoglycemic and hyper-
glycemic events. The ADP-RM generates alarms in 
the following situations: (i) two consecutive BG 
measurements higher than 300 mg/dl, (ii) BG 
measurements above 400 mg/dl, or (iii) BG below 
70 mg/dl.

Continuous glucose measurements. Analysis is 
started once sensor data are downloaded to the 

•

•

a.

b.



1043

Automatic Data Processing to Achieve a Safe Telemedical Artificial Pancreas Hernando

www.journalofdst.orgJ Diabetes Sci Technol Vol 3, Issue 5, September 2009

telemedicine system. The patient’s metabolic state 
is considered anomalous when a 72-hour CGM 
recording reveals any of the following events:  
(i) variability measured with Kovatchev’s risk index 
(RI), for RI >15,42 (ii) rapid positive or negative 
slopes, defined as a change of more than 40 mg/dl  
in 20 minutes for sensor files with more than 
six increasing and/or decreasing slope changes,  
(iii) time in hyperglycemia >8 hours, or (iv) time in 
hypoglycemia >2 hours.

Insulin administered. Insulin data are obtained 
automatically from the patient’s insulin pump.  
The ADP-RM activates analysis in a period of 
2 weeks and generates an insulin alarm in any 
of the following situations: (i) daily insulin dose/
weight >1.2 U/kg, (ii) percentage of bolus insulin 
versus basal insulin >75%, (iii) number of daily 
boluses >5, or (iv) number of daily basal profiles >5.

Adjustment of the insulin-to-carbohydrate ratio.  
The personal assistant integrates a tool to optimally 
adjust the insulin-to-carbohydrate ratio for each patient. 
The tool is based on the clinically validated run-to-run 
algorithm.43 The insulin-to-carbohydrate ratio allows 
calculation of the insulin bolus administered before 
each main meal (breakfast, lunch, and dinner) and 
can be used both to support everyday decisions on the 
part of ambulatory patients and to setup the closed-
loop algorithms. Evaluation of the tool was carried 
out for technical performance, software usability, and 
agreement with clinical recommendations through an 
outpatient clinical trial.44 The clinical impact of the  
system is being analyzed further in an ongoing cross-
randomized clinical trial.

Automatic Data Processing Validation Methodology

Validation of the ADP-RM procedures was begun during 
the INCA clinical evaluation. Subsequently, validation 
was carried out retrospectively with experimental data 
collected from the previous clinical experiments. The two 
randomized crossover INCA studies (length: 4 weeks + 
4 weeks for each experiment) included 10 type 1 pump-
treated diabetic patients from Hospital de Sant Pau 
(Barcelona, Spain).

The first clinical experiment was devoted to comparing 
the use of the telemedicine system in supporting 
control strategies #1 and #2 versus traditional practice. 
Patients’ decisions were based on BG self-monitoring 
and continuous insulin monitoring.37 The second clinical 
experiment evaluated the clinical utility of control 

c.

•

strategies #1 and #2 combining real-time CGM and 
continuous insulin monitoring. The design of the control 
phase was similar to that of the intervention phase in 
the first clinical trial. In the intervention phase, the 10 
patients used the personal assistant and the telemedicine 
platform. Additionally, the patients had to wear a CGM 
sensor (GuardianTM, Medtronic, Northridge, CA) in 
ambulatory conditions for 3 days a week for a total period of 
1 month. This second experiment demonstrated the clinical 
benefits of real-time CGM together with the INCA system.38

The second stage for ADP-RM validation comprised a 
retrospective generation of alarms using experimental 
data recorded during the clinical experiments. Validation 
was performed with 40 CGM files downloaded from 
10 type 1 diabetic patients using the Guardian 3 days 
a week for a period of 4 weeks. Data regarding the 
insulin administered were downloaded automatically 
from D-TRON Plus insulin pumps (Disetronic, Burgdorf, 
Switzerland) using the personal assistant. Pump data 
reception was simulated with a time window of 2 weeks.

Results
This section presents some validation results and 
examples for three automatic data processing methods: 
(a) assessment of patient’s control, (b) detection of 
hypoglycemic events and pump interruption, and  
(c) detection of glucose sensor failure.

Assessment of Patient’s Control
During the first INCA clinical experiment,37 the ADP-
RM analyzed capillary BG measurements and generated 
62 alarms for the physician, most of them because of 
hyperglycemia (above 300 mg/dl) in two consecutive 
readings (56%), with no differences between the two 
study periods. Those alarms contributed to 44 remote 
therapy changes prescribed through the telemedical 
platform. Reminders to send BG data allowed frequent 
data transfer from patients to the physician in charge 
(3.27 ± 1.1 weekly transmissions of glucose meter 
data per patient). After the experimental phase of the 
clinical experiment, fructosamine decreased significantly  
(393 ± 32 vs 366 ± 25 μmol/liter; p < 0.05) and HbA1c 
tended to decrease (8.0 ± 0.6 vs 7.78 ± 0.6; p = 0.073),  
while no changes were observed during the control phase.37

The following presents results for the retrospective 
analysis:

The ADP-RM analysis for CGM data-activated alarms 
in 20 out of the 40 sensor files, showing that a further 

•
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analysis on the part of the physician was required. 
Figure 1 shows the alarm distribution: 2 sensor 
files with high variability (RI >15); 16 files presented 
rapid positive slope changes (40%); 15 files had rapid 
negative slope changes (37.5%); and 8 files presented 
more than 8 hours in hyperglycemia (20%); there were  
6 files with more than 2 hours in hypoglycemia (15%). 
ADP-RM processing and alarm generation notification 
time was less than 5 seconds for all the files analyzed 
by the system.

The ADP-RM analysis for insulin pump data activated 
the following alarms: 7 alarms for daily insulin dose/
weight >1.2 U/kg; 1 alarm for percentage of basal 
insulin versus bolus insulin >75%; 42 alarms for 
number of daily boluses >5; and 1 alarm for number 
of basal profiles >5. The process to simulate alarms 
consisted of emulating the ADP-RM analysis performed 
every 2 weeks. We found that ADP-RM processing 
and alarm generation notification time was less than  
3 seconds in all the cases considered.

Detection of Hypoglycemic Events and Pump 
Interruption

Figure 2 shows an example of pump interruption in a 30-
hour simulation of closed-loop control.6 Insulin infusion  
is interrupted when the glucose level falls below a threshold 
(G ≤100 mg/dl) and is resumed when the glucose trend 
is positive and rises to the pump reactivation threshold 
(G ≥80 mg/dl). Infusion of an isolated microbolus can 
be observed when the pump is interrupted for more 
than 60 minutes in order to avoid obstruction of the 
catheter. Pump interruption prevents hypoglycemic 
events, although future work needs to address the aim of 
achieving normoglycemia after pump suspension.

Detection of Glucose Sensor Failure
Figure 3 shows, as an example, a simulation of how the 
detection of glucose sensor failure could be managed 
when the patient is wearing two glucose sensors.  
In two different situations, the glucose values of the 
CGM sensors differ by more than 25% and the patient is 
notified to get a capillary BG measurement. In the first 
event, the BG reading ��������������������������    ������ would confirm that sensor #1 is 
still working within the acceptable limits so no action 
would need to be taken. In the second event, it would 
be necessary to change to the measurements of sensor 
#2 while the patient is notified to recalibrate sensor #1. 
It would not be necessary to disrupt the closed-loop 
algorithm because of sensor failure�.

•

Conclusions
This article focused on the role of automatic data 
processing methods that contribute to achieving a safe 
ambulatory telemedical artificial pancreas. Use of the 
INCA platform with always-on mobile networks enables 
the periodic update of data from the patient scenario to 
the telemedical server and the performance of short-term 
and medium-term risk analyses.

Figure 1. Events that generated alarm notifications for each sensor 
file.

Figure 2. Pump interruption during a closed-loop control simulation. 
(Top) Insulin infusion; (bottom) subcutaneous glucose concentration. 
Triangles represent meal intakes. IU, international unit.

Figure 3. Example of alarms generated after the detection of glucose 
sensor failures.
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The ADP-RM system supports everyday decisions made 
by ambulatory patients and it also secures decisions 
during closed-loop experiments. The system can filter huge 
amounts of monitoring data and assesses the patient’s 
metabolic control, improving physicians’ decision making. 
The ADP-RM aids in the early diagnosis of anomalous 
situations by generating automatic alarms when a 
departure of the patient’s parameters from predefined 
ranges is detected. Alarms for BG measurements have  
been tested successfully in clinical experiments, as well 
as retrospectively, on the basis of CGM records and 
continuous insulin infusion data.

The INCA platform can also serve as a complement for 
in-hospital closed-loop control experiments to manage 
critical situations, such as severe hypoglycemias or 
device malfunction that might pose a risk to the patient.  
It represents an alternative to make clinical experiments 
more flexible and safer, requiring less supervision 
and helping pave a safe path for development of the 
ambulatory artificial pancreas.

Further clinical evaluation of the ADP-RM methods 
presented is needed to demonstrate their impact on 
patient control. Our current efforts are focused on  
(1) validation of the run-to-run bolus calculator together 
with telemedicine to improve patients’ daily decisions, 
(2) implementation and evaluation of prediction tools 
in order to determine their ability to avoid situations 
of hypoglycemia and hyperglycemia by using CGM 
measurements, and (3) implementation of multiparametric 
analysis to extract better conclusions about the patient’s 
metabolic control by combining the information provided 
by different medical devices.
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