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Abstract

Background:
Automatic compensation of meals for type 1 diabetes patients will require meal detection from continuous 
glucose monitor (CGM) readings. This is challenged by the uncertainty and variability inherent to the digestion 
process and glucose dynamics as well as the lag and noise associated with CGM sensors. Thus any estimation  
of meal start time, size, and shape is fundamentally uncertain. This uncertainty can be reduced, but not 
eliminated, by estimating total glucose appearance and using new readings as they become available.

Method:
In this article, we propose a probabilistic, evolving method to detect the presence and estimate the shape 
and total glucose appearance of a meal. The method is unique in continually evolving its estimates and 
simultaneously providing uncertainty measures to monitor their convergence. The algorithm operates in three  
phases. First, it compares the CGM signal to no-meal predictions made by a simple insulin–glucose model. 
Second, it fits the residuals to potential, assumed meal shapes. Finally, it compares and combines these fits 
to detect any meals and estimate the meal total glucose appearance, shape, and total glucose appearance 
uncertainty.

Results:
We validate the performance of this meal detection and total glucose appearance estimation algorithm both 
separately and in cooperation with a controller on the Food and Drug Administration-approved University of 
Virginia/Padova Type I Diabetes Simulator. In cooperation with a controller, the algorithm reduced the mean  
blood glucose from 137 to 132 mg/dl over 1.5 days of control without any increased hypoglycemia.

Conclusion:
This novel, extensible meal detection and total glucose appearance estimation method shows the feasibility, 
relevance, and performance of evolving estimates with explicit uncertainty measures for use in closed-loop control  
of type 1 diabetes.
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Introduction

Type 1 diabetes mellitus afflicts approximately 1 in 500 
children and adolescents in the United States.1 It requires 
frequent attention and careful insulin dosing to avoid 
seizures associated with low blood glucose (BG) or eye and 
nerve decay resulting from high BG.2,3

Currently, many patients inject a bolus of insulin before 
a meal to better compensate for the meal’s glucose 
appearance. This advance bolusing allows the slower-acting 
insulin to better counteract the meal’s faster effect on 
the BG level. Many proposed diabetes controllers use 
knowledge of meals as an input to provide a similar early 
compensation.4–7 The input meal size is then translated 
through a model of digestion into a total BG appearance 
and then converted to an insulin dose. We seek to free 
the patient from needing to log meal times and sizes by 
providing automatic meal detection and total glucose 
appearance estimation using the continuous glucose 
monitor (CGM) signal. In this article, detection refers to 
the approximation of the binary truth of whether a meal 
occurred while estimation approximates the continuous 
quantities of meal start time and meal size.

The available BG sensors only observe the induced 
glucose rise and are further subject to noise and normal 
glucose fluctuations. In practice then, it is impossible to 
detect a meal instantly or to estimate the meal start time 
and total glucose appearance accurately at the start of 
the meal. We propose that an estimator should refine its 
estimate of meal start time and total glucose appearance 
as it receives new readings. It should further provide a  
confidence measure of these estimates so that a potential 
closed loop controller can take only properly justified 
actions. In effect, the meal start time and total glucose 
appearance estimates should gradually converge while 
their uncertainty drops to near zero.

Two explicit meal detection algorithms exist: a voting 
algorithm8,9 and a finite impulse response filter algorithm.10,11 
They detected meals between approximately 9 and 45 min  
after the meal start. The finite impulse response filter 
algorithm includes an estimated meal size at the time of 
detection.

We present a new algorithm that refines its detection of 
meal presence and its estimates of meal total glucose 
appearance with each new sensor reading. In addition, 
it estimates the shape of the future meal effect and 
provides explicit uncertainty measures. We show its real-

time performance on the Food and Drug Administration 
(FDA)-approved University of Virginia/Padova Type I 
Diabetes Simulator12 separately and in cooperation with a 
closed-loop controller.

Methods
The algorithm uses an insulin–glucose model to calculate 
the expected sensor readings in the absence of a meal. 
The difference between these predictions and the actual 
sensor readings is the source for all the meal information. 
We fit the difference against multiple assumed meal 
shapes, also iterating over all possible meal start times.  
In particular, for each meal shape and start time, we 
assess the probability that the data stem from a meal with 
the assumed shape. We find the start time corresponding  
to the most probable match. We then refine the estimates  
of meal total glucose appearance, probability, and total 
glucose appearance uncertainty for that start time.

Insulin–Glucose Model
We model the rate of change of interstitial glucose (ISG) 
as dependent upon only insulin action and endogenous 
glucose production (EGP):

DISG(k) = InsulinAction(k, IS, PI) + EGP

where k refers to the current time step. The sample 
period was omitted for clarity as we set it to 1 min for 
the results. Endogenous glucose production is assumed 
to be constant and is set to make the known patient basal 
infusion rate effect a constant BG. The insulin action, 
InsulinAction(k, IS, PI), represents the rate of change of the  
ISG over the kth time step due to past insulin injections, 
PI, and the patient’s known insulin sensitivity, IS. 
It is calculated as the convolution of the past insulin 
injections with an assumed insulin time action profile 
(ITAP) that provides unit insulin sensitivity multiplied 
by the insulin sensitivity:

InsulinAction(k, IS, PI) = IS S [ITAP(i)PI(k – i)]
i = n

i = 1

This model explicitly ignores any glucose dependence 
in the insulin action as well as renal clearance and the 
autonomic response to low BG levels. We assume tight 
glucose control that maintains the BG between the BG 
bounds for renal clearance and the autonomic response  
to low BG levels.
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Analyzing the Residual
We perform the analysis on the rate of change residuals, 
r(k), defined as the difference between the rate of change 
of CGM data and the modeled rate of change of ISG. 
Here k again indexes the time steps. We use rate of 
change residuals instead of absolute residuals to avoid 
any uncertainty about the starting glucose of the meal. 
mj(k) represents the rate of glucose appearance for 
representative meal shape j and time step k relative to 
the start of the meal. The meal shapes are scaled for a  
total glucose appearance of 1 mg/dl. Finally, we assume 
the rate of change residuals are independent, identically 
distributed Gaussian noise with a standard deviation s.

We begin by calculating the probability of the data assuming 
that there is no meal P(data|no meal). The probability of  
the data assuming no meal is the product over the entire 
currently available dataset of the probability of the 
residual at each time step:

P(data|no meal) = P 1
s√2p

e– r(k)2

2s2

k

.

We then evaluate the probability of the data under 
different assumptions about a meal. In particular, we 
recalculate for a meal having each of the 10 representative 
meal shapes and each of the possible meal start times. 
For each meal shape, mj, and start time, k0, we first 
calculate the meal scale, Sj,k0

, to minimize the sum of 
squared difference between the scaled meal shape and  
the data:

Sj,k0
 = min S (r(k) – mj(k – k0)S)2

kS
.

This scale naturally gives the best estimate of the total 
glucose appearance for the selected meal. The probability  
of the data, given the selected meal, is then

Figure 1 shows a plot of the assumed cumulative ITAP  
in blue and some cumulative ITAPs from various 
references in red.

Figure 1. Comparison of cumulative ITAPs for adult patients.

Specifically, the solid red curves are taken from  
Reference 13, while the red dashed curve is from 
Reference 14, the dash–dot curve is from Reference 15, 
and the red dotted curve is from Reference 16.

Meal Shapes
To fit meal shapes to the residual between the observed 
data and the nonmeal model, we need to assume a 
representative set of meal shapes. Figure 2 shows our 
representative meal shapes in black. These meal shapes 
were calculated using the inverse of our method applied 
to simulator test cases. Specifically, we ran 88 test cases 
containing meals with a random size between 0 and 
100 g carbohydrate (CHO) and a random duration of 
consumption between 0 and 30 min. For each case, 
we subtracted predicted BG, assuming no meal, and 
normalized the difference. The resulting glucose curves 
are shown in green. We then chose the 10 cases that 
represented the span of the sample glucose curves.  
Since we believe the simulator meal shapes drop after 
the peak due to glucose-dependent action, and we are 
explicitly ignoring glucose-dependent action in our 
model, we enforce monotonicity on our 10 representative 
meal shapes to avoid the negative slopes and remain 
consistent with our model. The 10 monotonic glucose 
curves are the representative meal shapes.

Also in Figure 2, we show a sample cumulative glucose 
appearance plot generated directly from multiple tracer 
data.17

Figure 2. Normalized meal shapes.
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P(data|mj, k0) = P 1
s√2p

e–
(r(k) – mj(k – k0)Sj,k0

)2

2s2

k

.

To convert to the probability of the meal, mj, at the start 
time, k0, we apply Bayes rule:

P(mj|data, k0) =

P(data|mj, k0)P(mj, k0)
P(data|no meal)P(no meal) + SP(data|mj, k0)P(mj, k0)

j

.

We set the prior probability of a single meal shape, mj,  
by assuming that all meal shapes occur equally often. 
We also assume four meals per day that are uniformly 
distributed across the 16 wakeful hours, or 960 min, 
between 6 am and 10 pm. With 10 possible meal shapes, 
the prior probability during the wakeful hours of a meal 
with meal shape, j, and start time, k0, is

P(mj, k0) = 4
960

1
10 .

The prior probability of no meal is

P(no meal, k0) = 1 – SP(mj, k0)
j

.

We specifically chose general meal priors to better test 
the meal detection. The more accurate the meal prior 
probabilities, the less powerful the meal detector needs 
to be to succeed.

We now have the probabilities of all possible meal shapes, 
mj, for each possible start time, k0. We select the start time,
k0
ˆ , that corresponds to the start time with the highest 

probability across all the representative meal shapes:

k0 = max max P(mj|data, k0).j
ˆ

k0

The best estimate of the meal shape, m̂ , is a composite of 
the possible meal shapes, mj, calculated as the probability-
weighted average of the meal shapes:

SP(mj|data, k0)mj

SP(mj|data, k0)
j

ˆ

ˆ
j

m̂ = .

The best estimate of the meal total glucose appearance, Ŝ,  
is similarly a weighted average of the meal scales, Sj,k0ˆ :

SP(mj|data, k0)Sj,k0

SP(mj|data, k0)

ˆ

Ŝ = j

ˆ

ˆ
j

The uncertainty of the estimated meal’s total glucose 
appearance, sSˆ ˆ , is found from the probability-weighted 

sample standard deviation of the 10 possible total glucose 
appearances, Sj,k0ˆ :, about the composite total glucose 
appearance, Ŝ:

SP(mj|data, k0)(Sj,k0 – Ŝ)2

SP(mj|data, k0)
j

ˆ

ˆ
j

sS =ˆ ˆ

ˆ

2

The composite meal probability given the data and the 
start time, k̂0 , is recalculated as shown assuming only 
the composite meal or no meal.

University of Virginia/Padova Simulator
We use a diabetes simulator approved by the FDA as a 
substitute to animal trials in the preclinical testing of 
closed-loop control strategies. This simulator has 100 
validation and 10 training adult “subjects” and models both 
“CGM sensor errors representative of Freestyle Navigator™, 
Gaurdian RT, or Dexcom™ STS™, 7-day sensor,” and 

“discrete [subcutaneous] insulin delivery via OmniPod 
Insulin Management System or Deltec Cosmo™ insulin 
pump.” 12

Results
We evaluate the algorithm from a variety of perspectives.   
In particular, we invert the algorithm to recover ITAPs, 
we examine the real-time performance of the algorithm 
as it collects information from the sensors, we review 
performance in a retrospective fashion, and we test the 
algorithm in combination with a basic controller.

Insulin Time Action Profiles
The algorithm assumes that meal action and insulin 
action superimpose to influence blood glucose levels. 
Under normal operation, it uses knowledge of insulin 
action and measurements of blood glucose to estimate  
meal actions. It can, however, also use knowledge 
of meal glucose appearance to recover insulin action.  
With the insulin injection history, it is further able to 
compute the ITAP from the insulin action.

We use this invertability to recover ITAPs consistent with 
the detected meals. Specifically, we recover an ITAP for 
each of the 100 validation patients in the University of 
Virginia/Padova Type I Diabetes Simulator. We use 43 h  
of simulated data on each patient, subtracting our meal 
glucose appearance estimates from the blood glucose 
readings. We then calculate the ITAP and insulin 
sensitivity for each patient according to our insulin–
glucose model using an unconstrained least squares 
optimization.
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Figure 3 shows the cumulative sum of the recovered 
ITAPs for each patient as black dotted lines. The average of 
these is shown in green. For comparison, our assumed 
cumulative ITAP is shown in blue.

For the large meal of 69 g CHO, the meal probability 
rises to 100% as the difference increases between the 
observed and expected CGM signal. The estimated meal 
total glucose appearance and 95% confidence bounds 
converge to 213 ± 60 mg/dl. The meal probability passes  
50% at a CGM residual of 58 mg/dl, approximately one-
fourth of the total meal size.

For the 33 g meal, the CGM residual stays low for nearly 
an hour, so the probability of a meal does not reach 50% 
until the CGM residual climbs quickly to 39 mg/dl.  
This high slope causes the algorithm to overestimate the 
meal total glucose appearance. This overestimation is 
maintained by the significant positive bias of the CGM 
versus BG between 70 and 140 min. Because the CGM 
returns to, but stays above, the BG for the rest of the 
meal length, the estimated meal total glucose appearance 
drops but still stabilizes to a high 86 ± 11 mg/dl when 
the true meal total glucose appearance is 43 mg/dl.  
This example serves to show that there is a very 
significant amount of error in the sensor signal that 
often adds error to the estimated meal total glucose 
appearance.

In Figure 5, we consider the accuracy of estimates of the 
meal total glucose appearance over time for meals with a 
total glucose appearance between 100 and 400 mg/dl  
(25 to 100 g CHO). The algorithm is given 40 min of noisy 
data before the meal and is allowed to select any time as 
the meal start time. The vertical axis shows the standard 
deviation of the error as a percentage of the actual meal 
total glucose appearance. The horizontal axis shows 
number of minutes of data available since the start of the 
meal. The standard deviation starts at approximately 40% 
and slowly declines to 13% as more information becomes 

Figure 3. Comparison of cumulative ITAPs.

Real-Time Algorithm Performance
The algorithm detects meals of varying sizes in a 
probabilistic, evolving fashion. This means that it has 
gradations of belief in whether there is a meal, and 
that that belief changes over time. To illustrate the 
probabilistic, time-varying performance of the detector, 
we show two examples of real-time performance, 
accuracy of estimates of meal total glucose appearance, 
and accuracy of estimates of the uncertainty of meal 
total glucose appearance.

First, we show three examples in Figure 4, where 
a patient received meals of 0, 33, and 69 g CHO, 
respectively. The top plot shows the differences between  
the observed and expected BG and CGM measurements. 
The middle plot shows the evolving probability of a meal. 
Meanwhile, the bottom plot shows the estimated meal 
total glucose appearance in milligrams per deciliter and  
its 95% confidence bounds when the meal probability 
exceeds 10%. Measuring the total glucose appearance 
instead of the meal size avoids the uncertainty caused by 
digestion and is more relevant for control. For reference, 
each gram of CHO converts to approximately 4 mg/dl 
for these simulated patients.

In the 0 g CHO case, the algorithm never calculates any 
meal probability greater than 9%. As such, any total 
glucose appearance estimates would be without merit 
and are not graphed.

Figure 4. Performance versus time.
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available. This indicates that the algorithm is capable 
of harnessing additional meal information encoded in the 
CGM signal as time progresses.

Figure 5. Accuracy of estimates of meal total glucose appearance 
versus minutes since the meal start.

In Figure 6, we show the usefulness of accuracy estimates 
versus available information. Specifically, we estimate 
the standard deviation of the difference between the 
estimated meal total glucose appearance and the actual 
meal total glucose appearance. The standard deviation 
is easily convertible to symmetric theoretical confidence 
levels (x axis). These confidence levels can be verified 
by getting the actual incidence of the meal total glucose 
appearance within the confidence level bounds (y axis).  
Ideally, these confidence levels would be equal (the black 
dotted curve).

For 30 to 150 min after the meal and across the full 
spectrum of confidence levels, the actual and theoretical 
confidence levels match closely, with a slight bias toward 
overestimating the accuracy of the meal total glucose 
appearance estimate. The data for 180–300 min after  
the meal is omitted due to the lack of the tight glucose 
control that we assume.

Retrospective Algorithm Performance
Figure 7 graphs the algorithm’s retrospective performance. 
The algorithm was applied to 99 simulated scenarios that 
either had no meal (11 cases) or had a meal (88 cases) with 
a random size (26–98 g CHO) and duration (0–30 min). 
We graph the steady state meal probability versus 
estimated meal total glucose appearance for each.

The 11 cases where there are no meals (blue X) receive 
retrospective meal probabilities that are always below 
10%. For the 88 cases with a meal (black circle scaling 
with the actual meal size), there is a clear correlation of 

Figure 6. Actual confidence levels versus theoretical confidence levels.

Figure 7. Meal probability versus estimated total glucose appearance.

meal size, and estimated total glucose appearance, with 
the retrospective meal probability. There is a smooth 
crossover from low meal probabilities to high meal 
probabilities around an estimated meal total glucose 
appearance of 100 mg/dl. This transition is expected 
because small meals are much harder to separate from 
sensor noise than large meals. Some of the larger meals 
receive low estimated meal total glucose appearance  
partially due to the glucose-dependent action caused by the 
lack of compensation for these meal cases.

Performance in Control
We also evaluated the algorithm in combination with a 
simple controller on the University of Virginia/Padova 
simulator.

The controller predicts BG into the future as the sum of 
the CGM measurement, meal information, and insulin–
glucose dynamics. The meal information comes from 
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our algorithm in the form of the scaled meal shape and  
the meal probability. We combine them into an expected 
future glucose appearance by multiplying the meal 
probability by the future portion of the scaled meal shape. 
The estimated effect of meals on the future prediction is 
then the cumulative sum of the expected future glucose. 
The effect of the insulin–glucose dynamics on the  
prediction is the cumulative sum of the insulin–glucose 
model output from the current time assuming basal 
insulin delivery.

The controller also observes three sources of noise that 
corrupt the prediction. The first is the noise in the CGM 
measurement versus the actual BG. The second is the 
insulin–glucose modeling error. The third is the noise in 
the estimation of meal glucose appearance. The standard 
deviation of the CGM noise is estimated a priori while 
the standard deviation of the other two sources of noise  
are estimated online from past prediction accuracy.

Using the prediction and prediction uncertainty, the controller 
calculates the risk of going below the hypoglycemic 
threshold of 60 mg/dl during the prediction horizon.  
It then gives an insulin bolus to set the risk of 
hypoglycemia to a preset level.

This controller was evaluated on 100 simulated subjects, 
each with 36 h of closed-loop operation from midnight 
on one day to lunch on the following day. Closed-loop 
operation began after 7 h of basal bolus operation from 
5:00 pm to midnight. The simulated patient was provided 
with breakfast at 7:00 am, lunch at noon, a snack at  
4:00 pm, and dinner at 6:00 pm. These meals were 40, 50, 
20, and 60 g CHO, respectively.

Table 1 shows various patient population statistics 
with and without the meal detector and total glucose 
appearance estimator. With the algorithm, the average 
BG dropped by 5 mg/dl from an already low glycated 
hemoglobin A1c (A1C) of 6.4% to an A1C of 6.2%.18  
This drop was achieved without incurring any cases 
below 50 mg/dl, while reducing the percentage of time 
above 300 mg/dl, and increasing the percentage of time 
within the target BG range of 70–180 mg/dl.

Meal detection and total glucose appearance estimation 
increased performance by predicting impending glucose 
appearance. This allows earlier, more optimal compensation. 
An example is illustrated in Figure 8. The top graph 
shows the BG (dotted) and CGM (solid) measurements 
for the case with (blue) and without (red) meal detection 
and total glucose appearance estimation. The bottom 

graph shows the corresponding insulin injections as 
a function of time. The case with meal detection and  
total glucose appearance estimation provides a large 
insulin bolus up front for the meal, causing a significantly 
more desirable blood glucose level for the 8 h from about 
7:00 pm to 3:00 am. The controller, through the evolving 
nature of the meal detection algorithm, realizes just 
after the meal bolus that it over-bolused slightly and 
compensates by withholding for a period of time. With our 
algorithm (blue), the CGM and BG stay safely lower  
than without it (red) from shortly after the start of the 
meal until early morning due to a large bolus applied  
at the beginning of the meal.

Conclusions and Future Directions
Blood glucose dynamics and measurements are naturally 
very uncertain and noisy. Performing meal detection and 
estimation of meal parameters within a probabilistic and 
evolving framework provides an appropriate structure 
to this challenge. In particular, we have presented and 
validated such an algorithm. We demonstrated that 
meal uncertainty measures, including probability and 
meal total glucose appearance estimate uncertainty, can be 

Table 1.
Controller Results With and Without the Meal 
Detector and Total Glucose Appearance Estimator

Run type/ 
metric

Mean BG
% < 50 
mg/dl

% > 180 
mg/dl

% within 
70–180 mg/dl

Without feed 
forward

137 0 13.4 87

With feed 
forward

132 0 11.4 89

Figure 8. Dinner meal and evening with and without meal 
compensation.
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easily calculated and correspond meaningfully to the 
simulated reality of the University of Virginia/Padova  
Type 1 Diabetes Simulator. We have further shown that,  
on average, it is possible and beneficial to refine 
estimates and uncertainty measures over time. Specifically, 
the probability of meals can converge, the estimated 
meal total glucose appearances can become over twice as  
accurate, and the meal total glucose appearance 
uncertainties can retain the ability to generate accurate 
confidence levels.

We also believe this approach to be extensible. For example, 
future efforts will aim to extend the meal detection and 
total glucose appearance estimation to multiple meals.  
It is debatable whether the glucose appearance effects 
of overlapping meals obey superposition,19 and this will 
need further study and appropriate consideration in the 
estimation. Related extensions may detect set failures and 
night-time attenuations in the CGM signal, estimating 
their parameters. From an estimation perspective, such 
failures may be considered disturbance events similar to 
meals. Again, the probabilistic and evolving properties 
will allow controllers to curb reactions based on the 
uncertainty of estimation.

Of course, the main driving force behind our work is  
the application to closed-loop controllers. Future controllers  
should leverage the estimation’s full power, incorporating 
uncertainty estimates to better manage insulin administration 
not only for isolated meals, but for overlapping meals, 
and would incorporate changes in diurnal insulin 
sensitivity and changes in insulin sensitivity with exercise. 
Detection of insulin infusion set failure would also 
easily fit into our estimation and probabilistic controller.  
We anticipate that the implementation of these controllers 
will have a positive impact on the care and daily lives of 
people with diabetes.
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