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Abstract

Motivation:
Most current insulin pumps include an insulin-on-board (IOB) feature to help subjects avoid problems  
associated with “insulin stacking.” In addition, many control algorithms proposed for a closed-loop artificial 
pancreas make use of IOB to reduce the probability of hypoglycemic events that often occur due to the  
integral action of the controller. The IOB curves are generated from the pharmacodynamic (time-activity 
profiles) actions of subcutaneous insulin, which are obtained from glycemic clamp studies.

Methods:
Glycemic clamp algorithms are reviewed and in silico studies are performed to analyze the effect of glucose 
meter bias and noise on glycemic control and the manipulated glucose infusion rates. The glucose infusion 
rates are used to obtain insulin time-activity profiles, which are then used to generate IOB curves.

Results:
A model-based, three-step-ahead controller is shown to be equivalent to a proportional-integral control 
algorithm with time-delay compensation. A systematic glucose meter bias of +6 mg/dl results in a decrease in 
the glucose area under the curve of 3% but no change in the IOB profiles.

Conclusions:
Based on these preliminary simulation studies, a substantial amount of glucose meter bias and noise during  
a glycemic clamp can be tolerated with little net effect on the IOB curves. It is suggested that handheld glucose 
meters can therefore be used in clamp studies if the measurements are filtered (averaged) before processing by 
the control algorithm. Clinical studies are needed to confirm these preliminary results.
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SYMPOSIUM

Motivation and Context

Many control algorithms proposed for a closed-loop 
artificial pancreas make use of insulin-on-board (IOB) 
information that accounts for the insulin time-action 
profile (subcutaneous insulin pharmacodynamics).1,2 

Indeed, most insulin pumps also have an IOB feature to 
prevent the effect of “insulin stacking,” where previously 
infused insulin still has an effect on future glucose 
values.3,4 Subcutaneous insulin pharmacodynamic models 
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are usually based on glycemic clamp studies, where 
intravenous glucose is delivered to maintain constant 
blood glucose concentration in response to an insulin 
bolus.

One of the goals of this article is to provide a concise 
review of glycemic clamp protocols (control algorithms) 
and to show via simulation studies the effect of glucose 
measurement delay and uncertainty on glycemic control. 
Another goal is to analyze the effect of glycemic clamp 
variability, possibly due to the use of handheld glucose 
meters, on IOB calculations.

Background
Euglycemic glucose clamps are the standard method for 
determining insulin pharmacokinetics and pharmaco-
dynamic behavior.5 A bolus of insulin is usually given 
subcutaneously (0.2 U/kg is typical), and glucose is 
infused intravenously to maintain a constant glucose 
concentration. The rate of glucose infusion is then used 
as a measure of insulin action; glucose infusion is usually 
scaled by the subject’s weight and presented with units 
of mg/kg/min.

The glucose clamp technique was originally developed 
based on steady-state intravenous insulin infusion and 
adjustment of the glucose infusion rate to maintain a 
constant glucose concentration. The components required 
include a method to take blood glucose samples, a 
blood glucose analyzer, and a glucose infusion pump. 
DeFronzo and colleagues6 give a thorough overview 
of the glucose clamp technique, including a method 
to correct the glucose infusion rate to compensate for 
changes in glucose concentration (“space correction”) 
and urinary loss. They also provide an algorithm for 
the real-time adjustment of the glucose infusion rate to 
maintain constant blood glucose concentrations. Insel 
and associates7 use clamp studies to estimate parameters 
for a three-compartment model of insulin and glucose 
dynamics.

Clemens and coworkers8 present the glucose clamping 
algorithm used by the Biostator, which was originally 
developed as a bedside or clinical closed-loop artificial 
pancreas.9–11 The Biostator uses an automated glucose 
sampling and analysis device to provide glucose 
concentrations every minute and to adjust the glucose 
infusion rates every minute. The glucose clamping 
(control) algorithm appears to be linear, whereas the 
Biostator artificial pancreas algorithm (where insulin 
infusion is manipulated) is nonlinear.

Ponchner and colleagues12 compare the performance 
of the Biostator glucose clamping algorithm with the 
manual algorithm of Reference 6 and conclude that 
the manual algorithm is simpler and yields better 
performance. The Biostator algorithm that they present,  
however, appears similar to the nonlinear algorithm used 
to infuse insulin in the artificial pancreas version of the 
Biostator. It is fairly clear that Ponchner and colleagues12 
were not comfortable with the frequent calibration and 
tuning involved with the Biostator and felt that the 
manual method was clearer to use. Based on my reading 
of the Biostator literature, I must agree with them.  
In my view, a properly designed and implemented closed-
loop glucose infusion algorithm should always have 
better performance than the manual method.

Palazzo and Viti13 simulate the behavior of proportional-
integral (PI) controllers applied to the two-state Bergman 
minimal model;14 they present tuning parameters as a 
function of Bergman model parameters. Campostano and 
associates15 implement the proposed Palazzo and Viti 
tuning parameters based on estimates of the patient’s 
sensitivity. Four clinical subjects were studied using a 
euglycemic clamp, while hyperglycemic clamps were 
applied to 14 subjects.

The glucose clamping algorithms and studies by 
DeFronzo and coworkers,6 Clemens and colleagues�,8 
and Ponchner and associates12 are based on steady-state 
insulin sensitivity analysis. That is, intravenous insulin 
is infused at a constant rate, and intravenous glucose 
infusion is used to control glucose concentration to a 
desired setpoint. Certainly, by the end of the experiment, 
the glucose concentration is held relatively constant. 
The glucose clamps used in subcutaneous insulin  
bolus pharmacokinetic–pharmacodynamic (PKPD) studies,  
however, are inherently dynamic in nature. Manual clamps, 
in particular, can result in significant perturbations of 
the glucose concentration from desired values (setpoints), 
and the glucose infusion rates should be corrected to 
estimate the actual rate of glucose metabolized. Few PKPD 
articles provide significant detail on the mathematical 
algorithms used to correct the glucose infusion rate.  
Most of the subcutaneous insulin pharmacodynamic 
studies published by Heinemann and colleagues16–19  
are based on the use of the Biostator, where presumably 
the glucose is controlled tightly enough that no glucose 
infusion rate compensation (“space correction”) is 
necessary. Most other authors appear to use a manual 
clamping technique, where it is expected that glucose 
concentration will vary significantly.
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where subscript k represents the beginning of the kth 
sample interval. This can also be written as

Gk + 1 = Gk + Dt
VG

 (GIR,k – Gup,k)              (3)

which represents an exact integration of Equation (1) 
under the assumption that the glucose infusion and uptake 
rates are constant over the sample time. Now consider a 
desire to reach the glucose setpoint in N sample times. 
The discretization of Equation (1) for N sample times in  
the future is

VG Gk + N – Gk

NDt
 = GIR,k – Gup,k               (4)

which, again, is exact under the limiting assumption that 
the glucose infusion and uptake rates are constant over  
the N sample times into the future.

Model-Based Controller Development
Here we use the simple model of glucose dynamics as a 
basis for controller design. While there are many different 
possible model-based controller design techniques, we 
develop one with a goal of reaching the setpoint at step  
k + N (that is, N sample times in the future) by making 
a change in the glucose infusion rate and holding it 
constant over the N sample times. Substituting Gsp for 
Gk+N, we can solve for the required uptake rate at step 
k as

GIR,k = Ĝup,k + VG
Gsp – Gk

NDt
                (5)

where ^ is the estimate of the uptake rate since it is 
not known. The uptake rate at the previous step can be 
estimated from the most recent glucose measurements 
(at steps k and k - 1),

Ĝup,k - 1 = GIR,k – 1 + VG
(Gk – 1 – Gk)

Dt
             (6)

if it is assumed that the uptake rate remains constant 
over the next N time steps. Substituting Equation (6)  
into Equation (5), we find

GIR,k = GIR,k – 1 + VG
(Gsp – Gk)

NDt  + VG
(Gk – 1 – Gk)

Dt
     (7)

Recognizing that the difference between the desired 
setpoint and the glucose measurement is the error,

Gk – 1 – Gk = (Gsp – Gk) – (Gsp – Gk – 1) = ek – ek – 1     (8)

we can rewrite Equation (7) as

GIR,k = GIR,k – 1 + VG
NDt ek +

VG
Dt

(ek – ek – 1)          (9)

Furler and coworkers20 present what they call a 
proportional-derivative controller since the difference 
between two successive glucose values is used in the 
algorithm. The resulting controller, however, is a PI 
controller, as is shown in this article.

Glucose clamp protocols usually use a laboratory-
quality glucose measurement device, such as the YSI  
(Yellow Springs Instrument) glucose oxidase analyzer. 
Cohen and colleagues21 conclude that the FreeStyle Mini 
glucose meter is accurate enough for glucose clamp 
studies, based on clamp procedures conducted on seven 
volunteers with type 2 diabetes. Hompesch and Rave,22 
however, argue that the systematic bias of 6% would 
result in substantial underestimation or overestimation  
of glucose requirements; in addition, the bias would 
hamper the comparison of the absolute amount of 
glucose infused between different studies.

In this article, a simple model of glucose dynamics is 
used to develop a model-based glycemic clamp protocol 
(control algorithm). Then I examine the effect of glucose 
measurement uncertainty (bias and noise) on glucose 
control during euglycemic clamps and on the resulting  
time-action profiles and IOB curves; these studies are 
based on the use of a simulation model, which is of much 
higher complexity than the model used for controller 
design, in keeping with the consensus of a meeting 
summarized by Steil and Reifman.23

Simplified Model Development
A simple model relating glucose infusion to glucose 
concentration is

VG dG
dt  = GIR – Gup                     (1)

where VG represents the volume of the glucose 
compartment per unit weight of the subject (liters/kg), G 
represents the glucose concentration (mg/dl), and GIR is 
the glucose infusion rate (mg/kg/min). Gup represents the 
rate of glucose uptake from the glucose compartment 
(mg/kg/min) due to the action of insulin delivered.  
It should be noted that this simplified model neglects any 
endogenous appearance of glucose from the liver and/or 
kidneys. This simplified model will be used to design a 
glucose clamp algorithm in the next section and is not 
meant to provide the level of insulin–glucose dynamics 
that would be needed to design an artificial pancreas.

When discretized, Equation (1) is

VG (Gk + 1 – Gk)
Dt  = GIR,k – Gup,k              (2)
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It should be noted that the discrete velocity form of a PI 
controller24 is

uk = uk – 1 + kcDt
tI

⎛
⎜
⎝

⎞
⎟
⎠

ek + kc(ek – ek – 1)            (10)

where uk is the insulin infusion rate at time k; kc and τI 
are two adjustable (tuning) parameters, the controller 
gain and integral time, respectively; and ∆t is the sample 
time. Notice then that Equation (9) represents a PI 
controller, with

kc = VG
Dt  ,     tI = NDt                  (11)

The glucose compartment volume is typically in the 
range of VG = 1 to 2 dl/kg. If VG is not known exactly, 
then tuning kc is roughly equivalent to estimating VG.

Glucose Measurement Delay
There is typically a delay of 2–4 min between the glucose 
sample and the availability of the glucose measurement. 
When the glucose sample time is 5 min, it is important 
to compensate for this delay. The glucose infusion rates 
used in Equations (7) and (9) are the average over the 
sample interval, thus, to be more precise, we write 
Equation (7) as

GIR,k = GIR,k – 1 + VG
(Gsp – Gk)

NDt  + VG
(Gk – 1 – Gk)

Dt
ave ave     (12)

and we recognize that the average infusion rate over the 
interval from k - 1 to k is

GIR,k – 1 = td
Dt  GIR,k – 2 + (Dt – td)

Dt
 GIR,k – 1

ave           (13)

where td is the sample delay (the amount of time it takes 
before the glucose measurement at sample k is provided to 
the controller). Also, once GIR,k

ave  is calculated, then the 
infusion rate starting at k∆t + td is

GIR,k = Dt
Dt – td

 GIR,k + td

Dt – td
 GIR,k – 1

ave            (14)

so the new infusion rate, written in terms of the previous 
infusion rates, is

GIR,k = (Dt – td)GIR,k – 1 + td GIR,k – 2
Dt  +  

VG
(Gsp – Gk)

NDt  + VG
(Gk – 1 – Gk)

Dt

           (15)

which is virtually the algorithm proposed by Furler and 
colleagues20 written as

GIR,k = (Dt – td)GIR,k – 1 + td GIR,k – 2
Dt  +  

VG
(Gsp – Gk)

kpDt  + VG
(Gk – 1 – Gk)

kdDt

            (16)

where clearly the kp term is the N-step-ahead term that 
we have used. Furler and colleagues20 suggest kp = 3, 
which results in a controller that exactly achieves the 
setpoint in three steps. Also, they suggest using kd = 1 at 
the beginning of the clamp, then switching to kd = 2 
after 30 min to reduce the effect of noise and uncertainty.  
It should be noted that Furler and colleagues refer to their 
algorithm as proportional-derivative since a difference 
in two successive values of glucose is used; while this is 
a common misconception, the algorithm is actually the 

“velocity form” of a PI controller.

Measurement Noise Filtering
When there is substantial glucose measurement noise, it 
is important to include a “filter” to reduce the effect of 
the noise on the control computation. A simple averaging 
filter has the form

fGk = aGk – 1 + (1 – a)Gk
f                   (17)

where the superscript f indicates the filtered glucose 
value. This filtered value can be substituted into the 
previous equations to reduce the effect of sensor noise.  
If a continuous-time filter time constant, τf, is used, it can  
be implemented in discrete form as

a = exp(–Dt/tf)                       (18)

Note that a smaller value of a (smaller value of τf) results  
in less filtering.

Time-Activity Profiles and Insulin-on-
Board Computations
The rate that glucose is metabolized is a function of the 
glucose infusion rate, the rate of glucose lost through 
the urine, and the amount that enters/leaves and 
raises/lowers the glucose concentration in the glucose 
compartment.6 In the studies that follow, we neglect 
the amount lost to the urine since a typical rate is less 
than 0.2 mg/kg/min, as reported by DeFronzo and 
associates.6

The average glucose uptake during the kth time interval 
is computed by

Ĝup,k - 1 = GIR,k – 1 + VG
(Gk – 1 – Gk)

Dt
ave ave             (19)

where the rightmost term represents the “space 
correction”6 to account for the portion of glucose 
infused that increases the glucose concentration.  
For a retrospective analysis of the glucose infusion rates 
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to calculate IOB (duration of action) plots, the glucose 
infusion rates are averaged over 10 min intervals.

The fractional insulin activity remaining (IOB) is 
calculated by

IOB(t) = 1 – 
∫ĜupR +(t)dt

Gup,total
,  

where Gup,total = AUC = ∫t = 0  Ĝup(t)dt
t = tfinal

         (20)

and is typically plotted over a 6–8 h time period.

Simulation Model and Protocol
The simulation model for insulin glucose dynamics  
used in our in silico studies is based on the 
compartmental model by Hovorka coworkers,25 with a 
revised subcutaneous insulin kinetic model by Wilinska 
and associates;26 there are a total of nine differential 
equations in this model. We have reduced the published 
insulin sensitivities by 50% to better reflect match the 
basal insulin and carbohydrate-to-insulin ratios of typical 
adults.27 In this simulation protocol, we start with the 
subject at a constant steady-state glucose concentration  
of 100 mg/dl, based on a constant basal infusion of 
insulin. The subject is then given a subcutaneous 
insulin bolus of 0.2 U/kg, and glucose is manipulated  
to maintain glucose concentration at the desired setpoint 
value of 100 mg/dl.

Feedback Control of Glucose 
Concentration

Continuous versus Discrete Control Performance
We first compare the results of two different clamps. 
The first is based on a continuous adjustment of glucose 
infusion rates using continuous, noise-free glucose 
sensor values. The second is based on sampling glucose 
at 5 min intervals, with a 2 min time delay to report the 
glucose values to the controller; glucose measurement 
uncertainty and resolution are neglected. Although the 
discrete controller does not maintain as tight regulation 
of glucose as the continuous controller, as shown in 
Figure 1, the resulting glucose infusion rates are nearly 
identical, except for the first 10 min, as shown in  
Figure 2.

Effect of Measurement and Pump Resolution and 
Measurement Noise on Glucose Control
In the second study, we assume measurement noise with 
a mean of 0 and a standard deviation of 1 mg/dl, with 
integer reporting of glucose values. Further, a glucose 

Figure 1. Blood glucose values from the simulated glycemic clamp 
procedure. Comparison of (i) continuous and (ii) discrete controllers 
with no measurement noise (the discrete controller has a sample delay  
of 2 min).

Figure 2. The glucose infusion rates (mg/kg/min) from the glucose 
clamp shown in Figure 1.

infusion pump threshold resolution of 0.1 mg/kg/min is 
used. The actual glucose values (uncorrupted by noise 
and delay) are shown in Figure 3. The noise and finite 
resolution of the sensor and pump lead to much more 
active glucose infusion rates, as shown in Figure 4.

Effect of Blood Glucose Meter Bias
The previous simulations were pertinent to the use 
of a YSI glucose measurement, which we assumed to 
have no bias, and a measurement standard deviation 
of 1 mg/dl (1% in the range of our measurements).  
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Now we consider the use of blood glucose meters,  
which can have significant uncertainty, including bias. 
The study results of Cohen and colleagues21 and the 
related critique by Hompesch and Rave22 indicate that a 
glucose meter may have a bias of +6 mg/dl (6% in our 
range of measurements), with a standard deviation of  
5 mg/dl (5% in our range of measurements).

In the next set of simulations, we study the effect of a 
systematic glucose meter bias of ±6 mg/dl. The meter 

Figure 3. Glucose values from the simulated glycemic clamp 
procedure. Comparison of a continuous (and noise-free) PI controller 
with a discrete PI controller with measurement noise (standard 
deviation of 1 mg/dl), measurement (integer values, mg/dl) and  
pump finite resolution (0.1 mg/kg/min), and a sample delay of 2 min.

Figure 4. The glucose infusion rates (mg/kg/min) from the glucose 
clamp shown in Figure 3.

bias clearly results in an “offset” for the actual glucose 
concentrations, as shown in Figure 5, since the controller 
is regulating the glucose concentration to 100 mg/dl 
based on the glucose meter readings. The corresponding 
glucose uptake rates (based on the glucose infusion 
rates and the “space correction”) are shown in Figure 6.  
As suggested by Hompesch and Rave,22 the biased  
values do result in slightly different areas under the 
glucose uptake cures. For the unbiased meter the area 

Figure 5. Effect of glucose meter bias (±6 mg/dl) on actual blood 
glucose concentrations during a euglycemic clamp. Since the controller 
is regulating glucose to a set point of 100 mg/dl based on the glucose  
meter readings, +6 and -6 mg/dl biases result in actual glucose values 
of 94 and 106 mg/dl, respectively.

Figure 6. Effect of glucose meter bias (± 6 mg/dl) on the glucose 
uptake rate (mg/kg/min).
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under the curve (AUC) = 1.915 g; for the +6 mg/dl bias, 
the AUC = 1.859 g; and for the -6 mg/dl bias, the  
AUC = 1.970 g. Thus a meter bias of 6 mg/dl (6%) results 
in AUC estimates that are in error by 3%. There is no  
effect of glucose meter bias on the IOB curves, however.

Effect of Substantial Measurement Noise
The previous subsection illustrated the effect of glucose 
measurement bias. Here we study the effect of a standard 
deviation of 5 mg/dl in the glucose meter values, in 
addition to a bias of +6 mg/dl. The large glucose meter 
noise (with bias) causes the actual glucose to vary 
substantially from the setpoint (100 mg/dl), as shown 
in Figure 7. The corresponding glucose infusion rates  
are shown in Figure 8, where the simple measurement 
filter (a = 0.5) reduces the variability in the glucose 
infusion rates. The time-activity profiles are compared  
in Figure 9; even with the “space correction” for glucose 
variability and the averaging over 10 min periods, there is 
substantial variation in the profiles due to sensor noise. 
On the other hand, this “noise” is smoothed by the 
process of integration used in the IOB computations, as 
shown in Figure 10.

Mudaliar and associates28 use a manual clamp to 
compare insulin aspart and regular human insulin  
using three injection sites (abdomen, deltoid, and thigh) 
on 20 healthy male subjects with average characteristics 
of 31.1 years of age and a body mass index of 23.6 kg/m2. 

Figure 7. Comparison of glucose concentrations for the following 
controllers: discrete (with no noise) and discrete with bias and 
substantial noise (filtered and unfiltered measurements). The actual 
glucose concentrations are plotted.

Figure 8. Comparison of glucose infusion rates (mg/kg/min) for 
the following controllers: discrete (with no noise) and discrete with 
bias and substantial noise (control algorithm based on filtered and 
unfiltered measurements). 

Figure 9. Comparison of time-action profiles (glucose uptake rate, 
mg/kg/min) for continuous, discrete (no noise), and discrete with bias  
(+6 mg/dl) and substantial noise (standard deviation = 5 mg/dl; 
filtered and unfiltered).

The time-action profiles from their abdomen studies using 
aspart are compared with the in silico noisy (but filtered) 
data in Figure 11. Naturally, the averaging effect over 
20 subjects makes the glucose uptake rate curves much 
smoother than a single simulated subject with high 
measurement noise. The IOB curves are very similar, 
however, as shown in Figure 12, since the integration in 
Equation (20) naturally smoothes the data.
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It is important to note that not all insulin pumps 
use IOB curves that have the characteristic shown in  
Figures 10 and 12. The Deltec and Insulet pumps, for 
example, use linear approximations to these curves. In 
addition, all pumps have a “duration of insulin action” 
parameters to allow the user to adjust the rate of decrease 
in insulin activity. A review of these basic pump features  
is provided by Zisser and coworkers.4

Conclusions
A simple model-based glucose controller has the form 
of a PI controller with time-delay compensation. Even 
relatively noisy glucose meters with bias can result in 
reasonable glucose control and glucose infusion rates as 
long as the noisy measurements are filtered (averaged) 
before using them in the control algorithm. While biased 
measurements do have a minor effect on the area under 
the glucose uptake curves, there is no effect on the 
IOB curves that are used in smart insulin pumps and 
many proposed closed-loop artificial pancreas control 
algorithms.
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