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SYMPOSIUM

Abstract
Background:
The technological advancements in subcutaneous continuous glucose monitoring and insulin pump delivery  
systems have paved the way to clinical testing of artificial pancreas devices. The experience derived by  
clinical trials poses technological challenges to the automatic control expert, the most notable being the large 
interpatient and intrapatient variability and the inherent uncertainty of patient information.

Methods:
A new model predictive control (MPC) glucose control system is proposed. The starting point is an MPC 
algorithm applied in 20 type 1 diabetes mellitus (T1DM) subjects. Three main changes are introduced: 
individualization of the ARX model used for prediction; synthesis of the MPC law on top of the open-loop  
basal/bolus therapy; and a run-to-run approach for implementing day-by-day tuning of the algorithm. In order 
to individualize the ARX model, a sufficiently exciting insulin profile is imposed by splitting the premeal bolus  
into two smaller boluses (40% and 60%) injected 30 min before and 30 min after the meal.

Results:
The proposed algorithm was tested on 100 virtual subjects extracted from an in silico T1DM population.  
The trial simulates 44 consecutive days, during which the patient receives breakfast, lunch, and dinner each 
day. For 10 days, meals are multiplied by a random variable uniformly distributed in [0.5, 1.5], while insulin 
delivery is based on nominal meals. Moreover, for 10 days, either a linear increase or decrease of insulin 
sensitivity (±25% of nominal value) is introduced.

Conclusions:
The ARX model identification procedure offers an automatic tool for patient model individualization. The run-to-
run approach is an effective way to auto-tune the aggressiveness of the closed-loop control law, is robust to 
meal variation, and is also capable of adapting the regulator to slow parameter variations, e.g., on insulin 
sensitivity.
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Introduction

Recent technological advancements in subcutaneous 
continuous glucose monitoring (CGM) and subcutaneous 
insulin delivery systems have paved the way for the 
development of a minimally invasive closed-loop control 
system for maintaining normoglycemia in type 1 
diabetes mellitus (T1DM).1–3 Thanks to the availability 
of innovative sensors and actuators, the possibility to 
successfully maintain normoglycemia has significantly 
improved, so that automatic control experts are faced 
with new technological challenges.

The main obstacle to satisfactory closed-loop control is 
the presence of significant disturbances (e.g., meals and 
physical activity) and delays in the effect of meals and 
subcutaneous insulin on glycemia and, furthermore, 
from glycemia to sensor measurements of subcutaneous 
glucose. These features explain the difficulties encountered 
when standard proportional-integral-derivative controllers 
are employed. Model predictive control (MPC) is likely to be 
the most suitable approach to design control systems in  
the presence of delays and constraints.4 Compensation 
for delays by means of feed-forward action, as well as 
constraint handling, is naturally incorporated in the design 
process. For the potential of MPC strategies to glucose 
control in T1DM, the reader is referred elsewhere.2,5,6

A successful MPC strategy7 has been applied in a 
clinical study at the University of Virginia, Padova, and 
Montpellier, covering night and breakfast conducted on 
20 patients.8–10 The outcome of this clinical trial was an 
excellent overnight regulation, while breakfast control 
showed a margin of improvements. In this article, we 
propose three significant improvements in the control 
design in order to improve meal regulation. The first 
improvement aims to exploit all the knowledge incorporated 
in conventional open-loop therapy. Accordingly, the 
goal of the MPC algorithm is to cope with all possible 
disturbances, including uncertainty of meal and patient 
parameters. The second change is the use of an 
individualized ARX model, which should improve the 
predictive capability of the mean population model used 
in Reference 7. The third modification is the development 
of an algorithm capable to tune the aggressiveness of 
the controller on a day-by-day basis according to a run-
to-run approach. The run-to-run strategy is inspired 
by traditional batch processes. In the glucose control 
problem, patterns of meal intake, glucose measurement,  
and insulin delivery repeat themselves in 24 h cycles. 
Run-to-run control algorithms have been used to 

optimize the traditional open-loop control therapy via 
a day-by-day adaptation of basal and premeal boluses of 
insulin. In particular, in References 11–13, run-to-run 
control was used to design the insulin bolus, while in 
Reference 14, the run-to-run framework was successfully 
applied to adjust basal dosing of insulin. Here, the  
run-to-run approach is used to tune the MPC controller 
and is tested on the T1DM simulator accepted by the 
Food and Drug Administration as a substitute to animal 
trials.15–18 

Methods

Model of Type 1 Diabetes Mellitus 
In order to synthesize and test the controller, we used 
the meal glucose–insulin model.15–18 The nonlinear and  
time-varying model consists of 13 differential equations.  
An important feature of the simulator is the incorporation 
of interindividual variability within the population of  
T1DM patients by means of 26 individualizable parameters.  
The parameters were assumed to be log-normally distributed 
to ensure their nonnegativity. A covariance matrix 
was calculated using the log-transformed parameters. 
One hundred subjects were generated using the joint 
distribution, i.e., 100 realizations of the log-transformed 
parameter vector were randomly extracted from the multi-
variate normal distribution characterizing intersubject 
variability. Finally, the parameters in the 100 virtual subjects 
were obtained by antitransformation.

Performance Assessment by Control Variability Grid 
Analysis: Virtual Protocol 
The performance of closed-loop glucose control is tested 
on a 44-day virtual protocol. The simulation starts at 
basal value at 00:00 am, and the first meal is breakfast at 
7:30 am with 50 g of glucose, lunch at 12:30 pm with 75 g 
of glucose, and dinner at 6:30 pm with 85 g of glucose. 
The insulin delivery during closed-loop control is 
piecewise constant and is updated every 15 min. Shorter 
sampling intervals are technologically possible but are 
not compatible with medical supervision that is likely to  
be required in the first clinical trials on real patients.

Several outcome measures have been proposed to judge 
the effectiveness of closed-loop control in a single patient  
(see, e.g., Reference 19). However, the only instrument 
able to asses the overall performance in a population of 
patients, e.g., to compare the performances of different 
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closed-loop controllers and/or different tuning choices  
for a given controller, is the control variability grid  
analysis (CVGA).20 The CVGA is a method for 
visualization of the extreme glucose excursions caused 
by a control algorithm in a group of subjects, with each  
subject represented by a single data point for any  
given observation period. This differentiates the analysis 
from other standard statistics, such as mean and standard 
deviation, that do not provide population-based visualization 
of the data. Following the ideas of the classic Clarke  
error grid analysis used for evaluation of the accuracy of 
self-monitoring21 or CGM devices,22 nine rectangular 
zones are introduced in order to classify subjects into 
categories. The necessity of a population index stems  
from the availability of a large-scale simulation model 
(see, e.g., References 15–18) that allows the generation of 
hundreds of virtual patients. The availability of realistic 
individual models is the basis for conducting an in silico  
trial; the control can be individually tuned and then 
tested on each virtual patient, possibly introducing 
disturbances and uncertainties in order to assess 
robustness of closed-loop control. Here, we use the CVGA 
not only to assess the overall performance, but also 
to introduce a metric for the automatic tuning of the 
controller. In the computation of the maximal glycemia, 
the first 3 h after the meal are not considered.

Open-Loop Control
Open-loop glucose control is based on the combination 
of basal insulin administration and premeal boluses 
proportional to glucose intake through carbohydrate 
ratio (CR) factor. Carbohydrate ratio was optimized for 
each subject in order to minimize the distance from the 
diagonal of CVGA, which represents the best compromise 
between hypo and hyper risks.

ARX Model Identification
Compared to other black-box models, ARX models can be 
more easily identified because of their linear-in-parameter 
structure but are still flexible enough to guarantee 
good predictions. The former property is particularly  
important in the context of physiological systems where 
data are not only noisy, but also subject to unmodeled 
disturbances and possible time-varying dynamics.

For this motivation, the model chosen for the synthesis  
of the controller is an ARX model, identified from 
the data, whose inputs are the meal glucose d and 
the variation of injected insulin with respect to basal 
rate (du = u – ub) and whose output is the variation of 
subcutaneous glucose concentration with respect to basal 
(dy = y – yb):

dy(k)=a1dy(k–1)+···+andy(k–n)+b1du(k-ku) 
+b2du(k–ku–1)+···+bnu

du(k–ku–nu+1)+g1d(k–1) 
+g2d(k–2)+···+gnd

d(k–nd)+e(k),
 (1)

where n, nu , nd are the orders of the autoregressive 
and exogenous parts, respectively, ku is the delay of the 
insulin input, and e(k) is a white noise error term.

To obtain the identification data, a 1-day open-loop 
experiment was performed. In order to guarantee good 
identifiability properties, each premeal bolus was split 
in two smaller boluses (40% and 60% of the premeal 
bolus) injected 30 min before and 30 min after the meal 
(see also Reference 23). To enhance long-range prediction  
performance, the “Focus” option was set to “Simulation” in 
the arx.m MATLAB function.24 

The validation data were obtained in the same way as 
the identification data except for bolus amounts, which 
were 60% and 40% of the original premeal bolus.

All possible ARX models with 2 ≤ n ≤ 5, 2 ≤ nu ≤ 5, 
2 ≤ nd ≤ 5, and 1 ≤ ku ≤ 2 were identified. For each patient, 
model selection was performed via minimization of 
the cross-validation sum of squared residuals among 
the models that satisfy the following requirements:  
(i) stability, (ii) positive gain from d to dy, (iii) negative gain 
from du to dy, and (iv) positive and negative impulse 
responses from d and du after 1 h, respectively. If none  
of the models satisfied these conditions, individualization 
was dropped and the average population model was 
used.

Model Predictive Control
Given the identified ARX model, the MPC law is based 
on the solution of a finite-horizon optimal control 
problem (FHOCP), where a cost function is minimized 
with respect to the input du subject to the dynamics 
of the system model. Letting duo be the solution of the 
FHOCP, according to the receding-horizon paradigm,  
the feedback control law is obtained by applying to the 
system only the first element of the optimal solution. 
In this way, a closed-loop control strategy is obtained 
solving an open-loop optimization problem.

The main objective of the proposed MPC law is to 
improve the robustness properties of the conventional 
open-loop therapy with respect to uncertainties on the 
actual meal and on physiological parameters like insulin 
sensitivity. Assuming that, in nominal condition, the 
open-loop therapy is well tuned, the objective of MPC 
is to minimize the glycemia error with respect to the 
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nominal open-loop profile. This idea and the use of an 
individualized ARX model, instead of an average model, 
are the main differences with respect to the algorithm 
proposed in Reference 7.

More precisely, the minimization of the following 
quadratic discrete-time cost function is considered:

J(x(k),du(·))=S(q(dyo(k+i+1)-dy(k+i+1)) 2

                        +(duo(k+i)-du(k+i)) 2),

15

i=0             (2)

subject to the identified ARX model Equation (1), where 

x (k) =[dy (k),dy (k–1), . . . ,dy (k– n+1),du (k–1)du (k–2), . . . , 
du(k–ku–nu+2),d(k–1),d(k–2),...,d(k–nd+1)]’,

q is a positive constant, duo is the over basal open-loop 
insulin therapy, and dyo = yo – yb , where yo is the set 
point.

The MPC law has the following structure:

u 0(k)=GyoDYo(k)+Gxx(k)+GDD(k)+GuoDUo(k)+ub ,

where DYo(k) = [dyo(k+1), dyo(k+2), ..., dyo(k+15), dyo(k+16)]’; 
D(k) = [d(k), d(k+1), ..., d(k+14), d(k+15)]’; DUo(k) = [duo(k), 
duo(k+1), ..., duo(k+14), duo(k+15)]’; and Gyo , Gx , GD , and 
Guo are suitable matrices.

If the calculated insulin rate uo(k) is negative, a zero value 
is applied. The major advantages of this input–output 
MPC scheme are that an observer is not required (x is 
made of past input and output values) and its ease of 
implementation (real-time optimization is avoided).

Model predictive control, in general, has several 
independent tuning parameters: control and prediction 
horizon, output and input weights, and terminal 
penalty. However, as it will be better illustrated in  
Results, another advantage of the adopted choice is the 
possibility to achieve satisfactory regulation by only 
tuning one parameter (the output weight q) in a quite 
straightforward and intuitive way.

Run-to-Run Control
The controller performance depends on the tuning 
parameter, q, which should be individually tuned to 
cope with the specific dynamics of each single patient. 
We propose to start with a nominal q

_
, safe (i.e., scarcely 

aggressive) for all possible patients, which is updated 
daily on the basis of the regulation performance 
observed in the previous 24 h. Daily performance is 

reflected by the position in the CVGA plot of the point 
associated with the 24 h glycemic profile of the subject. 
The ideal point in the CVGA is the lower left corner. In 
practice, we observed that, when changing the controller  
aggressivity through parameter q (the higher q, the more 
aggressive the regulation), there is a trade-off between 
hypoglycemia and hyperglycemia episodes. In other 
words, reducing the x coordinate in CVGA is at the 
expense of an increase of the y coordinate. To achieve 
a balance, a q is sought that places the subject on the 
diagonal of the CVGA plot, meaning that regulation 
performs comparably with respect to hypoglycemia 
and hyperglycemia risks. For this reason, the distance  
from the diagonal is adopted as a performance measure. 
Letting the x and y coordinates of a patient in the 
CVGA be defined according to a linear scale on both 
axes ranging from 0 in the lower left corner to 60 in the 
lower right and higher left corner, respectively, by simple 
geometric arguments, the performance measure is given by 

. Note that p is positive when y is greater 
than x and, vice versa, when y is lower than x.

The update rule for q is worked out according to a 
so-called run-to-run strategy.11–14 Letting q(i) denote 
the parameter q used during the ith day, and p(i) the 
associated performance, the next value is computed as

l . (3)

In Equation (3), u(i) is an estimate of the sensitivity of 
p with respect to q, while l is a parameter that regulates 
speed of convergence toward the optimal q. If sensitivity 
were perfectly known and p were noiseless, l = 1 would 
entail instantaneous convergence. Taking into account 
uncertainty and noise, the run-to-run literature suggests 
to use smaller values, also to limit noise amplification. 
In our simulated trial, a reasonable compromise was 
achieved using l = 0.6.

For safety reasons, it is also advisable to put limits to the 
admissible changes of q. This was done by introducing  
some modifications to the basic algorithm:

q(i + 1) = max(q(i) – u(i),0),

l
m

.

Finally, the sensitivity estimate, m, is computed as the 
slope of the linear regression of the last three values of 
p(i) against the corresponding values of q(i). A limit on the 
maximum value of m was fixed to -1000.
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Results

Model Identification
The ARX models were successfully identified for all the 
100 patients. Model quality was assessed by means of 
the following fit score, computed on the validation data:  
FIT = 100). More precisely,

ˆ
,

where Y is the vector of observed glucose values, Ŷ is 
the vector of model predictions, YY

_
 is a vector whose 

entries are the mean of the observed glucose values, 
and Euclidean norms are used (a perfect fit yields the 
maximal value: FIT = 100). 

It resulted that FIT = 85.1 ± 7 (mean ± standard deviation).  
A histogram of the FIT scores for the whole population is 
reported in Figure 1. The variability of the model orders 
from subject to subject is reported in Table 1. 

Experiments
Experiment 1
One hundred subjects are simulated for 1 day using the 
open-loop control strategy with an optimized CR.

Experiment 2 (Day 1)
One hundred subjects are simulated using q = q

_
 = 0.00035 

for all the subjects. The set point yo is equal to 110 mg/dl  
from 9:00 pm to 8:00 am, 180 mg/dl from 8:00 am to 
10:00 am, 130 mg/dl from 10:00 am to 1:00 PM, 180 mg/dl  
from 1:00 pm to 3:00 pm, 130 mg/dl from 3:00 pm to 7:00 pm, 
and 180 mg/dl from 7:00 pm to 9:00 pm. The above-basal 
open-loop insulin therapy duo is obtained through the CR 
used in experiment 1. Experiments 3–6 are performed 
sequentially in the sense that initial conditions of 
experiment 3 are the final ones of experiment 2 and  
so on.

Experiment 3 (Days 2–14)
The same as experiment 2, but this time, q is updated 
daily following the run-to-run control strategy. The initial 
value of q is equal to q

_
, and the sensitivity estimate m is 

equal to –20/q
_
.

Experiment 4 (Days 15–24)
The same as experiment 3, but with meals multiplied 
by a random variable uniformly distributed in [0.5, 1.5] 
while insulin delivery is computed with the vector of 
future meals D(k) made by nominal meals.

Experiment 5 (Days 25–34)
The same as experiment 2.

Experiment 6 (Days 35–44) 
The same as experiment 2, but with either a linear 
increase or decrease of both insulin sensitivity 
parameters kp3 and Vmx (see Reference 15 for details). The  
terminal parameter variation is ±25% of nominal values.  
The decision between increase or decrease is randomly 
taken for each patient with equal probability.

Experiment 7
The same as experiment 1, but with the same meals as 
the day 15 of experiment 4.

Experiment 8 
The same as experiment 1, but with the same insulin 
sensitivity parameters as the day 44 of experiment 6.

Figure 1. Histogram of the FIT scores of the identified ARX models.
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Table 1.
Number of Identified Models for Each Order of ARX 
Model

1 2 3 4 5

n — 6 28 41 25

nu — 8 21 24 47

nd — 19 21 18 42

ku 54 46 — — —
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Assessment of Performance 
With reference to experiments 2–6, in Figure 2 the 
glucose and insulin time profiles of a representative 
virtual patient (#26) are plotted.

During experiments 2–3 (days 1–14), the run-to-run 
procedure attains a good glycemic regulation within a 
few days. The subsequent meal perturbations during 
experiment 4 (days 15–24) produce some excursions that  
are, however, kept under control.

In subsequent experiment 5 (days 25–34), strict glycemic 
regulation is promptly recovered. Finally, during 
experiment 6 (days 35–44), the insulin sensitivity 
variation is effectively compensated by the run-to-run 
adaptation of q.

In Figure 3, CVGA of the 100 virtual patients is reported 
for experiments 1 and 2. It is evident that, in the nominal 
case (no uncertainty on meals and insulin sensitivity), 
if the aggressiveness parameter q is not individualized, 
the open-loop strategy, whose CR was optimized for 
each subject in order to minimize the distance from 
the diagonal of the CVGA plot, is better than the closed-
loop one. On the contrary, the CVGA for experiment 3  
(days 2 and 14), reported in Figure 4, shows that the  
run-to-run procedure attains a good glycemic regulation 
and performs better than the open-loop also in the 
nominal case. However, the advantage of a feedback 
strategy is even more evident if uncertainties in meal 

Figure 2. Experiments 2–6 for patient #26.
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Figure 3. Closed loop versus open loop in nominal condition: CVGA 
for closed-loop experiment 2 (constant q) (white) and open-loop 
experiment 1 (black). BG, blood glucose.

Figure 4. Closed-loop run-to-run tuning: CVGA for experiment 3  
(day 2) (black) and experiment 3 (day 14) (white). BG, blood glucose.
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or insulin sensitivity are considered. In particular, in 
Figure 5, a comparison between experiment 4 (day 15) 
and experiment 7 is reported. With the same meal 
uncertainty, closed-loop achieves a better compensation 
of meal error. Finally, in Figure 6, the robustness of  
closed-loop MPC with respect to insulin sensitivity change 
is shown through the comparison between experiment 6 
(day 44) and experiment 8.

Conclusions
In a previous study,7 in silico experiments demonstrated 
the feasibility of glycemic control by an MPC scheme.  
On these premises, the MPC controller has been extensively 
tested on real patients,8 obtaining satisfactory results 
especially during overnight control. The analysis of these  
in silico and in vivo trials highlights three major 
challenges for the future development of the artificial 
pancreas. First of all, closed-loop control should not 
compensate meals less promptly than the traditional 
basal + boluses open-loop therapy. At the same time, a 
too aggressive regulation may suffer from excessive 
sensitivity to disturbances and sensor errors, so the 
correct calibration of controller aggressivity may involve 
a difficult trade-off. The second challenge has to do with 

Figure 5. Closed loop versus open loop in the face of meal uncertainty: 
CVGA for closed-loop experiment 4 (day 15) (white) and open-loop 
experiment 7 (black). BG, blood glucose.

Figure 6. Closed loop versus open loop in the face of insulin sensitivity 
change: CVGA for closed-loop experiment 6 (day 44) (white) and  
open-loop experiment 8 (black).

quality of glycemic prediction; in view of interindividual 
variability, it is difficult to achieve satisfactory predictions 
using a single model for all patients. Hence the need 
for individualized models. Finally, another crucial point 
is the development of automatic tuning strategies that can 
tailor the regulator parameters to the individual patient  
and can adapt them in the face of slowly time-varying 
patient clinical parameters and habits.

In order to face these challenges, in the present article, 
a new MPC design scheme has been proposed and 
tested in silico. The closed-loop action is designed on 
top of traditional open-loop therapy. More precisely, the 
closed-loop MPC is in charge of correcting an optimized 
open-loop therapy if glucose levels differ from nominal 
ones. Individualization of glucose predictions is achieved 
via ARX models identified in each individual. Finally, 
a run-to-run procedure is used to tune the controller 
on a daily basis, showing that not only this approach 
reaches optimal tuning in nominal conditions, but it is 
also robust with respect to changes in habits and drift 
of clinical parameters. Although the ARX modeling 
approach appears to be very promising, protocols need 
to be designed so as to collect data that are informative 
enough for system identification.
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