
1082

A Closed-Loop Artificial Pancreas Using Model Predictive  
Control and a Sliding Meal Size Estimator

Hyunjin Lee, Ph.D.,1 Bruce A. Buckingham, M.D.,2  
Darrell M. Wilson, M.D.,2 and B. Wayne Bequette, Ph.D.1

Author Affiliations: 1Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York; and 2The Lucile Salter 
Packard Children’s Hospital, Stanford Medical Center, Stanford, California

Abbreviations: (CHO) carbohydrate, (FDA) Food and Drug Administration, (IOB) insulin on board, (MPC) model predictive control, (MSE) meal 
size estimation, (PID) proportional-integral-derivative, (TDI) total daily insulin

Keywords: artificial pancreas, closed-loop glucose control, continuous glucose monitoring, type 1 diabetes

Corresponding Author: B. Wayne Bequette, Ph.D., Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute,  
Troy, NY 12180-3590; email address bequette@rpi.edu

 Journal of Diabetes Science and Technology
 Volume 3, Issue 5, September 2009 
 © Diabetes Technology Society

Introduction

The development of a closed-loop artificial pancreas 
has been an active research area for almost 50 years; 
for reviews of challenges and techniques, see Bequette1 
and Hovorka.2 Some of the earliest work involved 
intravenous delivery of insulin and frequent sampling 
of the bloodstream,3 which do not have the time lags of 
subcutaneous insulin (input) and interstitial glucose (output). 
Recent model-based approaches for subcutaneous delivery 
are provided elsewhere.4–7 

A major challenge with the use of subcutaneous insulin 
is delayed insulin action, as a bolus of insulin will typically  
have 50% of its pharmacodynamic effect remaining after 
3 hours. Most insulin pumps have an insulin-on-board 
(IOB) feature to assist in bolusing decisions.8,9 A number 
of control strategies have been developed to account for 
the insulin time action profile. Ellingsen and collegues10  
presented a model predictive control (MPC) strategy with 
IOB compensation. Lee and associates11 presented an IOB-
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Abstract
The objective of this article is to present a comprehensive strategy for a closed-loop artificial pancreas.  
A meal detection and meal size estimation algorithm is developed for situations in which the subject forgets to provide 
a meal insulin bolus. A pharmacodynamic model of insulin action is used to provide insulin-on-board constraints to 
explicitly include the future effect of past and currently delivered insulin boluses. In addition, a supervisory pump 
shut-off feature is presented to avoid hypoglycemia. All of these components are used in conjunction with a 
feedback control algorithm using model predictive control (MPC). A model for MPC is developed based on a study 
of 20 subjects and is tested in a hypothetical clinical trial of 100 adolescent and 100 adult subjects using a 
Food and Drug Administration-approved diabetic subject simulator. In addition, a performance comparison of 
previously and newly proposed meal size estimation algorithms using 200 in silico subjects is presented. Using the 
new meal size estimation algorithm, the integrated artificial pancreas system yielded a daily mean glucose of 138 
and 132 mg/dl for adolescents and adults, respectively, which is a substantial improvement over the MPC-only case, 
which yielded 159 and 145 mg/dl.
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based proportional-integral-derivative (PID) control strategy, 
whereas Lee and colleagues12 provided a preliminary 
assessment of IOB-based internal model control and MPC 
algorithms. Because of the nonlinearity and uncertainty of 
insulin-to-glucose dynamics, an addition of a constraint 
based on the IOB amount is desirable; however, if an 
accurate model is used in MPC, the controller may 
not require the IOB constraint as presented in Lee and 
colleagues.12 Steil and associates13 proposed reducing 
the infusion of a PID controller by incorporating a term 
that is proportional to the predicted plasma insulin 
concentration, based on a pharmacokinetic model; the 
basic goal is to consider that previously delivered insulin  
is still having a glucose reduction effect.

Weinzimer and colleagues14 implemented PID control in 
clinical studies in 17 adolescents with type 1 diabetes. 
They found that a hybrid closed-loop system, where a meal 
insulin bolus is given in conjunction with a closed-loop 
controller, results in improved regulation of postprandial 
hyperglycemia compared to feedback-only control.

In an ideal scenario, an individual would estimate the 
carbohydrate (CHO) content of the meal and provide a 
meal insulin bolus based on a carbohydrate/insulin ratio. 
Burdick and colleagues15 found that missed mealtime 
boluses are the major cause of suboptimal glycemic 
control in youths with type 1 diabetes. Two missed 
boluses per week result in a half-point rise in hemoglobin 
A1c values, which can result in long-term complications, 
such as heart disease, stroke, retinopathy, nephropathy, 
and neuropathy. This has motivated recent research to 
detect meals automatically and either advise the subject 
to provide a meal insulin bolus or automatically give a 
bolus as part of an automated closed-loop system. Dassau 
and colleagues16 developed a meal detection algorithm, 
whereas Lee and Bequette17 combined a meal detection 
and meal size estimation (MSE) algorithm as part of an 
MPC-based artificial pancreas strategy.

Computer simulations of subjects with type 1 diabetes 
that incorporate subcutaneous insulin, meal absorption,  
and insulin–glucose dynamics can provide important 
tests of artificial pancreas control algorithms4,18–20; indeed, 
many of the control articles cited earlier are based on 
computer simulation results. While these simulations may 
not include all of the challenging characteristics of “real-
world” subjects with type 1 diabetes, a wide range of 
model parameters can be studied to test the robustness of 
proposed control algorithms. Kovatchev and colleagues21 
presented an overview of a simulation model that has 
been approved by the Food and Drug Administration 

(FDA); a verification of performance results using this 
model will allow investigators to skip animal studies 
and proceed directly to human clinical trials. Patek and 
associates22 provided guidelines for proof-of-concept 
simulation-based testing of control algorithms.20

We developed an integrated artificial pancreas system 
that includes insulin-on-board constraints based on the 
use of a pharmacodynamic model, as well as a meal 
detection and meal size estimation algorithm, as shown 
in Figure 1. The MSE provides meal insulin boluses 
when the meal is not announced by the subject. In silico 
subjects of 100 adolescents and 100 adults from the 
recently FDA-approved computer simulator20 are studied 
using the proposed integrated artificial pancreas system.  
The closed-loop performances of three cases—MPC-only, 
MPC with the previous meal size estimation algorithm,17 
and MPC with the newly proposed meal size estimation 
algorithms—are compared. Advantages of the integrated 
system involving feedback and feed-forward controllers 
are discussed.

Insulin-on-Board Constraints
The remaining activity of insulin delivered in the past 
is known as insulin on board. IOB curves are generated 
based on insulin pharmacodynamics, or time-activity 
profiles, obtained from glycemic clamp studies. We have 
found that two-compartment models fit these time-action 
profiles quite well. The analytical solution for IOB for a 
two-compartment model with equal time constants is

 (1)

where d is the magnitude of an insulin bolus and tIOB is 
the time for peak insulin activity (also the compartment 

Figure 1. A schematic diagram of the proposed integrated artificial 
pancreas system for closed-loop glucose control.
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time constant). Typically, tIOB varies from 90 to 180 minutes, 
which corresponds to insulin action times of 4–8 hours.  
This article uses tIOB = 100 minutes and varying maximum 
IOB amounts.

Determination of Maximum IOB Constraint
Four steps are used to determine a maximum IOB 
constraint based on an individual’s biometric information 
and real-time glucose readings. Under noisy conditions, 
estimated glucose and rate of change of glucose are 
obtained using a Kalman filter. The four steps:

1. A basal rate is obtained from the biometric information 
and then adjusted based on the initial glucose 
concentration.

2. An aggressiveness parameter is selected.

3. The total daily insulin (TDI) requirement is obtained 
from biometric data.

4. A real-time maximum IOB constraint is determined 
using the estimated glucose concentration.

Step 1: Set the initial insulin infusion rate uo

, (2)

where ubasal is the basal insulin rate and Go is the steady 
glucose concentration based on ubasal.

Step 2: Set the initial allowable IOBbasal

 (3)

where aIOB is an aggressiveness factor for the maximum IOB, 
with a range of 3–7 [hours]. For example, aIOB = 5 [hour]  
has 5 hours worth of basal rate insulin as the maximum 
IOB constraint.

Step 3: In addition to IOBbasal , set IOBTDI based on 
individual’s TDI such that

 (4)

Step 4: Finally, IOBmax is determined using basal rate,  
TDI, and rate of change of glucose:

(5)

where a 5-minute sample time is used for the insulin 
pump (Insulet OmniPod system), while glucose is measured 
continuously with a 1-minute sample time, ĝ is the 
estimated glucose [mg/dl], Dĝ is the estimated rate of 
change of glucose [mg/dl min], and D2ĝ is the estimated rate  
of change of the rate of change of glucose [mg/dl min2] 
using a Kalman filter. Equations (2), (4), and (5) provide 
sequential conditions; it will check from the first to the 
last conditions, ending with the last satisfied condition.

Pump Shut-Off Procedure
The pump shut-off algorithm uses a linear prediction  
(ĝt + Dt) from time t assuming a constant rate of change of 
glucose (Dĝ) over Dt minutes.

Dĝt ≡ 
ĝt+Dt – ĝt

Dt ,  (6)

where Dgtˆ  is the estimated rate of change of glucose from 
a Kalman filter with a 1-minute sampling time in glucose. 
The linear prediction is computed in the following

 (7)

where gt+Dtˆ  is the predicted glucose from the estimated 
glucose, ĝ is the estimated glucose, and Dĝ is the estimated 
rate of change of glucose using a Kalman filter. The pump 
shut-off algorithm is used with a set of threshold glucose 
of 100 mg/dl and a 60-minute prediction horizon in the 
following 

 .   (8)

In addition, insulin infusion rate constraints are given

 (9)

where the sampling time is 5 minutes for the insulin 
pump and 1 minute for the glucose measurement.
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Meal Detection and Meal Size Estimation 
for Feed-Forward Action
It is clear from clinical results14 and previous simulation 
results12,17 that better postprandial performance is obtained  
if a “meal announcement” is used; this is commonly known 
as feed-forward control. The reality is that subjects with 
type 1 diabetes, particularly teenagers, often forget to 
provide a meal bolus. An important part of an artificial 
pancreas strategy, therefore, is to incorporate a meal 
detection algorithm to either alarm the individual that 
they may have missed a meal bolus or to deliver a meal 
insulin bolus automatically.

Dassau and colleagues16 used a voting scheme to detect 
meals based on a combination of four different algorithms. 

In previous work, we developed meal detection and meal 
size estimation algorithms using a set of threshold values 
and a finite impulse response filter.12,17 This article presents 
a new meal size estimation procedure that generates a 
series of meal impulses.

The main goal of the new meal size estimation procedure  
is to give reasonable amounts of insulin boluses based on 
a series of meal impulses, not to estimate accurate meal 
carbohydrate sizes on each meal.12,17 The new estimation 
algorithm is based on continuous observations of the first 
and second derivatives of glucose to produce a series 
of meal impulses when a set of conditions are satisfied. 
One meal possibly generates several impulses and the 
sum of its meal impulses is bounded, e.g., by a sum of 
15 impulses over a 30-minute time window. These meal 
impulses are converted into grams of carbohydrate by a 
scaling factor that can be different for each individual.

A daily meal normally causes Dĝ increases with a range of 
0–2 [mg/dl min] and D2ĝ with a range of 0–0.02 [mg/dl min2], 
as shown in Figure 2. We used four threshold values 
for Dĝ by {0, 0.5, 1.25, and 1.8}[mg/dl min] and D2ĝ by  
{0, 0.005, 0.0125, and 0.018}[mg/dl min2]. First, both Dĝ  
and D2ĝ cross 0 when there is an incoming meal. After 
crossing 0, the maximum values of Dĝ and D2ĝ are related  
to meal sizes. Often Dĝ and D2ĝ have a time delay  
between them; therefore, a time window of 20–30 minutes 
is used to detect a meal (see Step 1). The magnitudes 
of meal impulses and the threshold values of Dĝ and D2ĝ  
are obtained by observation through the simulation study 
of 20 in silico subjects. An additional condition to detect  
a meal is when Dĝ and D2ĝ cross each other (see Step 2), 
which is useful for delayed meal responses or larger 
meals (see Figure 3). Figures 2 and 3 show that a single 
meal could cause a series of meal impulses, possibly with 
different magnitudes. 

Step 3 involves an amplification procedure of meal 
impulses depending on a meal response speed. Step 4  
provides an adjustment based on TDI to allow larger 
insulin boluses for individuals with high TDI or ignores 
meal estimates for the low TDI. Individuals with low 
TDI have high insulin sensitivity, and a feedback-only 
controller may be sufficient. A constraint on meal impulse 
estimation is given in Step 5, and each dimensionless 
meal impulse is converted into grams of carbohydrates in 
Step 6.

The following conditions for each step are described in 
detail with threshold values to generate meal impulses  
(m̂k).

Figure 3. Observation of a crossing point of Dĝ and D2ĝ when a meal 
of 40 grams CHO is consumed at 840 minutes.

Figure 2. Estimated rate of change of glucose for a meal of 80 grams 
of CHO consumed at 60 minutes.
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Step 1 detects meals and estimates dimensionless meal 
impulses (see Figure 2):

(10)

Step 2 detects a crossing point of Dĝ and D2ĝ (see  
Figure 3):

(11)

Step 3 amplifies the estimated meal impulses of sharp or 
slow but steady glucose increases:

(12)

Step 4 adjusts estimated meal impulses for higher TDI 
individuals and ignores meal impulses for lower TDI 
individuals:

(13)

Step 5 constrains amounts of meal impulses for a specified 
time window, i.e., a sum of 15 impulses is allowed for a  
30-minute time window:

 (14)

Step 6 converts dimensionless impulses into grams of 
carbohydrates, which can be individually scalable:

 (15)

where m̂k is a dimensionless meal impulse, m̃k is the 
amount (grams) of CHO meal impulse, and wm is a 
conversion parameter. Currently, wm = 4 [g CHO] is used 
in the meal size estimation algorithm; therefore, the 
total estimated meal sizes are bounded by 60 grams of 
carbohydrates for 30 minutes. The 30-minute time window 
and 15-impulse bound can be changed for individual 
diabetic subjects. Inputs for the meal size estimation are 
estimated glucose, first and second derivatives from a 
three-state Kalman filter, and the sample time is 1 minute 
for an insulin bolus.

An example test with an in silico adult subject demonstrated 
the meal estimation results in Figures 4 and 5 using a 
simulation protocol of 40 grams CHO (breakfast at 7 am),  
50 grams CHO (lunch at noon), 20 grams CHO (snack at  
4 pm), and 80 grams CHO (dinner at 6 pm), as discussed 
later. Figure 5 presents an adolescent subject with a 
second meal-like postprandial excursion after a dinner 
meal that was detected as a small meal around 11 pm each 
day. A small meal, such as the snack of 20 grams CHO 
at 4 pm, was not detected in both cases, and breakfast on 
the first day was also not detected in the latter subject.

Model-Based Controller Development
For model-based controller design, appropriate models 
were obtained through system identification procedures 
on 20 in silico subjects (10 adolescents and 10 adults).20 
Two separate models were estimated using subspace 
identification methods23,24 based on impulse tests for insulin 
and meal, respectively, using the “adult average” subject 
in the simulator. These models were combined into one 
linear model and were used in a single, fixed MPC 
algorithm that was applied to all 200 subjects. The MPC  
was integrated with the IOB algorithm to adjust control 
outputs based on insulin on board.

Model Predictive Control
Plant-model mismatch can be compensated by either input 
state or additive output disturbance compensation.25,26 
Although input state disturbance estimation typically 
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provides faster rejection, it may cause aggressive insulin 
delivery, resulting in hypoglycemia. The additive disturbance 
compensation25,27 is used with feed-forward control based 
on the meal size estimation proposed in this article.

Model Predictive Control Formulation with Additive 
Output Disturbance
At each time k, the model prediction error is corrected 
as 

 (16)

where the current filtered output measurement (ŷ f) is 
used to adjust the current model prediction (ŷ) and pk is 
the model prediction error. The filtered output ŷ f is the 
estimated glucose concentration using a Kalman filter 
with different tuning than the one used in the meal size 

estimation algorithm. As a result, the model update is

 (17)

where F is the dynamic state matrix, Gu is the input 
(insulin) matrix, Gd is the disturbance (meal) matrix  
(used only for “meal announcements”), and C is the 
output matrix.

Quadratic Programming Formulation
The MPC objective function is formulated with a prediction 
horizon P, a control horizon M, an output weight Wy,  
and a control move weight WDu

 (18)

where rk is set to 100 mg/dl as a control target. While 
computing the optimal insulin infusion rates, an infeasible 
solution might be generated using output constraints.  
If this occurs, we relax the output constraints in solving 
the quadratic program. MPC satisfies input constraints  
at every sampling time.

Closed-Loop Simulation Results Based on 
a Clinical Protocol
A clinical protocol was generated to test the safety and 
performance of the closed-loop artificial pancreas system.  
A 36-hour closed-loop time was planned with four meals 
and one snack. During closed–loop, all insulin delivery 
was controlled by the controller and meal boluses were 
delivered using meal size estimation.

Simulated Protocol
• Day 1: A subject was admitted at 5 pm and had a 

meal of 80 grams CHO at 6 pm with a proper bolus. 
The loop was closed at midnight and performance 
assessment started at 3 am.

• Day 2: The subject took a breakfast of 40 grams CHO 
at 7 am, a lunch of 50 grams CHO at noon, a snack 
of 20 grams CHO at 4 pm, and a dinner of 80 grams 
CHO at 6 pm.

Figure 4. Meal estimation results with adult subject 3.

Figure 5. Meal estimation results with adult subject 9.
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• Day 3: A breakfast of 40 grams CHO was consumed at 
7 am and the experiment was stopped at noon.

Three MPC cases were considered: (1) MPC only, (2) MPC 
with the previous meal size estimation algorithm,17 and 
(3) MPC with the new MSE algorithm proposed in this  
article. The tuning parameters [P = 120 minutes, M = 5,  
Wy = 1, and WDu = 0.1] were used with Δumax = 5 U/hr,  
umax = 20 U/hr, ymin = 60 mg/dl, and ymax = 200 mg/dl.

The closed-loop results of MPC with 100 adolescents and 
100 adults, which were performed at the Jaeb Center for 
Health Research (Tampa, FL), are presented in Figure 6  
and Tables 1–3. The MPC-only case provided the highest 
mean glucose for the adolescents [159 mg/dl] and the 
adults [145 mg/dl], respectively (see Table 1). Using the 
previous MSE algorithm, mean glucoses were improved 
from the MPC-only case such that 148 mg/dl for the 
adolescents and 139 mg/dl for the adults, as shown in  
Table 2. Glucose time in the target range (70–180 mg/dl) 
was also increased from 72 to 78% for the adolescents 
and from 83 to 88% for the adults. The MPC case with 
the new MSE resulted in the lowest mean glucose of 
138 mg/dl for the adolescents and 132 mg/dl for the  
adults, producing the most desirable result among the three 
cases (see Table 3). The latter case provided more time 
in the target of 70–180 mg/dl. Case studies demonstrated 
the robustness and safety of the integrated system using  
the IOB algorithm, pump shut-off procedure, and MPC 
constraints. As a result, MPC with the feed-forward 
controller using the MSE provided the best glucose 
control performance.

Figure 6. Closed-loop glucose control results of MPC with the new 
meal size estimation algorithm (P = 120 minutes, M = 5, Wy = 1, and 
WDu = 0.01), where Δumax = 5 U/hr, umax = 20 U/hr, ymin = 60 mg/dl, and 
ymax = 200 mg/dl.

(A) MPC:  Adolescents

(B) MPC: Adults

Table 1.
Closed-Loop Results of MPC-Only (No Feed-Forward Controller) on 100 Adolescents and 100 Adults: Mean, 
Minimum (Min), and Maximum (Max) Glucose in [mg/dl]

Group Mean Hemoglobin A1C Min Max [G ≤ 50] a [50 ≤ G ≤ 70] [70 ≤ G ≤ 180] TDI (U)

Adolescents 159 7.15 96 297 0.00% 0.09% 72% 81

Adults 145 6.69 96 243 0.00% 0.00% 83% 64

a G stands for glucose [mg/dl].

Table 2.
Closed-Loop Results of MPC with Previous Meal Size Estimation Algorithm17 on 100 Adolescents and 100 
Adults: Mean, Minimum (Min), and Maximum (Max) Glucose in [mg/dl]

Group Mean Hemoglobin A1C Min Max [G ≤ 50] a [50 ≤ G ≤ 70] [70 ≤ G ≤ 180] TDI (U)

Adolescents 148 6.78 90 275 0.00% 0.32% 78% 91

Adults 139 6.47 95 232 0.00% 0.01% 88% 68

a G stands for glucose [mg/dl].
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Summary and Conclusions

This article presented an integrated artificial pancreas 
system that consists of insulin-on-board computation, meal 
size estimation, and feedback control. IOB computation 
helps prevent hypoglycemia events during the closed-
loop time. The meal size estimation provides an efficient 
feed-forward controller, automatically giving priming 
meal boluses based on estimated meal sizes.

While the model and tuning conditions for the three 
MPC cases are the same, the MPC case with the feed-
forward controller using the new MSE provides the best  
glucose control performance. The new meal size estimation 
provides more time in the target of 70–180 mg/dl for  
82% for the adolescents and 90% for the adults compared to 
results using the previous MSE. The feed-forward action 
by the new MSE increases the time of 50 ≤ G ≤ 70 mg/dl; 
1.37% for adolescents and 0.53% for adults are observed  
in Table 3, whereas no significant time is observed in 
Tables 1 and 2. Moreover, it is useful to specify input 
and output constraints in MPC to prevent hypo- and 
hyperglycemia events.

Meal boluses by the MSE reduce glucose peaks and mean 
postprandial glucoses. Because the meal size estimation 
is only active when glucose increases rapidly, it makes 
6.75% false-positive and 18% false-negative detections 
while producing 82% true-positive detection out of 800 
meals. As shown in Table 4, the mean meal detection 
time was 31 minutes after the glucose increased 4 mg/dl. 
The distributions of meal detection times and estimated 
meal sizes are shown in Figure 7. The lowest minimum 
glucose for 0–90 minutes after false meal estimations was 
76 mg/dl. However, the use of MSE did result in four 
adolescent subjects having glucose values <50 mg/dl 
postprandially (Figure 6A).

The integrated system provides rapid and robust insulin 
infusions, more suitable for an artificial pancreas system. 
As a result, a desirable control performance based on 
a clinical protocol is presented through the simulation 

Table 3.
Closed-Loop Results of MPC with New Meal Size Estimation Algorithm on 100 Adolescents and 100 Adults: 
Mean, Minimum (Min), and Maximum (Max) Glucose in [mg/dl]

Group Mean Hemoglobin A1C Min Max [G ≤ 50] a [50 ≤ G ≤ 70] [70 ≤ G ≤ 180] TDI (U)

Adolescents 138 6.43 78 275 0.14% 1.37% 82% 100

Adults 132 6.23 84 231 0.00% 0.53% 90% 72

a G stands for glucose [mg/dl].

Table 4.
Performance Analysis of New MSE on 100 
Adolescents and 100 Adults

Total number of meals 800

Total number of meal detections (true +) 656 (82.00%)

Total number of false positives 54 (6.75%)

Total number of false negatives 144 (18.00%)

Average detection time after meal onsets 31 [minutes]

Mean magnitude of false positvely estimated 
meals

36.41 [g CHO]

Mean of min glucose of 0–90 min after false 
positive meals

119.84 [mg/dl]

Min of min glucose of 0–90 min after false 
positive meals

75.67 [mg/dl]

Max of min glucose of 0–90 min after false 
positive meals

180.73 [mg/dl]

Figure 7. Distribution of (A) meal detection times and (B) estimated 
meal sizes from results of MPC and new meal size estimation.

A

B

Meal size [gram CHO]
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study of 200 in silico subjects. Each component provides 
convenient tuning options from a nominal set that can 
be individualized further for specific diabetic subjects.
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