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Abstract

Background:
A model-based controller for an artificial β cell requires an accurate model of the glucose–insulin dynamics 
in type 1 diabetes subjects. To ensure the robustness of the controller for changing conditions (e.g., changes in 
insulin sensitivity due to illnesses, changes in exercise habits, or changes in stress levels), the model should be able 
to adapt to the new conditions by means of a recursive parameter estimation technique. Such an adaptive strategy  
will ensure that the most accurate model is used for the current conditions, and thus the most accurate model 
predictions are used in model-based control calculations.

Methods:
In a retrospective analysis, empirical dynamic autoregressive exogenous input (ARX) models were identified 
from glucose–insulin data for nine type 1 diabetes subjects in ambulatory conditions. Data sets consisted 
of continuous (5-minute) glucose concentration measurements obtained from a continuous glucose monitor, basal 
insulin infusion rates and times and amounts of insulin boluses obtained from the subjects’ insulin pumps, 
and subject-reported estimates of the times and carbohydrate content of meals. Two identification techniques 
were investigated: nonrecursive, or batch methods, and recursive methods. Batch models were identified from  
a set of training data, whereas recursively identified models were updated at each sampling instant. Both types of 
models were used to make predictions of new test data. For the purpose of comparison, model predictions were 
compared to zero-order hold (ZOH) predictions, which were made by simply holding the current glucose value 
constant for p steps into the future, where p is the prediction horizon. Thus, the ZOH predictions are model 
free and provide a base case for the prediction metrics used to quantify the accuracy of the model predictions. 
In theory, recursive identification techniques are needed only when there are changing conditions in the subject 
that require model adaptation. Thus, the identification and validation techniques were performed with both  
“normal” data and data collected during conditions of reduced insulin sensitivity. The latter were achieved by 
having the subjects self-administer a medication, prednisone, for 3 consecutive days. The recursive models 
were allowed to adapt to this condition of reduced insulin sensitivity, while the batch models were only identified 
from normal data.

continued 
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Introduction

Recent publications have considered a variety of 
empirical, black-box type models identified from type 1 
diabetes data. Many of these studies use data obtained 
from computer simulations of physiological models of 
glucose–insulin dynamics for type 1 diabetes.1–3 Other 
studies have evaluated identification techniques for data 
obtained from human subjects with type 1 diabetes, both 
for clinical conditions (largely disturbance free) and for 
ambulatory conditions. Finan and colleagues2 analyzed 
ambulatory data from two type 1 diabetes subjects in 
ambulatory conditions, comparing model identification 
characteristics of these data to simulated versions of 
data in order to determine the effects of unmeasured, 
unmodeled disturbances in subject data (e.g., stress and 
exercise effects on the glucose concentration).

Ståhl and Johansson4 performed an in-depth analysis 
of ambulatory data from one subject. Glucose data were 
collected via fingerstick measurements (not using continuous 
glucose monitoring), however, and thus were sparse. 

The black-box models they identified from data were 
autoregressive moving average (ARMA) models, ARMA 
with exogenous inputs (ARMAX) models, subspace-
identified models, general transfer function models, and 
nonlinear ARMAX models.

Gani and associates5 identified autoregressive (AR) models 
from continuous glucose data from nine type 1 diabetes 
subjects and quantified the accuracy of short-term 
(<60-minute) predictions. They used a data-smoothing 
technique and a regularization technique for the estimation 
of model parameters.

The publications cited earlier investigated time-invariant  
or nonrecursive models. It is well known, however, that  
the glucose–insulin dynamics in type 1 diabetes subjects 
can change significantly over a range of timescales.6–8  
To ensure satisfactory performance for changing conditions, 
a model-based controller for an artificial β cell should 
be equipped with a model adaptation strategy in 

Abstract cont.

Results:
Data from nine type 1 diabetes subjects in ambulatory conditions were analyzed; six of these subjects also 
participated in the prednisone portion of the study. For normal test data, the batch ARX models produced  
30-, 45-, and 60-minute-ahead predictions that had average root mean square error (RMSE) values of 26, 34, 
and 40 mg/dl, respectively. For test data characterized by reduced insulin sensitivity, the batch ARX models 
produced 30-, 60-, and 90-minute-ahead predictions with average RMSE values of 27, 46, and 59 mg/dl, 
respectively; the recursive ARX models demonstrated similar performance with corresponding values of 27, 
45, and 61 mg/dl, respectively. The identified ARX models (batch and recursive) produced more accurate 
predictions than the model-free ZOH predictions, but only marginally. For test data characterized by reduced 
insulin sensitivity, RMSE values for the predictions of the batch ARX models were 9, 5, and 5% more accurate than 
the ZOH predictions for prediction horizons of 30, 60, and 90 minutes, respectively. In terms of RMSE values, 
the 30-, 60-, and 90-minute predictions of the recursive models were more accurate than the ZOH predictions,  
by 10, 5, and 2%, respectively.

Conclusion:
In this experimental study, the recursively identified ARX models resulted in predictions of test data that were  
similar, but not superior, to the batch models. Even for the test data characteristic of reduced insulin sensitivity,  
the batch and recursive models demonstrated similar prediction accuracy. The predictions of the identified ARX 
models were only marginally more accurate than the model-free ZOH predictions. Given the simplicity of the 
ARX models and the computational ease with which they are identified, however, even modest improvements 
may justify the use of these models in a model-based controller for an artificial β cell.

J Diabetes Sci Technol 2009;3(5):1192-1202
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variables. For this diabetes application, the ARX model 
has the form

A(q-1)G(t) = B1(q-1)uins(t) + B2(q-1)umeal(t) + g + e(t)     (1)

where G(t) is the glucose concentration (mg/dl), the 
output variable; uins(t) is the insulin infusion rate (U/h), 
an input variable; umeal(t) is the meal amount [grams 
carbohydrate (CHO)], an input variable; g is a constant 
disturbance; e(t) is white Gaussian noise; and t is the 
discrete-time sampling instant, i.e., t = 1,2,...

The parameters of the model are the disturbance g and 
the coefficients of q-1 in the polynomials A, B1, and B2:

A(q-1) = 1 + a1q-1 + a2q-2 + ... + anq-n

BX(q-1) = bX,1q-1 + bX,2q-2 + ... + bX,nq-n,   X = 1,2    (2)

where q-1 is the backward shift operator, i.e., q-1x(t) = x(t - 1).  
The model order n corresponds to the number of 
parameters to be estimated in each polynomial. For this 
research, third-order models were identified, i.e., n = 3.

An attractive feature of ARX models is that their 
parameters are estimated readily from a set of training 
data. In fact, estimates of the model parameters values are 
obtained analytically from the well-known least-squares 
solution, which minimizes the sum of the squares of the 
one-step-ahead prediction errors for training data.13,14

To identify nonrecursive, or batch, ARX models is to 
estimate the model parameters from a specific set of 
training data. Once the parameters are estimated, they 
are held constant. This batch model can then be used to 
predict new test data. Conceptually, if the glucose–insulin 
dynamics have not changed, then the batch models should 
give predictions for test data approximately as accurate 
as for training data.

If, however, the glucose–insulin dynamics have changed, 
then it is appropriate to employ a recursive identification 
technique that updates the model parameters as new data 
become available. This recursive technique, then, enables 
model parameters to adapt to changing conditions.

The parameters for the recursively identified ARX models 
are updated via a least-squares solution, as in the 
batch case, but with a variation. In order to adapt more 
quickly to changing conditions, the parameters can be 
updated with a weighted least-squares criterion, which 
places more importance on recent information than on 
older information. This weighting is accomplished with 
forgetting factor λ, a number slightly less than one. The 
forgetting factor can be interpreted as follows: a sample that 

which model parameters can be updated recursively. 
Conceptually, this technique will ensure that the most 
accurate set of model parameters for the current conditions 
is used in making glucose predictions, which in turn 
affect the calculated control actions.

Only a few previous studies have investigated recursive 
identification techniques for type 1 diabetes data. 
Hovorka and colleagues9 used a Bayesian technique to 
recursively estimate parameters in their physiological 
model for patients in a clinical setting. Their glucose 
measurements were obtained from intravenous blood 
samples but were delayed for 30 minutes to simulate 
subcutaneous measurements. They performed closed-loop 
model predictive control during fasting conditions based  
on the predictions from the model.

Sparacino and colleagues10 recursively estimated parameters 
for first-order polynomial and AR models based on 
type 1 diabetes subject data. Data in their study were 
for ambulatory conditions, but were filtered to remove 
noise spikes. Eren-Oruklu and associates11,12 recursively 
estimated parameters for low-order AR and ARMA models 
for both in-clinic and ambulatory subject data. The subjects 
in the study were normal, healthy people and people with 
type 2 diabetes.

In this article, the modeling techniques were evaluated for 
unfiltered data collected during ambulatory conditions. 
Data are representative of both normal conditions and 
conditions of medicinally induced reductions in insulin 
sensitivity. This condition of reduced insulin sensitivity 
is achieved through administration of a medication, 
prednisone (see the following section). Inclusion of these 
data is of central importance to the recursive model 
identification scheme investigated in this article. 
A fundamental advantage of a recursive estimation 
technique is its ability to adapt to changing conditions. 
By using reduced insulin sensitivity data in the analysis, 
we have effectively created a change in the system 
(i.e., subject) dynamics, thus providing the recursively 
identified models a changing condition to which to adapt.

Methods

Autoregressive Exogenous Input (ARX) Models
The models identified in this study were empirical, linear 
dynamic models known as autoregressive exogenous 
input models. They are linear difference equation models 
that describe the relationship between the current output 
variable and previous values of the output and input 
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is τ samples old carries a weight of λτ compared to a 
weight of one for the most recent sample.

A range of values for the forgetting factor was investigated, 
and it was determined that λ = 0.99 resulted in the most 
accurate model predictions of future data. Data in this 
study were sampled at 5-minute intervals; thus, this 
value of λ implies that a data sample approximately 1 day in 
the past is weighted at 5% of the most current data sample.

ARX Model Gains
In general, a model gain is the steady-state sensitivity of the  
model output to a model input. This gain can be interpreted 
as the steady-state change in the output resulting from a  
unit step change in the input. Knowledge of the effect of 
insulin and meals on glucose concentration indicates two 
fundamental properties of the gains in a diabetes model: 
(1) the gain associated with the insulin input should be 
negative (i.e., an increase in insulin results in a decrease in 
glucose concentration) and (2) the gain associated with the  
meal input should bsitive (i.e., a meal results in an 
increase in glucose concentration). However, depending  
on the nature of training data, there is no guarantee  
that the estimated gains will have the correct sign.

The gains of ARX models are calculated as follows. In 
general terms, the steady-state gain from an input u 
to an output y is Δy/Δu, where Δy and Δu are the final, 
steady-state changes in y and u after a step change in u.  
At steady state,

 Δu = Δu(t - 1) = Δu(t - 2) = Δu(t - 3)
Δy = Δy(t) = Δy(t - 1) = Δy(t - 2) = Δy(t - 3)

     (3)

Therefore, the insulin-to-glucose and meal-to-glucose 
steady-state gains for these ARX models are calculated 
as in Equations (4) and (5), respectively:

                    (4)

                    (5)

Prediction Horizons
The prediction horizon for these dynamic models refers to 
how far into the future they predict. This quantity can 
be expressed in terms of either samples or time units. 
For the research presented in this article, the sampling 
interval for all data was 5 minutes.

In general, there is an inherent trade-off between the 
length of the prediction horizon and the accuracy of the 
model predictions. In order to investigate the relationship 
between the accuracy of model predictions and the 
length of the prediction horizon, a range of prediction 
horizons was investigated in this research that may be 
relevant to model-based control—30 to 90 minutes.

Zero-Order Hold (ZOH) Predictions
Given data and a model prediction for those data, there 
are several ways to quantify the “goodness” of the model 
prediction. (Two of these techniques are discussed later.) 
Regardless of the metric used to quantify the model 
prediction, this metric may not have much meaning 
unless it is compared to a lower limit. In this study, 
predictions are compared to corresponding lower limits, 
which are metrics obtained from making zero-order hold 
(ZOH) predictions of data. A ZOH prediction is simply 
the projection of the current glucose measurement p steps 
into the future, where p is the prediction horizon.

Figure 1 illustrates the difference between an ARX model 
prediction and a ZOH prediction. In this simple example, 
the current sample is t = 2 and the prediction horizon 
is p = 6 steps. Thus, at sample t = 2, the ARX model 
attempts to predict the glucose value at t = 8; the ZOH 
model merely holds the current value constant for six 
steps. The ARX prediction is closer to the actual glucose 
value at t = 8. The improvement of the ARX prediction 
compared to the ZOH prediction for this particular data 
point is given by (36 – 26)/36 = 28%.

Figure 1. ARX model prediction and ZOH prediction for one data 
point. The solid line is subject data, and the prediction horizon is six 
steps.
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Prediction Metrics
An inherent difficulty in quantifying model predictions 
is selecting one or more suitable metrics that most 
closely characterize the “goodness” of the prediction.  
For this research, two types of prediction metrics are 
used: a relative metric and an absolute metric.

The relative metric used in this article is the FIT value, 
a statistical metric that quantifies how much of the 
variability in data is explained by the model prediction15:

                     (6)

where G is the vector of measured glucose values, Ĝ  is 
the vector of model predictions, G  is a vector whose 
elements are the mean of the measured glucose values, 
and the norms are Euclidean. (For example, if vector 
Z contained three elements, [ ]1 2 3Z z z z= , then 

2 2 2
1 2 3Z z z z= + + ). Thus, FIT = 100% is obtained for a 

perfect prediction, FIT = 0 can be obtained by predicting 
the mean of the measured glucose at every sample, and  
FIT < 0 is obtained for very poor model predictions.

The absolute metric used in this article is the square 
root of the mean squared prediction error, or root mean 
squared error (RMSE). This metric is a quantification 
of the magnitudes of the prediction errors and is thus  
given in physical units (i.e., mg/dl).

Ambulatory Subject Data
Nine adult type 1 diabetes subjects (six women and  
three men) participated in the study, which was carried 
out in 2004 and 2005. Each of the subjects signed an 
informed and witnessed consent form approved by 
the Cottage Health Systems Internal Review Board.  
Subjects were eligible to participate if they had type 1 
diabetes without major complications and were using 
a continuous subcutaneous insulin infusion pump. The 
subjects were trained in the proper use of a continuous 
glucose monitoring system (CGMS) device (CGMS®, 
Medtronic MiniMed, Inc., Northridge, CA) and the 
OneTouch® UltraSmart® blood glucose meter (LifeScan, 
Inc., Milpitas, CA), and entered at least four blood glucose 
meter values per day into the CGMS for calibration 
purposes.

For each subject, several data sets were collected 
during normal, ambulatory conditions. Data consisted of 
continuous (5-minute) glucose measurements obtained 
from the CGMS, insulin pump records of basal rates and 

bolus amounts and times, and subject-recorded estimates 
of the times and CHO content of meals. Each data set 
spanned 2 to 8 days. For each data set, third-order batch 
ARX models were identified from the first half of the 
data set (training data) and were used to predict the 
second half of the data set (test data). These predictions 
were compared to ZOH predictions, the designated lower 
limit for prediction accuracy.

Prednisone Data
In the second portion of the study, six of the nine subjects 
were administered prednisone (60 mg/day), a steroid 
medication that induces lowered insulin sensitivity,  
for 3 consecutive days.8 (The three subjects who did not 
take the prednisone declined to participate in this portion 
of the study.) For these data, it was postulated that, due 
to reduced insulin sensitivity, improvements in model 
prediction accuracy could be obtained using a recursive 
ARX model identification technique that would allow the 
model parameters to adapt to the patients’ changing 
glucose–insulin dynamics.

Table 1 lists descriptive statistics for the six subjects  
who took the prednisone medication for both their normal 
data and their data collected when on the prednisone. 
Table 1 indicates that, on average, the prednisone 
succeeded in lowering the subjects’ insulin sensitivity. 
On average, the subjects’ mean daily glucose increased 
by more than 30 mg/dl (133 to 164 mg/dl) and their 
daily insulin totals increased by more than 50% from 
normal (38.0 to 60.7 units), while their daily CHO intake 
remained roughly the same (160 grams vs 168 grams).

For these data sets, batch ARX models were identified from 
normal data collected prior to prednisone administration 
(training data) and were used to predict prednisone 
data (test data). In addition, ARX models were identified 
recursively throughout the entire data set and were used to 
predict prednisone data. Both batch and recursive ARX 
model predictions were compared to ZOH predictions to 
characterize model accuracy.

Results and Discussion

Batch ARX Identification for Normal Data
Table 2 shows results for normal subject data in terms  
of FIT values. Three prediction horizons are shown 
(30, 45, and 60 minutes) for both training data used to 
develop the models and independent test data for each 
subject. The improvement of the ARX model predictions 
relative to the ZOH predictions was modest, indicating 
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Table 1.
Statistics for Six Subjects Who Participated in the Prednisone Portion of the Study

Subject number Data type
Average daily glucose 

(mg/dl)

Average daily insulin totals Average daily CHO intake 
(g)Basal (U) Bolus (U) Total (U)

1
Normal 130 13.2 12.5 25.7 80

Prednisone 222 13.2 42.5 55.7 94

2
Normal 95 18.6 32.5 51.1 168

Prednisone 102 21.3 66.4 87.7 165

5
Normal 134 24.4 20.0 44.4 182

Prednisone 202 30.7 31.6 62.3 219

6
Normal 131 14.6 13.0 27.6 146

Prednisone 138 19.8 24.0 43.8 156

7
Normal 149 16.3 22.3 38.6 144

Prednisone 153 23.9 29.3 53.2 154

8
Normal 157 20.9 19.7 40.6 241

Prednisone 168 30.0 31.2 61.2 222

Mean
Normal 133 18.0 20.0 38.0 160

Prednisone 164 23.2 37.5 60.7 168

Table 2.
Modeling Results for Batch ARX Models and Normal Dataa

Subject
number

Model

Prediction horizon

30 min 45 min 60 min

Train Test Train Test Train Test

1
Batch 74 56 67 48 61 41

ZOH 71 56 63 48 56 41

2
Batch 59 57 47 48 38 40

ZOH 54 57 41 47 30 38

3
Batch 54 49 44 36 38 27

ZOH 47 50 34 39 23 30

4
Batch 65 68 53 56 43 45

ZOH 53 62 37 48 25 37

5
Batch 68 54 59 38 51 26

ZOH 63 51 51 36 41 22

6
Batch 68 63 58 51 50 40

ZOH 57 59 43 44 32 32

7
Batch 69 61 57 47 48 36

ZOH 59 55 44 40 32 27

8
Batch 72 62 61 47 50 34

ZOH 62 52 48 35 36 20

9
Batch 66 54 54 39 44 28

ZOH 58 50 44 34 31 22

Mean
Batch 66 58 56 45 47 35

ZOH 58 55 45 41 34 30

ARX improvement over ZOH (%) 13 6 24 11 39 18

a Average FIT values (%) for training and test sections for each subject. Improvement values were calculated before rounding the table 
values.
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ARX predictions) to 70% for subject 8. This broad range 
of results indicates a high degree of intersubject variability; 
data from some subjects are explained more readily by 
these types of mathematical models than other subjects.

Table 3 lists modeling results for normal subject data 
in terms of RMSE values for training and test data and 
for the same three prediction horizons as in Table 2: 30, 45, 
and 60 minutes. For training data, the improvement was 
reasonable, about 20%. However, only approximately half  
of this improvement was observed for test data, being 
on average only about 9%. Again the degree to which 
the ARX models improved upon the ZOH predictions 
was highly subject dependent. For 60-minute predictions 
of test data, the ZOH predictions were actually more  
accurate than the ARX predictions for subject 3 (as was 
true for the FIT values, also), but for subject 8 the ARX 
predictions were significantly better (about 17%).

considerable unexplained variability in these ambulatory  
data. In terms of FIT values, the improvement increased 
with increasing prediction horizon, with maxima at 
39% and 18% for 60-minute predictions for training 
and test data, respectively. For training data, the ARX 
model predictions are substantially better than the ZOH 
predictions, regardless of the prediction horizon. This is 
an expected result given that the ARX model parameters 
are estimated so as to optimize the model predictions 
for these training data. For test data, however, there is 
no guarantee that the ARX models will perform as well 
as for training data. Test data in Table 2 show that the 
degree to which the ARX model predictions were more 
accurate than the ZOH predictions was highly dependent 
on the subject. For 60-minute predictions, for example, 
the improvement of the ARX models compared to 
the ZOH predictions ranged from –10% for subject 3  
(i.e., the ZOH predictions were actually better than the 

Table 3.
Modeling Results for Batch ARX Models and Normal Dataa

Subject
number

Model

Prediction horizon

30 min 45 min 60 min

Train Test Train Test Train Test

1
Batch 24 32 30 38 36 43

ZOH 27 32 34 39 41 44

2
Batch 15 16 19 19 22 22

ZOH 16 16 21 19 25 22

3
Batch 18 19 22 24 24 28

ZOH 20 19 26 23 29 27

4
Batch 23 30 32 41 38 52

ZOH 31 35 42 48 51 59

5
Batch 24 30 31 40 36 48

ZOH 28 32 36 42 44 51

6
Batch 19 24 24 32 29 39

ZOH 25 26 33 36 40 44

7
Batch 23 26 31 36 38 43

ZOH 30 31 41 41 50 50

8
Batch 19 25 27 35 35 44

ZOH 26 32 36 43 44 53

9
Batch 24 28 32 37 39 43

ZOH 29 30 39 39 48 47

Mean
Batch 21 26 28 34 33 40

ZOH 26 28 34 37 41 44

ARX improvement over ZOH (%) 19 9 20 9 20 9

a Average RMSE values (mg/dl) for training and test sections for each subject. Improvement values were calculated before rounding the 
table values.
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In terms of improvement numbers, the RMSE metric was 
less sensitive to the prediction horizon than the FIT metric. 
For RMSE values, the improvement of the ARX models 
relative to the ZOH predictions was approximately constant 
over the range of prediction horizons. The improvement 
numbers for the FIT metric, in contrast, varied from 13 
to 39% for training data and 6 to 18% for test data as  
the prediction horizon varied from 30 to 60 minutes.

One possible explanation for the only modest improvement 
in prediction accuracy for ARX models compared to 
ZOH predictions is the presence of key unmeasured 
and unmodeled disturbances in these ambulatory-type 
data, notably, exercise and stress levels. These factors can 
have a significant influence on the glucose concentration. 
However, because they were unmeasured (and therefore 
unmodeled), they confounded the identification of the 

simpler glucose–insulin–meal models identified in this 
research.

A second factor that can contribute to inaccuracies in 
the identification of the models is the inaccuracy of data 
themselves. Continuous glucose sensors are subject to 
measurement errors, and meal records are simply patient-
reported estimates of the times and CHO content of 
meals. There are most certainly significant errors in these 
meal records for at least some subjects, but it is difficult  
to quantify or even classify them.

Recursive ARX Estimation for Prednisone Data
Table 4 summarizes the modeling results for the six 
type 1 diabetes mellitus subjects who participated in  
the prednisone part of the study, i.e., the part of the 
study in which lowered insulin sensitivity was 

Table 4.
Modeling Results for Conditions of Reduced Insulin Sensitivitya

Subject number Model
FIT (%) RMSE (mg/dl)

30 min 60 min 90 min 30 min 60 min 90 min

1

Batch 60 42 28 37 54 67

Recursive 62 43 26 36 53 69

ZOH 61 44 30 37 52 65

2

Batch 66 45 31 18 29 37

Recursive 66 37 7 18 34 50

ZOH 63 39 21 20 33 43

5

Batch 53 27 6 35 55 71

Recursive 62 45 29 28 42 54

ZOH 61 43 29 29 43 54

6

Batch 71 50 35 23 39 50

Recursive 67 46 27 25 42 57

ZOH 65 40 21 27 46 61

7

Batch 66 41 23 29 51 67

Recursive 63 33 11 32 58 77

ZOH 59 31 9 35 60 78

8

Batch 68 37 15 23 45 61

Recursive 68 38 15 23 45 61

ZOH 57 24 –1 31 54 72

Mean

Batch 64 40 23 27 46 59

Recursive 65 40 19 27 45 61

ZOH 61 37 18 30 48 62

Batch ARX improvement over ZOH (%) 6 9 26 9 5 5

Recursive ARX improvement over ZOH (%) 6 9 5 10 5 2

Recursive ARX improvement over batch ARX (%) 1 0 –17 1 0 –4

aAverage FIT values (%) and RMSE values (mg/dl) for each subject. Improvement values were calculated before rounding the table values. 
Subjects 3, 4, and 9 did not participate in the prednisone portion of the study.



1200

Experimental Evaluation of a Recursive Model Identification Technique for Type 1 Diabetes Finan

www.journalofdst.orgJ Diabetes Sci Technol Vol 3, Issue 5, September 2009

induced medicinally. The batch ARX method resulted 
in predictions as accurate or more accurate than the 
recursive ARX method for all subjects except one, 
subject 5. Mean values for all subjects indicate that 
the batch method and the recursive method produced 
approximately the same prediction performance, despite  
the fact that batch models were identified from normal 
data.

On average, both modeling methods produced better 
predictions than the ZOH method. For 90-minute 
predictions, improvement of the batch ARX models 
relative to the ZOH predictions was a significant 26% in 
terms of FIT values, but was only 5% in terms of RMSE 
values.

For the shortest prediction horizon of 30 minutes, the 
recursive models tended to produce slightly better 
predictions than the batch models. For the midrange 
prediction horizon of 60 minutes, the two methods 
produced nearly identical predictions. For the longest 
prediction horizon of 90 minutes, the batch models were 
more accurate than the recursive models.

Figure 2 shows 60-minute model predictions for subject 5  
for the batch and recursive ARX model. Predictions for 
the recursively identified model are clearly more accurate 
than for the batch model. Figure 3 shows the calculated 
gains and disturbance term for the recursive model. 
Correlated, erratic estimates of the model gains are 
evident near t = 11 h and near the end of the data set.

Figure 4 shows 60-minute model predictions for subject 6 
for the batch ARX model and the recursive ARX model. 
Predictions for the recursively identified model are 
slightly less accurate than for the batch model. Figure 5 
shows the corresponding gains and disturbance term 
for the recursive model. Again, a section of data near  
t = 21 h shows correlated, erratic estimates of the gains 
in the model.

The erratic estimates of model parameters seen in  
Figures 3 and 5 may be due to the nature of ambulatory 
subject data, which at times are deficient of useful 

Figure 3. Model gains and the disturbance term for the recursive ARX 
model for subject 5.

Figure 2. 60-minute predictions for conditions of reduced insulin 
sensitivity for subject 5. Solid line: subject data. Dotted line: Batch-
identified ARX model (FIT = 27%, RMSE = 55 mg/dl). Dashed line: 
recursive ARX model (FIT = 45%, RMSE = 42 mg/dl).

Figure 4. 60-minute predictions for conditions of reduced insulin 
sensitivity for subject 6. Solid line: subject data. Dotted line: Batch-
identified ARX model (FIT = 50%, RMSE = 39 mg/dl). Dashed line: 
recursive ARX model (FIT = 46%, RMSE = 42 mg/dl).
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information. For instance, a stretch of time with no 
bolus or meal is deficient of information regarding the 
effects of these inputs on the glucose concentration.  
In these cases, it is not uncommon that the recursive 
least-squares parameter estimator becomes sensitive to 
new inputs and disturbances and consequently results 
in inaccurate estimates of model parameters, leading to 
inaccurate predictions.16,17

Conclusions
The predictive accuracy for the batch and recursive  
ARX identification methods in this article was found 
to be, on average, very similar. These estimation and 
prediction methods were investigated for data in which 
states of reduced insulin sensitivity were induced in six 
type 1 diabetes subjects in ambulatory conditions.

For normal data (i.e., days without the prednisone 
medication), predictions of the batch ARX models were 
significantly better than the ZOH predictions, especially 
for training data. This result is reasonable because the 
parameters of the models were estimated so that the model 
fit for training data was optimized. The improvement 
of the ARX predictions relative to the ZOH predictions 
increased with increasing prediction horizon when FIT 
values were used to quantify the predictions. When 
RMSE values were used, the improvement was largely 
independent of prediction horizon.

For data characterized by a decrease in insulin sensitivity, 
the recursive ARX models demonstrated an insignificant 
improvement over the batch ARX models for the 30-minute  
prediction horizon and no improvement for the 60-minute 
prediction horizon. As the prediction horizon was extended 
to 90 minutes, however, the batch models resulted in 
better predictions.

These ambulatory subject data included a number of key 
unmeasured disturbances, most importantly exercise 
and stress levels. Although states of reduced insulin 
sensitivity were induced in subjects via prednisone 
medication, the effect of the medication was difficult 
to quantify and therefore was not modeled. Reliable, 
quantitative measures of stress and exercise levels would 
likely result in more accurate models and perhaps justify 
the recursive estimation of model parameters.
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Figure 5. Model gains and the disturbance term for the recursive ARX 
model for subject 6.

These results for test data suggest that the model 
adaptation had a minimal effect on the prediction 
accuracy. Also, reducing forgetting factor λ resulted in  
highly erratic and inaccurate predictions (results not shown; 
see Finan18). Thus, for the changes in insulin sensitivity 
induced in the subjects in this study, the simple ARX 
models were unable to improve their prediction accuracy 
significantly through adaptation.

Again, plausible explanations for these results relate to the 
nature of ambulatory data and the presence of unmeasured 
and unmodeled disturbances that greatly confound the 
accurate identification of the ARX models.

It is also possible that the changes introduced into 
the subjects were not of a great enough magnitude to 
warrant reestimation of model parameters. Table 1 lists 
some quantifications of the induced insulin sensitivity 
change, but even with these data, it is still difficult to 
determine if the model should be reidentified.
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