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Abstract
Miniaturization of clinical chemistry analyzers can empower research conducted to better understand, 
diagnose, manage, and cure diseases such as diabetes. For the last decade, we have been working on the 
design and development of miniaturized clinical chemistry devices, including a Diabetic Chip (diabetiChip). 
These devices measure a small array of analytes, are small, portable, fast, easy-to-operate, and inexpensive.  
The chosen analytical method for the diabetiChip uses bioluminescence, which is highly sensitive and specific,  
and is based on photon counting and specific enzymatic reactions. Bioluminescent reactions were intentionally 
chosen for analyzing metabolic reactions because they use some of the central nodes of metabolism, such as 
adenosine triphosphate. Operations of the diabetiChip’s information processing ware are the focus of this paper; 
we show the feasibility of using a set of kinase-containing enzymatic reactions of a firefly bioluminescence-
coupled glucose assay in designing the diabetiChip. We have developed and tested the feasibility of the glucose 
assay; the assay’s analytical detection limits (before sample dilution) were 5–185 μM. Uncertainty associated 
with reporting a 100 μM concentration was about ± 5 μM. The results show that an FFL bioluminescent-
coupled glucose assay is promising in terms of reducing sample volume and cost. The concept of GlucoFaces™ 
in visualizing measurements of the diabetiChip is also discussed.

J Diabetes Sci Technol 2008;2(5):873-881

Introduction

Miniaturization of clinical chemistry analyzers 
can empower ongoing research in better understanding, 
diagnosing, managing, preventing, and curing diseases 
such as diabetes. For the last decade, we have been working 
on the design and development of clinical chemistry 
labs-on-a-chip (ChemChips), including a diabetic chip 
(diabetiChip), that measure a small array of analytes, are 
small, portable, fast, easy-to-operate, and inexpensive.1,2 

In this article, we intend to provide background on 
the chip fabric (ChipWare) and the chemical analytical 
principle (ChemWare) of the diabetiChip; the reader is 
advised to refer to the cited references for further details 
regarding chip fabrication and assay lyophilization 
and immobilization. The focus of this paper is the 
development of the diabetiChip’s information processing 
ware (InfoWare).
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Chip Ware
Analytical processes of the diabetiChip are carried out 
within a micro-scale, multi-well chip, where chemical 
assays are deposited, the sample is processed and 
transported, and photons emitted from the chemical 
reactions are detected and counted. Chips can be 
manufactured in large quantities at a relatively low 
cost. A variety of microfabrication techniques can be 
used to build arrays of detection wells, where each 
well contains an independent bioluminescence-based 
analytical assay. Each unique assay is deposited and 
stabilized (via lyophilization) in small quantities in 
individual detection wells. Commercially available silicon 
photodiodes, avalanche photodiodes, and photomultiplier 
tube (PMT) arrays designed for low-light detection are 
ideal for producing small size-detectors to measure signals 
simultaneously from multiple analytical channels. Our 
group has focused on PMT-based detectors during the chip 
development processes. We also examined various sample 
processing methods and products, such as top-loading,  
through-flow, hydrogels, plasma separation membranes, 
and microfluidic channels. We then developed a total micro- 
analytical chemistry system (ChemCD), which integrates 
all of the wares.3 ChemCD can empower the clinical 
chemistry chip in measuring analyte concentrations in 
different biological samples and beyond the analytical 
detectable limit via automatic filtering and dilution of 
those samples.3

Chemistry Ware
The analytical principle of the diabetiChip is the 
measurement of the number of photons emitted from a 
bioluminescent chemical reaction coupled to an enzymatic 
reaction specific to the metabolite of concern.1,2 A reaction 
that produces photons has many advantages: the problems 
associated with color perception or wavelength separation 
are eliminated, as in the case of reflectance colorimetry;  
no light source is needed, as in the case of fluorescence 
spectroscopy; no electrodes susceptible to contamination 
are used, as in the case of electrochemical analyzers; and 
less sample volume is required, a major concern for the 
patient. Bioluminescence is light produced by compounds 
undergoing specific oxidation reactions catalyzed by 
enzymes. Bioluminescence-based measurements are 
efficient for analyzing multiple metabolites in the micro 
to sub-microMolar concentration range over a short time 
(about a minute or less), due to their high sensitivity  
(100 to 1,000 times more sensitive than common 
spectroscopic or colorimetric methods).

Generally, bioluminescent reactions employ an enzyme 
called “luciferase,” which facilitates the oxidation of an 
energetic substrate, called “luciferin,” into an excited state,  
where it emits a photon. There are many different 
naturally occurring luciferases and luciferins with at 
least 30 different known bioluminescent reactions. The 
yellow-green (580 nm wavelength) bioluminescence of 
fireflies is based on the enzyme-catalyzed oxidation 
of firefly luciferin using adenosine triphosphate (ATP) 
as a highly specific co-reactant (key light inducer). 
Interactions between the reactants and ATP result in 
light emission. Moreover, a calibration curve can be 
obtained for various ATP initial concentrations or any 
metabolite coupled to ATP via an enzymatic reaction.2,4,5 
Since ATP is one of the central nodes of metabolism, 
a large number of metabolites can be measured by 
coupling a metabolite-specific reaction that also involves 
ATP (usually enzymatic reactions using a kinase) to the 
bioluminescence platform of firefly luciferase (FFL).2 
In such coupled reactions, light emission will also 
depend on the type of the kinase reaction, i.e., whether 
it produces ATP or competes for ATP. In either case, 
whether ATP is consumed or produced, the amount 
of emitted light (or photons) can be correlated to the 
metabolite concentration by generating a calibration 
curve for the coupled assay.2,4,5

Tight control of blood glucose levels close to normo-
glycemia is necessary for reducing the frequency of the 
short-term complications of diabetes (hypoglycemia and 
hyperglycemia) and delaying long-term complications. 
Therefore, developing a glucose assay is the cornerstone 
for the diabetiChip. Establishing the glucose analytical 
assay began with searching the metabolic pathways 
for enzymatic reaction(s) that use glucose and could be 
coupled to the FFL bioluminescence platform via ATP. 
Then, preliminary assay protocols were obtained from 
the literature.6-10 Glucose assay simulation, experiments, 
and calibration are discussed later, in the Assay Data 
Ware section.

Information Processing Ware
InfoWare refers to mathematical models and tools for 
simulation of chemical assays, data analysis, assay 
calibration, estimation of analytical errors, and the 
presentation of multianalytical data in simple visual 
patterns that are easily interpretable.11,12 InfoWare is 
further divided into two complementary units: 



875

Review of Designing an Information Processing Ware for a Diabetic Chip AL-sheikh

www.journalofdst.orgJ Diabetes Sci Technol Vol 2, Issue 5, September 2008

1. Assay data processing ware (DataWare): First, 
configured assays are simulated to examine assay 
feasibility and optimal physical and chemical 
parameters, such as medium acidity and enzyme 
concentration. Also, mathematical and statistical 
methods for the design of experiments are used to 
minimize the number of experiments required in assay 
validation. Then, experimental data and calibration 
curves are analyzed for optimal assay calibration. 
Finally, a general analytical calibration curve that 
encompasses the effects of other metabolites is created 
with the aim of minimizing the number of experiments 
required to validate and implement assays of related 
metabolites onboard the chip.

2. Data visualization ware (VisWare): Data are represented 
via simple, but significantly informative, visual patterns. 
These visual patterns can ease interpretation and provide 
new insights for understanding disease etiology and 
pathophysiology. 

Assay Data Ware

Firefly Bioluminescence-Coupled Glucose Analytical 
Assay - Simulation
The main goals of simulation are examining assay 
feasibility and estimating optimal concentrations for 
reagents. The FFL bioluminescence reaction requires FFL, 
luciferin (LH2), oxygen (O2), and ATP in the presence of 
magnesium ions (Mg2+). Adenosine triphosphate uses 
Mg2+ and binds rapidly and reversibly on LH2 to form 
the complex luciferase-luciferyl-adenylate “FFL-LH2-AMP” 
(steps 1-2 in Figure 1). Molecular oxygen oxidizes the 
complex to produce oxyluciferin (Loxy), AMP, carbon 
dioxide (CO2), and light (step 6 in Figure 1). The light 
emitting reaction is rate-limited by three steps; the first 
two occur before oxidation:

1. A proton abstraction from luciferin (step 4 in 
Figure 1).

2. A conformational change of luciferase (step 5 in  
Figure 1).

3. Dissociation of the luciferase-oxyluciferin complex 
“FFL-Loxy” (step 7 in Figure 1).4,5

If the reagents were mixed rapidly for about 5 ms, a  
lag phase of 25 ms would occur before light was emitted 
(Figure 2). The two rate-limiting steps preceding 
oxidation, mentioned above, are responsible for this 
delay. The maximum intensity of the emitted light (Imax), 
which is proportional to the ATP concentration for 

values less than 1 μM, is reached in less than 1 s, but 
the time necessary to reach half of this value (Imax/2) 
is constant (about 100 ms) and independent of the ATP 
concentration. A steady-state light signal is obtained 
only for ATP concentrations lower than 10 nM. As the 
ATP concentration is increased beyond this value, the 
peak light intensity increases. The light’s decay rate 
also increases due to the noncompetitive inhibition of 
luciferase by oxyluciferin, the concentration of which 
increases when the ATP concentration is raised.

A non-steady-state kinetics, proposed by Deluca and 
McElroy, and modified by Gandelman, was used in 
simulating the ATP assay with Gepasi Biochemical 
Simulation (Figure 3, Table 1).4,5,13 Based on simulation, 
optimal concentrations for ATP, luciferin, and FFL were 

Figure 1. Schematic representation of the detailed steps in an FFL 
bioluminescence reaction.4-5 Adenosine triphosphate firsts bind 
magnesium ions, which facilitates binding on the enzyme FFL  
(Step 1). ATP and luciferin (LH2) get bound to FFL (Step 2). Adenosine 
triphosphate loses orthophosphate and turns into AMP (Step 3).  
A proton is abstracted from luciferin and a conformational change in 
FFL occurs (Steps 4-5). Steps 4 and 5 are responsible for the 25 ms lag 
phase in light emission. Oxidation of the deprotonized luciferin leads to 
the release of carbon dioxide (CO2), AMP, the complex FFL-oxyluciferin, 
and light (Step 6). Steps 6 and 7 contribute to another limitation on light 
emission: the more oxyluciferin (an inhibitor) released, the less light 
emitted.
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Figure 2. Light emission profiles of the FFL bioluminescent reaction. 
The solid curve corresponds to ATP concentrations less than 10 nM. The 
dotted curve corresponds to ATP concentrations higher than 10 nM. 
One half of the light intensity is independent of ATP concentration and is 
always reached after about 100 ms. One the other hand, maximal light 
intensity depends on ATP concentration. There is a lag phase of about 
25 ms in emitting light. The lag phase is mostly due to the conformational 
change in the firefly luciferase enzyme. The light emission decay rate 
also depends on the concentration of the reaction product oxyluciferin, 
which is a noncompetitive inhibitor and its concentration is directly 
correlated with ATP concentration.

Figure 3. The kinetic model for the FFL bioluminescence platform (or 
ATP assay).4-5 The first two steps and the last step are reversible and 
rapid. Rate constants for backward reactions are denoted by minus 
signs. Adenosine triphosphate binds to the enzyme FFL in the first step.  
Firefly luciferase binds luciferin (LH2) in the second step. Luciferin is 
oxidized and converted to the energetically excited oxyluciferin (Loxy), 
and AMP and oxygen are released in the third step. The energetically 
excited oxyluciferin becomes energetically unexcited and releases 
the excitation energy in the form of light in the fourth step. Finally, 
oxyluciferin is dissociated from FFL in the fifth step.

Table 1.
Values of the Kinetic Rate Constants Used in 
Simulating the FFL Bioluminescent Reaction and 
Bioluminescence-Kinase Coupled Reactions.4-5

Kinetic Rate Constant Value Unit

Km(Analyte)i
Specific to the 

Metabolic
Molar

Kcat Kinase Activity µmole·mg-1·minute-1

Km (ATP) 250 × 10-6 Molar

Km (Luciferin) 2 × 10-6 Molar

Ki (Oxyluciferin) ± 23 × 10-8 Molar

K1 (10 – 30) × 103 Molar -1·second-1

K-1 (4 – 8) × 101 Second-1

K2 (5 – 15) × 105 Molar -1·second-1

K-2 (5 – 15) × 101 Second-1

K3 (20 – 40) × 101 Second-1

K4 (7 – 13) × 101 Second-1

K5 (7 – 13) × 10-2 Second-1

K-5 (8 – 12) × 105 Molar -1·second-1

Rows above the double line represent kinetic rate constants of the 
kinase-specific reaction that is coupled to the FFL bioluminescence 
reaction; the rows below the double line correspond to the kinetic rate 
constants of the FFL bioluminescent reaction.

Figure 4. Optimal (minimal) concentrations of ATP, FFL, and luciferin 
(LH2) for the FFL bioluminescence platform, found from reaction 
simulations.
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about 650, 1000–3000, and 400–500 μM, respectively 
(Figure 4).

The enzymatic reactions involving glucose convert 
glucose and ATP to glucose-6-phosphate and ADP via the 
glucose kinase enzyme (Figure 5). In Figure 6, we present 
the general kinetic model “AL-sheikh’s Kinase-Kinetic 

Model” for the enzymatic reactions that convert an analyte  
(denoted by i) and ATP to another analyte (denoted 
by j) and ADP via a kinase enzyme (denoted by ij). 
These kinase reactions can be coupled with the FFL 
bioluminescent reaction model, discussed earlier, by 
simulating the bioluminescence-kinase coupled reactions 
for the glucose assay. This model may be very useful in 
coupling the kinase reactions of multiple metabolites to 
the FFL bioluminescent platform, which may improve 
our understanding of metabolism and the metabolic 
origin of diseases.14

Firefly Bioluminescence-Coupled Glucose Analytical 
Assay - Experiment
Adenosine triphosphate and glucose assays were 
examined experimentally. The ATP assay was prepared 
by mixing 100 μL of 1.2 μM FFL with 100 μL of a mixture 
of 300 μM luciferin and 15 μM magnesium sulfate 
(MgSO4), all prepared using a glycine-glycine buffer at 
pH 7.8. Adenosine triphosphate samples, each of 100 μL, 
at various concentrations (0, 0.3, 3, 30, and 300 μM) were 
also prepared with a glycine-glycine buffer at pH 7.8.  
The final concentrations of the ATP assay are listed in 
Table 2. For the FFL bioluminescent-coupled glucose 
assay, the assay cocktail was prepared by mixing 50 μL of 
2.4 μM FFL with 50 μL of a mixture of 600 μM luciferin 
and 30 μM MgSO4, 100 μL of 6 μM glucose kinase, 
and 50 μL glucose samples at various concentrations  
(0, 150, 600, and 1200 μM). The assay reactions were then 
initiated by adding 50 μL of 3 mM ATP. All chemicals 
were prepared using a glycine-glycine buffer at pH 7.8.  
The final concentrations of the FFL bioluminescent-
coupled glucose assay are listed in Table 2.

In each experiment, five assays for each analyte 
concentration were run for 60 s using a TD 20/20 

Figure 5. Reactions of the firefly bioluminescence-glucose coupled assay. 
Glucose and D-luciferin compete for ATP and, thus, the light signal is 
decreased.

Figure 6. AL-sheikh’s General Kinase-Kinetic Model for kinase reactions 
that can be coupled to the FFL bioluminescent reaction.

Table 2.
Final Concentrations for the Reagents Used in the 
ATP and Glucose Assay Cocktails.

Reagent ATP Assay Glucose Assay

Glycine-Glycine 
Buffer

pH = 7.8 pH = 7.8

Firefly Luciferase 0.4 µM 0.4 µM

Magnesium 
Sulphate

5 µM 5 µM

Luciferin 100 µM 100 µM

ATP 0, 0.1, 1, 10, 100 µM 500 µM

Glucose 0, 25, 100, 200 µM

Glucose Kinase 2 µM
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Luminometer (Turner BioSystems Inc., Sunnyvale CA). 
Data points of the ATP and glucose assays were 
normalized by dividing each data point by the maximal 
value of the data set. Data points at each second were 
averaged. Each experiment was repeated three times. 
We present here results of one experiment performed to 
validate each of the ATP and glucose assays (Figures 7 
and 8).

Firefly Bioluminescence-Coupled Glucose Analytical 
Assay - Calibration
A measurement is a set of operations performed to 
determine the value of a quantity, such as the 
concentration of blood glucose. Calibration is a measure-
ment aimed toward comparing an analyte concentration 
from a patient sample with a calibrant that has a known 
value for the same analyte. Calibrants are either directly 

prepared from a pure substance via simple procedures 
or indirectly via a series of comparative procedures 
when the substance is impure. Thus, the measurement 
procedure on the patient sample constitutes the last step 
in a series of comparisons, in which each comparative 
step adds to the uncertainty of the final result. 

Analyte concentration is usually correlated to the level 
of signal detected by a clinical laboratory analyzer; the 
signal is scaled by calibration parameters for conversion 
into concentration units. In the case of point-of-care 
devices, such as the glucometer, each batch of testing 
strips has a calibration code that adjusts the scaling 
parameters to account for variation among batches. 
However, calibration codes do not account for variation 
among testing strips within a batch, changes due to 
storage conditions, or changes in the sensor’s accuracy. 
Measuring the signals from analytical calibrants (or 
standards) can account for these variations. 

Onboard calibration engages treatment of the unknown, 
unaccounted-for, random interferences attributable to 
the patient sample (or biomatrix effects); this calibration 
validates the chip’s analytical performance and 
estimates the total analytical error. Onboard calibration 
incorporates a number of analytical standards to optimize 
calibration constants. The more calibration constants 
in the mathematical equation describing the calibration 
curve(s), the more standards are required. For the 
purpose of onboard calibration, we make use of one of 
the advantages of microarrays, i.e., the availability of a 
large number of analytical wells. Also, we make use of 
microfluidics to treat and distribute biological samples 
in certain wells, and not to distribute them in other 
wells.

There are various means for assay calibration such 
as internal standards, standard additions, and spikes. 
However, by using multianalytical arrays we were able 
to employ the analytical calibration technique “standard 
additions” for onboard calibration. In addition to the 
blank, standards with known analyte concentration were 
mixed with the patient sample (Figure 9). By this, most of 
the interferences and systematic errors, such as biomatrix 
effects, inter-batch variability, and signal-to-concentration 
correlations, are accounted for.

Different methods can be used for generating calibration 
curves: integrating total or partial area under the curve, 
slope determination, and end-point value (Figure 10). 
An off-board calibration curve for the glucose assay 
was generated by integrating the area under the curve 

Figure 7. Adenosine triphosphate assay light emission profiles. The 
concentrations to the right of the curves are of ATP.

0.1 μM
1.0 μM

10.0 μM

100.0 μM

Figure 8. Normalized light emission profiles of the glucose assay: The 
top curve corresponds to 25 μM glucose, the middle curve corresponds to 
100 μM glucose, and the lowest curve corresponds to 200 μM glucose.

25 μM

200 μM
100 μM
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of normalized relative light units (RLUs) (Figure 11).  
The calibration curve was fitted using the Matlab-Curve 
Fitting Toolbox15 (Figure 12, Table 3). The fitting model 
was a quadratic polynomial model. A good fit was 
obtained, with R2 = 0.99. The assay’s analytical detection 
limits were 5–185 μM, which was expected from the fast 
and competitive FFL bioluminescence-kinase coupled 
reactions. Uncertainty associated with reporting a 100 μM 
concentration was about ± 5 μM. The results showed that 
an FFL bioluminescent-coupled glucose assay requires 

Figure 9. Demonstration of the standard additions assay calibration 
method.

Table 3.
Fitting Model and Parameters and Goodness of Fit for 
the Glucose Assay Calibration Curve.

Fitting 
Model

Quadratic Polynomial
f(x) = p1x2 + p2x + p3

x is normalized by
mean 81.25 and 

standard deviation 
89.85

Fitting 
Parameters

Coefficients (95% 
confidence interval)

p1 1.209 (0.9026, 1.514)

p2 -5.453 (-5.678, -5.227)

p3 164.1 (163.8, 164.4)

Goodness 
of Fit

SSE 0.0005988

R-square 0.9998

Adjusted R-square 0.9999

RMSE 0.02447

Figure 10. Different methods for calibration curve analysis and 
parameterization. Four methods are shown: Total area under the curve 
(1), area under the curve between two time points (2), slope value (3),  
and end point value (4). Method (1) is the easiest as the number of 
emitted photons, which constitute the area under the curve, can be 
directly obtained from the light detector. However, if the calibration 
curve was not graphically examined, potential systematic errors may 
not be revealed, thus, the total number of emitted photons may not be 
a valid means for assay calibration. Method (2) can solve ambiguities 
of method (1). Method (3) may be useful if a change in analyte 
concentration can result in a noticeable change in the light emission 
profile. Method (4) resembles method (1) in ease (the last signal reading 
of the instrument is considered) and in not recognizing systematic 
errors. Taking into consideration the pros and cons of these methods, 
that the experimental light emission profiles agreed with the kinetic 
model, and that no significant systematic errors were noticed, we used the 
easiest methods (integrating total area under the curve and end point 
analyses).

sample dilution and is promising in terms of reducing 
sample volume and cost.

Data Visualization Ware
High dimensional data visualization projects n 
dimensional data onto a 2D physical medium.16-22 

Multianalytical clinical chemistry data can be displayed 
via simple patterns, providing ease of interpretation 
and enabling healthcare providers or patients to rapidly 
make decisions about treatment.22,23 Simple visual 
displays have been the major theme of our philosophy 
regarding data representation.22,23 We have emphasized 
the representation of diabetic states, symptoms, and 
measurements with simple facial (or emotional) iconic 
data displays in previous publications, such as “Public 
Adventures in Diabetes: Personal Interactivity in a 
Modern Science Center.”1,23 Using common visual cues 
to communicate clinical data is especially effective with 
children and the medically uninformed. Therefore, we 
designed a grid or a set of emotional iconic displays, 
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“AL-sheikh’s GlucoFaces™,” to represent the diabetiChip’s 
glucose measurements. 

The concept of the GlucoFaces is simply to correlate 
glucose measurements with facial features and emotions. 
For example, low glucose values can be represented via 
the degree of tilting of the head, high glucose values 
can be represented via the amount of shading of the 
pupils of the eyes, normal glucose values by the amount 
of smile, which refers to happiness. Also, all glucose 
measurements are represented on the nose (a longitudinal 
bar scaled from 0 to 600 mg/dl). Color attributes were 
also added to the bar to alarm the patient of hypo- and 
hyperglycemic states via the conventional alarming colors 

(green for normal range, yellow for hyperglycemic range, 
and red for hypoglycemic range). Only the general frame 
of the GlucoFaces and the three fundamental GlucoFaces 
(normal, hypoglycemic, and hyperglycemic) are shown in 
Figure 13. All glucose measurements are variations of the 
three fundamental GlucoFaces. 

Moreover, we extended our data visualization 
designs and developed a software program, Multi-
Analytical Chemistry-Recognizer of Optical Patterns 
(MACROPatterns®), to simultaneously visualize the 
measurement results of multiple analytes on simple 
visual displays. A detailed discussion of MACROPatterns 
is not within the scope of this article. However, both 
GlucoFaces and MACROPatterns along with their 
interactive educational manuals will be available soon 
on the digital creativities section within the Diabetes 
Info Portal “DIP” (http://www.DiabetesInfoPortal.org/
Creativities/Digital.html).24

Though our ChemChips Project has lasted for over ten 
years, with efforts from tens of researchers, we believe 
much additional work needs to be done. Our current 
work is extending the use of GeneChips with the various 

Figure 11. Glucose assay calibration curve.
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Figure 12. Fitted glucose assay calibration curve. The assay’s analytical 
detection limits were 5–185 μM. The uncertainty associated with 
reporting a 100 μM concentration is about ± 5 μM.
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Figure 13. Using simple facial and emotional iconic displays  
(AL-sheikh’s GlucoFaces™) to present results of the diabetiChip.1,23  
The concept of the GlucoFaces is to simply correlate glucose 
measurements with facial features and emotions. All glucose 
measurements are represented on the nose (a longitudinal bar 
scaled from 0 to 600 mg/dl). Color attributes are also added to 
the bar to alarm the patient of hypo- or hyperglycemic states 
via the conventional alarming colors (green for normal range, 
yellow for hyperglycemic range, and red for hypoglycemic range).  
The general frame for the GlucoFaces shows no emotions (upper left).  
The normal GlucoFace expresses a happy face with clear eyes (upper 
right). The hypoglycemic GlucoFace expresses dizziness, imbalance, 
and confusion (lower left). The hyperglycemic GlucoFace expresses 
laziness, blurry eyes, and nervousness (lower right). Other glucose 
measurements are variations of these three fundamental GlucoFaces.
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developed ChemChips, including the diabetiChip, to 
generate information useful in studying the diabetic 
genome, “diabeteome”. Modeling and artificial intelligence 
techniques are also being used to build hybrid 
(physiological-probabilistic) diabetes-individualized 
(“diabetualized”) models along with insulin-adjustment 
electronic protocols and tools.25-27
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