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SYMPOSIUM

Abstract
Background:
There has been considerable debate on what constitutes a good hypoglycemia (Hypo) detector and what is 
the accuracy required from the continuous monitoring sensor to meet the requirements of such a detector. 
The performance of most continuous monitoring sensors today is characterized by the mean absolute relative 
difference (MARD), whereas Hypo detectors are characterized by the number of false positive and false 
negative alarms, which are more relevant to the performance of a Hypo detector. This article shows that the 
overall accuracy of the system and not just the sensor plays a key role.

Methods:
A mathematical model has been developed to investigate the relationship between the accuracy of the 
continuous monitoring system as described by the MARD, and the number of false negatives and false positives 
as a function of blood glucose rate change is established. A simulation method with N = 10,000 patients is used 
in developing the model and generating the results.

Results:
Based on simulation for different scenarios for rate of change (0.5, 1.0, and 5.0 mg/dl per minute), sampling rate 
(from 1, 2.5, 5, and 10 minutes), and MARD (5, 7.5, 10, 12.5, and 15%), the false positive and false negative ratios 
are computed. The following key results are from these computations.

1. For a given glucose rate of change, there is an optimum sampling time. 
2. The optimum sampling time as defined in the critical sampling rate section gives the best combination of 

low false positives and low false negatives. 
3. There is a strong correlation between MARD and false positives and false negatives.
4. For false positives of <10% and false negatives of <5%, a MARD of <7.5% is needed.

continued  
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Introduction

There has been considerable debate on what constitutes 
a good hypoglycemia (Hypo) detector and what is the 
accuracy required from the continuous monitoring sensor 
to meet the requirements of such a detector.1–9 This article 
shows that the overall accuracy of the system and not 
just the sensor plays a key role. Other errors introduced 
because of calibration, lag, drift, and so on play as big a 
role as sensor accuracy, if not more.

The performance of most continuous monitoring 
sensors today is characterized by the mean absolute 
relative difference (MARD), whereas Hypo detectors 
are characterized by the number of false positive and 
false negative alarms, which are more relevant to the 
performance of a Hypo detector.1,3,4,6 A large number 
of false negative alarms can be life-threatening for the 
patient, whereas false positive alarms can be a nuisance 
to the point that the patient will not trust or use the 
device and may lead to the administration of unnecessary 
glucose, causing a disruption of glycemic control. 
Minimizing the number of false negative alarms and 
false positive alarms is a must. A good Hypo detector is 
expected to have false negative alarms and false positive 
alarms of less than 5 and 10%, respectively. 

Problem Description
The true glucose level for a person at the starting point t1 
is G(t1). A glucose monitoring system makes noisy glucose 
measurements  for this person at prescribed time 
intervals tn , with the degree of noisiness defined by both 
systemic bias and random variation. These actual blood 
glucose measurements are then used to detect a Hypo 
event below a predefined threshold level and to predict 
the true rate of decrease with respect to time by fitting a 
straight line to data and estimating the slope for the line. 

It is required to estimate the number of false positive 
alarms and false negative alarms based on the glucose 
measurement system.

Assumptions: 
• Glucose levels at or below 70 mg/dl are considered 

hypoglycemic.
• Glucose levels below 55 mg/dl are considered critical.
• The true glucose change with respect to time is linear 

with slope bgr.
• There is a systematic bias in the actual blood glucose 

measurement of %b relative to the true glucose value. 
[A continuous glucose monitoring sensor is usually 
calibrated by the patient by entering a reference value 
obtained from a finger stick measurement using 
a commercially available device. The accuracy of 
commercially available devices is normally ±20% for 
glucose values above 100 mg/dl. The imprecision of 
this commercially available device contributes to the 
systematic bias. Other contributions to the systematic 
bias can include difference between interstitial fluid 
(ISF) and blood during probe calibration and drift of 
probe over time.]

• The imprecision of the actual glucose measurement 
follows a normal distribution with a CV of %cv relative 
to the true glucose value.

Sensor Accuracy
From the assumptions just listed, one can write

 (1)

where G(tn) is the true glucose level,  is the noisy 
glucose measurement, %b is the systematic bias relative to 
the true glucose level, %cv is the coefficient of variation 

Abstract cont.
Conclusions:
Based on the model, assumptions in the model, and the simulation on N = 10,000 patients for different scenarios 
for rate of glucose change, sampling rate, and MARD, it is concluded that the false negative and false positive 
ratio will vary depending on the alarm Hypo threshold set by the patient and the MARD value. Also, to 
achieve a false negative ratio <5% and a false positive ratio <10% would require continuous glucose monitoring 
to have an MARD ≤7.5%.
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(%cv) due to the noise of the glucose measurement, and 
 are independent standard normal random variables.

From Equation (1),  the accuracy of a glucose 
measurement is plotted for different values of %b and 
%cv as illustrated in Figure 1.

Figure 1. Accuracy of glucose measurement. (A) %b = 0%, %cv = 10%. 
(B) %b = 15%, %cv = 10%.

A

B

In Figure 1 it is assumed that the blood glucose rate is 
changing at -5.0 mg/dl/min and that the sampling rate is 
equal to a sample/5.0 min. In Figure 1A, the sensor has 
no bias (%b = 0%) and has a %cv of 10%. It can be noted 
that the glucose measurement is distributed randomly 
around the true value (blue line). In Figure 1B, the sensor 
has a bias %b = 15% and the precision is the same as in 
Figure 1A (%cv = 10%). In Figure 1B, a noticeable shift 
upward for the glucose measurement is introduced. The 

t1 t2

Figure 2. Rate of change.

difference between results in Figure 1A vs Figure 1B is 
that an average of samples can improve the final results, 
while irrespective of the number of samples in Figure 1B, 
the average of the measured results will not get rid of 
the bias error.

Error in Calculating Rate of Change
This section derives a relationship between the accuracy 
of the blood glucose sensor measurement and the rate of 
change calculation. The rate of change of blood glucose 
is defined as (Figure 2) 

 (2)

Let us assume that the noisy blood glucose measurement 
at time tn is given by Equation (1). The rate of change 
of blood glucose, , estimated by performing a linear 
regression on noisy data

can be written as (see Section A.1 in the Appendix)

 (3)

where E is a normally distributed error with mean 0 and 
variance depending on (t1 , G(t1)), · · ·, (tn , G(tn )).

Equation (3) shows that there is a systematic relative bias 
in the estimated blood glucose rate equal to the systematic 
relative bias in the blood glucose measurement.

Line AB in Figure 3 represents the ideal condition where 
A is the initial true glucose value at time t1  = 0 and the 
glucose value is changing along AB at the true rate of 
change bgr. Based on the initial value of A and the 
rate of change bgr, the line AB will intersect the Hypo 
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threshold level at a time tHypo given by Equation (4):

 (4)

Equations (1) and (3) show that start-up conditions for 
a nonideal sensor will differ from A (points C or E) and 
the rate of changes will be different along lines CD or 
EF. The actual Hypo time can be written as

(5)

If the actual time to intersection  is less than  , 
then it is considered a false positive alarm. Conversely, if 
the actual time to intersection  is greater than thypo , 
then it is considered a false negative alarm. Figure 3 
shows that the percentage of false positive alarms and 
false negative alarms will vary depending on the values 
of the systematic bias %b and the coefficient of variation 
%cv. For a sensor with %b = 0%, the percentage of false 
positive alarms will be 50% and the percentage of false 
negative alarms will be 50% at time t = thypo . A positive 
bias will increase the percentage of false negative alarms 
while decreasing the percentage of false positive alarms, 
whereas a negative bias will decrease the percentage of 
false negative alarms while increasing the percentage of 
false positive alarms.

Define

(6A)

 (6B)

An alarm prior to tlower is a false positive alarm, whereas 
not providing an alarm after tupper is a false negative 
alarm.

The box bounded by tupper , tlower , Hypo threshold, and 
critical threshold is the region of true positive alarms 
and is defined as the “target area.” 

Intersections of the actual slope (line CD or line EF) with 
the alarm threshold result in an intersection time called 
tactual :

 (7)

where tactual greater than tupper is considered a false 
negative alarm, whereas a value of tactual less than 
tlower is considered a false positive alarm, respectively.  
By selecting the alarm threshold, the values of false 
positive alarms (false negative alarms) will vary from 0 
to 100% depending on the values of the systematic bias 
%b and coefficient of variation %cv. As a result, it is 
possible for the patient to control the percentage of either 
false positive alarms or false negative alarms by selecting 
an appropriate alarm threshold.

False Positive and False Negative Ratio
In published papers, performance criteria of a continuous 
glucose monitoring sensor are described by the receiver 
operating characteristic chart and in terms of both 

Figure 3. Effect of accuracy on Hypo detection.

Alarm Threshold
If the Hypo threshold is defined as the level of glucose 
below which a patient is considered in a true Hypo state 
and an alarm or warning signal should be given and 
the critical Hypo threshold is the level we do not want 
any patient to reach or go below it, then a window in 
which alarms can be given can be described as shown in 
Figure 4. Figure 4. Effect of accuracy on Hypo detection.
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sensitivity and specificity. Such an approach is based 
on measured values that are above or below a given 
threshold when compared to a reference value and 
does not take into account the time at which the event 
occurs. In this analysis, if an alarm occurs before or after 
the target area it is considered a false positive or false 
negative, respectively. In addition, it is assumed that the 
prevalence is 100%; in other words, we are focusing only 
on patients with Hypo events, which are different than 
sensitivity and specificity criteria, where prevalence is a 
small percentage of the overall patient population.

False positive and false negative ratios are defined as 
the ratio of the number of patients who get an alarm 
outside the “target area” (Figure 4) to the total number 
of patients with a Hypo event. 

 

Critical Sampling Rate
From basic sampling theory (Nyquist–Shannon sampling 
theorem), it is known that in order to capture enough 
of a signal to be able to reconstruct it from discrete 
measurements, the sampling frequency must be at least 
twice that of the highest frequency contained in the 
signal. For patients with diabetes, it is harder to define 
such frequency because the mean glucose value, the peak 
and low excursions around the mean, and the maximum 
rate of change will vary from patient to patient. This 
article takes a different approach in defining the 
critical sampling rate. Figure 4 shows that if we want 
to guarantee three samples (three swings) within the 

“target area” (“baseball plate”), the sampling period can 
be selected in a fashion that allows for three samples to 
fall between tupper and tlower . From Equations (6A) and 
(6B), can be defined as

tcritical = (tupper – tlower)/3

and the critical sampling rate will be equal to

where tcritical depends on the blood glucose rate of change, 
the Hypo threshold, and the critical threshold. 

As shown in the simulation section, false positives and 
false negatives depend not only on the sampling rate, but 
also on the relative position of the samples with respect 

to tupper and tlower . In other words, when the samples fall 
exactly on tupper and tlower the false positive and false 
negative rates improve. In real life, we cannot guarantee 
that the samples will always coincide with tupper and tlower 
and in actuality the samples will be distributed randomly 
around tupper and tlower within ± Sampling ratecritical /2 
impacting the false positive and false negative rates 
negatively.

Mean Average Relative Difference (MARD)
For a given patient making N measurements, the MARD 
is defined as

(8)

where N is the number of samples. Section A.2 in the 
Appendix derives an approximation to the MARD under 
the assumptions given later. This expression simplifies 
under the following conditions:

1. No imprecision (%cv = 0)

(9) 

2. No bias and nonnegative imprecision (%b = 0, %cv > 0).

(10)

3. Bias large in absolute value relative to the imprecision 
(  >> %cv)

(11) 

Equations (9)–(11) show that there is a direct correlation 
between the MARD and the sensor accuracy. For a 
systematic relative bias of zero, MARD is proportional to 
the coefficient of variation, and when the systematic bias 
is large relative to the coefficient of variation, the MARD 
is equal to the absolute value of the bias.

Blood Glucose Rate of Change Estimate
Let us assume that the noisy blood glucose measurement 
at time tn is given by Equation (1). We assume that the 
time step between consecutive samples is a constant for 
a given sampling rate and is equal to ∆t. The rate of 
change of blood glucose, , estimated by performing a 
linear regression on noisy data

can be written as (see Section A.1 in the Appendix)
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(12)

where E is a normal random variable with mean 0 and 
variance

 (13)

Equation (13) shows that the variance of the slope 
estimate consists of two components. The first component 
depends on the true rate of change and is of order

.

The second component depends on the average of the 
true glucose response and the sampling rate and is of 
order

.

For a blood glucose measurement with high precision 
(%cv ≈ 0), Equation (12) is approximately equal to

(14)

where the relative error in the glucose rate estimate is 
equal to the relative error in glucose measurement.

From Equations (13) and (14) two observations can be 
made:

1. The error because of bias cannot be improved by 
increasing the number of observations used in the 
regression 

2. The error term decreases as the number of observations 
increases. Ultimately the error term decreases to zero as 
N→∞.

The number of points that can be used in the average will 
be dictated by the sampling rate, the initial glucose value, 
the rate of change, and the final value. For example, if the 
initial glucose value is 250 mg/dl, the sampling rate is 
3 minutes, and the rate of change is -5.0 mg/dl/min, the  
maximum number of samples available before reaching 
the Hypo threshold of 70 mg/dl is 

.

Based on Equation (13) the question becomes: Is it better 
to have fewer samples with a better precision or a large 
number of samples with less precision? Fix the number 
of observations, N, and the coefficient of variation, %cv, 
and let the sampling rate, ∆t, vary. Only the last term 

on the right-hand side of Equation (13) is affected. That 
term can be rewritten as

(15) 

From Equations (13) and (15) we can conclude

1. For a given coefficient of variation, %cv, a sensor 
with a faster sampling rate will require more samples 
to achieve the same error in the glucose rate calculation 
as a slower sampling rate sensor. It is assumed that the 
slower sampling rate is faster than the critical sampling 
rate. 

2. For different coefficients of variation, %cv, and the 
same sampling rate, the sensor with a greater coefficient 
of variation will require more samples to achieve the 
same error in glucose rate calculation than the sensor 
with a smaller standard deviation. 

Lag Effect
This section studies the effect of lag between interstitial 
fluid and blood on the value of the MARD. For simplicity, 
let us assume that the continuous blood glucose sensor 
has a high precision (%cv ≈ 0), which is a reasonable 
assumption given the fact that the measurements over 
time are coming from the same sensor and each sensor 
is uniquely calibrated at the factory before shipment. 
Based on a given patient calibration, each sensor will 
have a bias %bj as a consequence of the accuracy of the 
commercially monitoring device. So for a given patient j,  
a given calibration, and from Equation (1) the noisy 
blood glucose measurement can be written as

(16)

In addition, if we assume that the blood glucose value 
of ISF is not equal to finger stick (ISF lag or lead), then 
another error will be introduced and the noisy glucose 
measurement for a given patient can be written as

 (17) 

where %c j is the error because of the lag or lead between 
ISF and blood. 

Because it is assumed that %cv ≈ 0, for this calibration 
for this patient the MARD is approximately equal to (see 
Section A.2 in the Appendix):
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If we assume that the bias %b j because of the 
commercially available device is a normal random 
variable from patient to patient and the bias %c j because 
of the lag or lead of ISF versus blood is also a normal 
random variable from patient to patient, then the bias 
%bj + %c j is also a normal random variable with some 
mean, %B + %C, and standard deviation equal to

where %B is the mean percentage relative bias because 
of calibration, %C is the mean percentage relative bias 
because of differences between ISF and finger stick,  
is the variance of the mean percentage relative bias 
because of calibration, and  is the variance of the 
mean percentage relative bias because of differences 
between ISF and finger stick.

Averaging over the calibrations and patients in the 
total population and assuming the (%B + %C) is small 
compared to s result in a total MARD (see Section A.2 
in the Appendix) of

 (18)

If we assume that the accuracy of the commercially 
monitoring device is a normal random variable with 
mean 0 and that 95% of the observations fall between 
± 20%, then we have sb ≈ 10%. If we further assume that 
the error between ISF and blood is a normal random 
variable with mean 0 and that 95% of the observations 
fall within ± 40%, then we have sc ≈ 20%. In this case, 
the MARD from Equation (18) will be approximately 

 (19)

Simulation and Results
This section shows results obtained from simulating 
N = 10,000 patients using nonideal glucose sensors to 
detect Hypo events. In the simulator it is assumed that 
the sensor used by the patient has a noisy response 
given by Equation (1), 

.

%b is the systematic bias relative to the true glucose 
level and can be a consequence of patient calibration, lag, 
Manufacturing calibration, and so on. Because %cv  is 
a standard normal random variable, the variability of the 
noisy glucose reading is proportional to the true glucose 
level, with the constant being the coefficient of variation, 
%cv.

The simulator algorithm is explained in Appendix A.3.

Simulator Inputs

1.	 Initial glucose value G(t1) is the initial glucose value 
and is used in the calculation of tupper and tlower . 

2.	 Glucose rate of change (bgr) is the rate of dropping of 
glucose level; the range varies from 0.5 to 5.0 mg/dl/
min.

3.	 Hypo threshold is the glucose level below which it 
is assumed that a patient is in a Hypo state and a 
warning signal should sound.

4.	 Critical threshold is the glucose level that a patient 
should not go below under any circumstances and an 
alarm must sound.

5.	 Alarm threshold is the glucose level that the patient 
sets for alarms. For purposes of this simulator, the 
alarm threshold is constrained to lie between the 
critical threshold and the Hypo threshold.

6.	 Bias value (%b) is the systematic bias assumed to be 
a fixed percentage of the true glucose value. In this 
simulation it is assumed that the bias is an error 
introduced by the patient at calibration. It will vary 
from patient to patient in a normal random fashion.

7.	 Coefficient of variation (%cv) is the variation of the 
glucose measurement assumed to be a fixed percentage 
of the true glucose value. 

Figures 5A and 5B show the percentage of false positives 
and false negatives for a glucose rate of -1.0 mg/dl/min 
for N = 10,000, %cv = 3%, and %b is a normal random 
variable sb with varying from 6 to 18%, giving an MARD 
of 5 to 15%. The blood samples are in sync with tupper and 
tlower and the sampling rates meet the critical sampling 
rate guidelines for each glucose rate. It can be noted that 
false positives increase when the alarm threshold is close 
to the Hypo threshold (top of the target area), whereas 
they decrease when the alarm threshold is close to the 
critical threshold (bottom of the target area). The inverse 
applies to false negatives.

Figures 5C and 5D and Figures 5E and 5F show the 
percentages of false positives and false negatives for 
the glucose rate of change of -5.0 and -0.5 mg/dl/min, 
respectively.

As noted, results are very similar for all cases, which 
imply that a slow sampling rate of 0.2 samples/min 
for the slow glucose rate of change of -1.0 mg/dl/min 
achieves the same performance as the fast sampling rate 
of 1 sample/min for the glucose rate of change of -5.0 
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Figure 5. (A and B) False positives and false negatives vs alarm threshold, glucose rate -1.0 mg/dl/min, and sampling rate 0.2 sample/min.  
(C and D) False positives and false negatives vs alarm threshold, glucose rate -5.0 mg/dl/min, and sampling rate 1 sample/min. (E and F) False 
positives and false negatives vs alarm threshold, glucose rate -0.5 mg/dl/min, and sampling rate 0.1 sample/min.

A B

C D

E F
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mg/dl/min. The same applies for the glucose rate of -0.5 
mg/dl/min, which has a sampling rate of 0.1 samples/
min.

Next the false positives vs false negatives for glucose 
rates of -1.0 and -5.0 mg/dl/min representing a slow and 
fast rate of change of glucose are compared. Results for 

-0.5 mg/dl/min or lower still apply but are not displayed.

Figure 6 shows false positives vs false negatives for 
glucose rates of -1.0 and -5.0 mg/dl/min. Results are the 
same given that the sampling time is equal to the critical 
sampling time in each case. It can be observed that to 
achieve a false negative ratio <5% and a false positive 
ratio of <10% requires an MARD of <7.5%.

Next the effect of the sampling rate (sampling time) is 
discussed. The blood samples are not in sync with tupper 
and tlower of the “target area.” Results for a glucose rate 
of change of -1.0 mg/dl/min are shown in Figures 7 
and 8. Results for glucose rates of change of -5.0 and  

-0.5 mg/dl/min are similar, but are not discussed here. 
The first thing to note is that there is a negative effect 
on false positives and false negatives when comparing 
Figure 7A to Figure 6A. This is because of the fact that 
in a real situation, and based on the initial glucose value, 
there is no guarantee that all patients’ blood samples 
will hit the bottom edge of the “target area.” Some will 
hit beyond the bottom edge and will be considered false 
negatives. Figure 7A is a closer representation of the real 
world.

Figure 7 shows that increasing the sampling rate 
(reducing sampling time) beyond the critical sampling 
value increases the percentage of false positives. This 
can be explained by the fact that a faster sampling rate 
will increase the probability of intersecting the Hypo 
threshold level before tlower , resulting in a false positive. 
In other words, results shown in Figure 7 suggest that 
a variable sampling rate is a better approach than a 
constant sampling rate. A slow sampling rate for a low 
glucose rate of change is more optimum and vice versa 
for a high glucose rate of change.

Figure 8B shows that reducing the sampling rate 
(increasing sampling time) increases the percentage 
of false negatives as compared to Figure 8A. This is 
explained by the fact that an increased sampling time 
increases the probability of reducing the number of hits 
in the “target area,” resulting in an increase of false 
negatives.

Figures 7 and 8 show that for a given glucose rate of 
change, there is an optimum sampling rate (sampling 
time), a faster sampling rate from optimum increases the 
false positives, and a reduced sampling rate reduces the 
false positives while increasing the false negatives. 

From Figures 5–8, we can conclude the following:

1.	 For a given glucose rate of change, there is an 
optimum sampling time. 

2.	 The optimum sampling time as defined in the critical 
sampling rate section gives the best combination of 
low false positives and low false negatives. 

3.	 There is a strong correlation between MARD and false 
positives and false negatives.

4.	 For false positives of <10% and false negatives of <5%, 
a MARD of <7.5% is needed.

Figure 6. False positives vs false negatives with glucose rates of -1.0  
(A) and -5.0 (B) mg/dl/min.

A

B



661

Accuracy Requirements for a Hypoglycemia Detector: An Analytical Model to Evaluate the Effects of Bias, Precision, and Rate of 
Glucose Change Noujaim

www.journalofdst.orgJ Diabetes Sci Technol Vol 1, Issue 5, September 2007

Conclusions
A mathematical model has been developed to investigate 
the relationship between the accuracy of the continuous 
monitoring sensor as described by the MARD, and 
the number of false negatives and false positives as a 
function of blood glucose rate change is established. 
The following observations can be deduced from the 
mathematical derivations and the results obtained from 
running the simulator on N = 10,000 patients.

1.	 False positive and false negative ratios will vary 
depending on the alarm Hypo threshold set by the 
patient and the MARD value.

2.	 The sampling rate (number of hits in the “target area”) 
plays a key role in the number of false positives 
and false negatives. A variable sampling rate (slow 

sampling rate for slow blood glucose change and fast 
sampling rate for fast blood glucose change) provides 
lower false positives.

3.	 The sampling time is selected to be equal to the time 
base of the “target area” divided by 3. 

4.	 To achieve a false positive ratio <10% and a false 
negative ratio of <5% requires an MARD of ≤7.5%.

5.	 There is a direct correlation between the MARD and 
the sensor accuracy. For a bias of zero, MARD is 
approximately equal to 0.8× the coefficient of variation. 
When the absolute of the relative bias is large 
compared to the coefficient of variation, the MARD 
is approximately equal to the absolute value of the 
relative bias. 

A

B

Figure 7. Effect of sampling time on false positives. Figure 8. Impact of sampling time on false negatives.

A

B
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6.	 When estimating the blood glucose rate of change 
using linear regression, the systematic relative bias in 
the estimated rate is equal to the systematic relative 
bias in the individual glucose measurements.

References:

 1.	 Palerm CC, Willis JP, Desemone J, Bequette BW. Hypoglycemia 
prediction and detection using optimal estimation. Diabetes 
Technol Ther. 2005 Feb;7(1):3-14.

 2.	 Bequette BW. Optimal estimation applications to continuous 
glucose monitoring. Proceedings of the American Control 
Conference. Boston (MA): IEEE; 2004. p. 958-62.

 3.	 Klonoff DC. A review of continuous glucose monitoring technology. 
Diabetes Technol Ther. 2005 Oct;7(5):770-5.

 4.	 Kollman C, Wilson DM, Wysocki T, Tamborlane WV, Beck RW; 
Diabetes Research in Children Network Study Group. Limitations 
of statistical measures of error in assessing the accuracy of 
continuous glucose sensors. Diabetes Technol Ther. 2005 
Oct;7(5):665-72; discussion 673-4.

 5.	 Bode B, Gross K, Rikalo N, Schwartz S, Wahl T, Page C, Gross T, 
Mastrototaro J. Alarms based on real time sensor glucose values to 
alert patients to hypo- and hyperglycemia: the guardian continuous 
monitoring system. Diabetes Technol Ther. 2004 Apr;6(2):105-13.

 6.	 Tamada J, Eastman R, Desai S, Wei C, Lesho M. Hypoglycemia 
detection and prediction. Presented at the Third Diabetes 
Technology Meeting; 2003 Nov; San Francisco.

 7.	 Kovatchev BP, Gonder-Frederick LA, Cox DJ, Clarke WL. Evaluating 
the accuracy of continuous glucose-monitoring sensors: continuous 
glucose-error grid analysis illustrated by TheraSense Freestyle 
Navigator data. Diabetes Care. 2004 Aug;27(8):1922-8.

 8.	 Wentholt IM, Hoekstra JB, DeVries JH. A critical appraisal of 
the continuous glucose-error grid analysis. Diabetes Care. 2006 
Aug;29(8):1805-11.

 9.	 Hayter PG, Sharma M, Dunka L, Stout P, Price DA, Horwitz DL, 
Marhoul J, Vaez-Zadeh S. Performance standards for continuous 
glucose monitors. Diabetes Technol Ther. 2005 Oct;7(5):721-6.



663

Accuracy Requirements for a Hypoglycemia Detector: An Analytical Model to Evaluate the Effects of Bias, Precision, and Rate of 
Glucose Change Noujaim

www.journalofdst.orgJ Diabetes Sci Technol Vol 1, Issue 5, September 2007

Appendix — Derivations

This appendix provides the technical derivations stated in the article. The notation and assumptions listed in the 
article are assumed in the derivation.

A.1 Estimation of the Glucose Rate of Change
Given noisy data , it is desirable to estimate the blood glucose rate of change, . Let gi denote 

. Standard linear regression yields the following estimate

 (A.1.1)

One has

 (A.1.2)

where r j are independent normal random variables with mean 0 and variance . Because it is 
assumed that the true blood glucose response is decreasing linearly with time at a rate bgr, one can write

 (A.1.3)

for some intercept C. Equations (A.1.2) and (A.1.3) imply

 (A.1.4)

Substituting Equation (A.1.4) in Equation (A.1.1) yields

 (A.1.5)

Because rj are independent normal random variables with mean 0, the second term on the right-hand side of Equation 
(A.1.5) is normally distributed with mean 0. It remains to determine the variance of this term.
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 (A.1.6)

One has

 (A.1.7)

 (A.1.8)

 (A.1.9)

Substituting Equations (A.1.7)–(A.1.9) in Equation (A.1.6) results in

 (A.1.10)

Making the substitution  in Equation (A.1.10) results in

 (A.1.11)

From Equation (A.1.3) 

 (A.1.12)
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Substituting Equation (A.1.12) in Equation (A.1.11) results in

 (A.1.13)

One notes that  is the true blood glucose level at the average time point.

Equation (A.1.13) simplifies when the observations are taken at equal time intervals ∆t. Let tj = j × ∆t. Exploiting the 
moments of the discrete uniform distribution, one has

Additionally,

Substituting into Equation (A.1.13) and simplifying results in the following expression for the variance:

 (A.1.14)

A.2 Approximating the MARD
One has

 (A.2.1)

From the law of large numbers,

 (A.2.2)
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where Z is a standard normal random variable. From symmetry one has

If %cv = 0, then a direct consequence of Equation (A.2.1) is that . Otherwise, let . Then

 (A.2.3)

The first term on the right-hand side of Equation (A.2.3) is equal to

 (A.2.4)

The second term on the right-hand side of Equation (A.2.3) is equal to

 (A.2.5)
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Combining Equations (A.2.2) through (A.2.5) yields

 (A.2.6)

The asymptotic limit of MARD can be used as an approximation. Equation (A.2.6) simplifies under two cases of 
interest. 

Case 1: %b = 0.

Case 2: 

In this case,  and . Thus

A.3 Simulator Algorithm
1.	 The simulator calculates tupper and tlower according to Equations (6A) and (6B)

 (A.3.1a)

 (A.3.1b)

2.	 The true glucose value is calculated at each time tn  using

 (A.3.2)

where G(t1) is the initial glucose value.

3.	 A standard normal random variable is generated with mean 0 and variance 1:

 (A.3.3)

4.	 The actual glucose measurement at time tn is calculated by 

 (A.3.4)

5.	 At every measurement time tn the measured glucose value  is compared to the alarm threshold.  
If  ≤ Alarm Threshold, then the detection time talarm is given by tn = tn .
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6.	 If talarm > tupper , add 1 to the false negative counter (FN).

7.	 If talarm < tlower , then add 1 to the false positive counter (FP).

8.	 If not step 6 and not step 7, then add 1 to the true positive counter (TP).

9.	 Steps 1 through 7 are repeated for the N patients, and the number of false positives and false negatives is 
accumulated. 

10.	The percentage of false positives and false negatives is computed by dividing the counters FP and FN by N. 

11.	MARD is calculated as

 (A.3.5)


