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SYMPOSIUM

Abstract
Motivation:
The fear of hypoglycemia remains an important limiting factor in the ability of an individual with type 1 
diabetes to tightly regulate glycemia. Continuous glucose monitors provide important feedback to improve 
glycemic control, but there remains a need for these devices to better alarm of possible impending hypoglycemia, 
particularly overnight or other periods when the individual is engaged in activities that take their focus away 
from glucose monitoring.

Methods:
We have previously proposed an algorithm, based on the use of real-time glucose sensor signals and optimal 
estimation theory (Kalman filtering), to predict hypoglycemia; the algorithm was validated in simulation-based 
studies. In this article we further refine and validate the prediction algorithm based on the analysis of clinical 
hypoglycemic clamp data from 13 subjects. The sensitivity and specificity of the predictions are calculated with 
respect to reference blood glucose values obtained at the same sampling rate of the sensor.

Results:
For a 30-minute prediction horizon and alarm threshold of 70 mg/dl, the sensitivity and specificity were 90 and 
79%, respectively, indicating that a 21% false alarm rate must be tolerated to predict 90% of the hypoglycemic 
events 30 minutes ahead of time. Shorter prediction horizons yield a significant improvement in sensitivity and 
specificity.

Discussion:
Sensitivity and specificity data as a function of prediction horizon and alarm threshold enable an individual 
to adjust the alarm to best meet their needs. Such decisions can be made depending on the subject’s risk for 
hypoglycemia, for example.
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Motivation

People with type 1 diabetes have to balance their desire 
for maintaining tight glycemic control with the risk for 
iatrogenic hypoglycemia.1 Even with recent advances in 
technology, hypoglycemia remains a limiting factor.

Bremer and Gough2 first suggested that future glucose 
values might be predictable using continuous glucose 
monitoring (CGM) data, with the obvious application of 
anticipating hypoglycemia and other events. This sparked 
some further research efforts to accomplish this.3–5 The 
most recent contribution in this area is that of Sparacino 
et al.,6 who use first-order polynomial and autoregressive 
models for which they estimate the model parameters 
using a recursive weighted least-squares framework.

We previously proposed an approach to predicting 
hypoglycemia in real-time using optimal estimation 
theory.7 In that study, the approach was demonstrated 
using simulated data, and we showed the trade-offs 
inherent among the sampling rate of the glucose sensor, 
the threshold selection, and, more importantly, the 
prediction horizon.

In this study we apply the same approach to retrospective 
clinical data and show the viability of the optimal 
estimation method.

Methods
There are two challenges when testing a real-time blood 
glucose prediction algorithm with clinical data. One is 
the necessity of having frequently sampled reference 
blood glucose values for comparison. The other is that 
there is a need to separate the performance of the sensor 
itself from that of the prediction algorithm.

We use data from a series of hypoglycemic clamps, in 
which a continuous glucose sensor (CGMS®, Medtronic 
MiniMed, Inc., Northridge, CA) is used. Reference blood 
glucose measurements are taken every 5 minutes for 
the duration of the procedure, providing the necessary 
data to evaluate the algorithm. The database used 
(courtesy of the University of Virginia General Clinical 
Research Center, with funding from the National 
Institutes of Health Grant R01-DK-51562) contains 76 
distinct clamp procedures. Of these, only those that 
showed good performance of the sensor were selected 
for analysis, as otherwise it would be impossible to tell 
if the performance in prediction is due to the algorithm 

itself or to the calibration routine of the sensor. Selection 
criteria were median and mean relative absolute 
differences (RAD) less than 12% between the sensor and 
the reference blood glucose values. Only 13 of the clamp 
procedures met this requirement (median RAD 7.4 ± 1.6% 
and mean RAD 9.0 ± 1.7%).

The hypoglycemia prediction algorithm is described in 
detail in Palerm et al.7 For completeness, the algorithm 
is summarized here. Predictions are made using an 
estimate of the rate of change of the blood glucose, using 
a Kalman filter (an optimal estimation method). The 
Kalman filter trades off the probability that a measured 
glucose change is due to sensor noise versus an actual 
change in glucose, to obtain the maximum likelihood 
estimate of glucose (and its first and second derivatives). 
In this case, the model is given by

(1a)

(1b)

where the indices k and k + 1 denote the current time 
step and one time step into the future, respectively. The 
states are the blood glucose concentration (gk), its rate of 
change (dk , i.e., the velocity), and the rate of change of 
the rate of change ( f k , i.e., the acceleration). The latter 
is assumed to vary in a random fashion, driven by 
the input noise wk (with covariance matrix Q), which 
describes changes to the process. The blood glucose 
measurements are assumed to contain noise, described 
by vk (with covariance matrix R).

The Kalman filter uses a two-step process. It first 
calculates the estimate of the states (denoted by ) using 
the model based on the information up to the previous 
time step. Then

(2)

where the subscript k|k - 1 indicates the estimate at time 
step k, using measurements up to time step k - 1.

Once the measurement at time step k is available, it is 
used to correct the estimate of the states, using
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(3)

where L is the steady-state Kalman gain and 
is the difference between the measured output and the 
expected output using the estimate from Equation (2). 
The Kalman gain L is calculated using the covariances 
Q and R. Given that these covariances are not known 
in advance, they become tuning parameters. Changing 
the relative weight between Q and R serves to trade 
off the confidence in the model versus the confidence 
in the measurement. Putting a significant weight on 
the trust in the measurement means that the estimates 
will track the sensor signal very closely, even if noisy. 
Conversely, weighing the model significantly more than 
the measurement results in a heavily filtered estimate. 
The tuning is thus selected manually based on the best 
trade-off sought between these two extremes, which 
in this case is done as to maximize the sensitivity and 
specificity of the hypoglycemia predictions. For example, 
when Q/R = 1.25e-3 then L = [0.4821 0.1699 0.0254]T. 

The model [Equation (1)] can then be used to estimate 
blood glucose into the future. Prediction horizons from 
5 to 30 minutes are considered (in 5-minute increments). 
The algorithm is tuned to maximize the sensitivity and 
specificity over all of the data sets. This is done for each 
of the prediction horizons independently. As in the 
initial study, hypoglycemia is defined to be blood glucose 
below 70 mg/dl. Different thresholds for predicting 
hypoglycemia are considered, from 60 to 90 mg/dl  
(in 5-mg/dl increments), but always setting true 
hypoglycemia to be below 70 mg/dl.

The prediction algorithm estimates, in real time, the first 
and second derivatives of blood glucose. When making 
predictions, particularly at longer prediction horizons, the 
assumption that the second derivative remains constant 
at a nonzero value might not hold. For this reason the 
results are compared when the second derivative is 
used in making the actual predictions (  
prediction horizon) versus the case when it is considered 
to be zero (  prediction horizon).

Results

Hypoglycemic clamp procedures start with elevated 
blood glucose, and glucose levels are brought close to 
100 mg/dl before inducing hypoglycemia. During the 
initial phase of the clamp, blood glucose drops at a rate 
of 1.3 ± 0.6 (1.2 [0.6–2.7]) mg/dl mean ± standard deviation 
(median [range]). In the period when hypoglycemia is 
induced, the rate of change is significantly lower, at 
0.9 ± 0.1 (0.9 [0.8–1.2]) mg/dl. This poses a challenge 

to the prediction algorithm, as the rate of change of 
blood glucose is manipulated during the clamp with 
intravenous infusions of insulin and glucose, with the 
more aggressive changes taking place in the initial phase. 
Such fast changes will invariably lead to false positives 
over longer prediction horizons.

The tuning of the estimation algorithm in relation to the 
prediction horizon had not been explored previously. In 
Palerm et al.,7 the same tuning was used for all prediction 
horizons. Tuning the algorithm to maximize the 
sensitivity and specificity over the different prediction 
horizons resulted in different optimal settings. The 
setting that provided the best performance for the longer 
prediction horizon (30 minutes, Q/R = 0.04) was 30 times 
larger than the one for the shortest prediction horizon 
(5 minutes, Q/R = 0.0013). For the remainder of the data 
analysis the best tuning for each prediction horizon is 
used.

Figure 1 shows a comparison of the sensor and reference 
blood glucose, together with the predictions made 10, 
20, and 30 minutes into the future. Figure 1A shows 
the case when the second derivative is not used to 
make predictions, and Figure 1B shows when it is 
used. These results show that for the shorter prediction 
horizon (10 minutes), the results are almost identical, 
but as the prediction horizon is extended, the decrease 
in performance when using the second derivative for 
making the predictions becomes significant.

Over all the data sets, the sensitivity and specificity of the 
predictions were calculated for the different prediction 
horizons and detection thresholds. Given that reference 
blood glucose measurements are provided at the same 
sampling frequency as the continuous glucose sensor 
signal, a point-by-point comparison is done to calculate 
sensitivity and specificity. Therefore, for a prediction 
made at time k for time k + 3, the corresponding reference 
blood glucose value at time k + 3 used to determine if 
the prediction of hypoglycemia/no hypoglycemia was a 
true or false positive/negative. Figure 2 clearly shows the 
trade-off between sensitivity and specificity for different 
choices of prediction horizon and detection threshold. 
Use of the second derivative in making the predictions, 
Figure 2B, also shows decreased performance over the 
longer prediction horizons, with slightly lower sensitivity 
and specificity, and greater variability.

Figure 3 shows the receiver operating characteristic 
(ROC) curve for three different prediction horizons. 
The threshold in all cases with the lowest sensitivity 
corresponds to a threshold of 60 mg/dl. As the threshold 
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is increased (in increments of 5 mg/dl) up to 90 mg/dl, 
the sensitivity improves, at the expense of the specificity. 
As with Figure 2, it is clear that the longer the prediction 
horizon is, the worse the performance is overall.

As expected, the choice of a higher detection threshold 
for hypoglycemia improves on the sensitivity of the 
algorithm, drastically reducing the number of missed 
true hypoglycemic events (those below 70 mg/dl). This 
comes at the expense of reduced specificity, significantly 
increasing the number of false positives. For use in a 
hypoglycemia alarm, there are then two settings that must 
be specified: the prediction horizon and the threshold. 
The prediction horizon will depend on how much 

warning is desired before going below 70 mg/dl, and 
the threshold will depend on how many false positives 
can be tolerated. In both cases, there is no correct answer 
and will depend greatly on user preference.

Discussion
The issue of reduced specificity is of concern, as it can 
lead to too frequent alarms that require no response 
from the subject. In this case, there will be an inclination 
to ignore the alarms and therefore miss the opportunity 
to take corrective action when the alarm is indeed 
warranted. Kovatchev and colleagues8 have shown that 
there is a measurable disturbance in blood glucose in a 
48-hour period preceding severe hypoglycemic events. 

A

B

Figure 1. Comparison of the predictions for horizons of 10, 20, and 30 
minutes into the future for one of the clamp procedures. In both cases 
it is clear how longer prediction horizons degrade performance. Setting 
the second derivative to zero (A) improves blood glucose predictions as 
compared to the case when it is used (B).

Figure 2. Sensitivity and specificity depend on the prediction horizon, as 
well as the threshold used to decide on hypoglycemia. Setting the second 
derivative to zero (A) also improves the sensitivity and specificity of the 
blood glucose predictions as compared to the case when it is used (B).

A

B
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Using data from self-monitoring of blood glucose taken 
three to five times per day, they found a reduction in the 
blood glucose average and an increase in its variance. In 
particular, an increase in the low blood glucose index 
(LBGI)—a risk measure proposed by Kovatchev and co-
workers9—correlated well with this increased risk of 
severe hypoglycemia.

We propose that such metrics can be used in the context 
of CGM to adjust the prediction horizon and threshold 
automatically depending on the risk for hypoglycemia. 
Cutoff values for the LBGI were proposed by Kovatchev 
et al.10 for low (LBGI < 2.5), moderate (2.5 ≤ LBGI ≤ 5), and 
high (LBGI > 5) risk for severe hypoglycemia. The LBGI 
average over the preceding 24-hour window can then 
be used to select the prediction horizon and threshold 
accordingly. In the case of low risk the objective would 
be to minimize false alarms, thus a shorter prediction 
horizon (e.g., 10 minutes) combined with a tight threshold 
(e.g., 75 mg/dl) could be used. As risk increases, the 
prediction horizon and/or the threshold can be increased, 
with the idea being that the subject will tolerate more 
false alarms when in high risk, but not when the risk is 
low. Computation of the LBGI using CGM can be done 
as described elsewhere.11 

We have shown that an algorithm based on optimal 
estimation theory is effective in making predictions of 
hypoglycemia. The choice of detection threshold and 
prediction horizon affects the sensitivity and specificity 

of the system. As with any such system, the selection of 
these parameters depends on the application, as well as 
on user preference.

Although these initial results applying the optimal 
estimation-based algorithm are very encouraging, 
there are other aspects that need to be studied. The 
previous study7 showed that more frequent sampling 
can significantly improve the sensitivity and specificity 
of the system for the same detection threshold and 
prediction horizon. Therefore, appropriate data using 
a continuous glucose sensor capable of providing more 
frequent glucose output (with a 1-minute sample time, 
for example) should be studied.
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