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Abstract

Background:

A 5-day in-patient study designed to assess the accuracy of the FreeStyle Navigator® Continuous Glucose 
Monitoring System revealed that the level of accuracy of the continuous sensor measurements was dependent 
on the rate of glucose change. When the absolute rate of change was less than 1 mg•dl-1•min-1 (75% of the time), 
the median absolute relative difference (ARD) was 8.5%, with 85% of all points falling within the A zone of 
the Clarke error grid. When the absolute rate of change was greater than 2 mg•dl-1•min-1 (8% of the time), the 
median ARD was 17.5%, with 59% of all points falling within the Clarke A zone.

Method:

Numerical simulations were performed to investigate effects of the rate of change of glucose on sensor 
measurement error. This approach enabled physiologically relevant distributions of glucose values to be 
reordered to explore the effect of different glucose rate-of-change distributions on apparent sensor accuracy.

Results:

The physiological lag between blood and interstitial fluid glucose levels is sufficient to account for the observed 
difference in sensor accuracy between periods of stable glucose and periods of rapidly changing glucose.

Conclusions:

The role of physiological lag on the apparent decrease in sensor accuracy at high glucose rates of change has 
implications for clinical study design, regulatory review of continuous glucose sensors, and development of 
performance standards for this new technology. This work demonstrates the difficulty in comparing accuracy 
measures between different clinical studies and highlights the need for studies to include both relevant glucose 
distributions and relevant glucose rate-of-change distributions.
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Introduction

Recent studies involving the use of continuous 
glucose monitoring have highlighted the limitations 
of current diabetes therapy involving episodic self-
monitoring of blood glucose. A 3-day study with 56 
children with type 1 diabetes using a continuous glucose 
monitoring system (Medtronic MiniMed, Northridge, 
CA) in which glucose data were not displayed to the 
patients found 90% of postprandial glucose values in the 
hyperglycemic range (>180 mg/dl) with 50% markedly 
hyperglycemic (>300 mg/dl).1 A 21-day study with 101 
adults with type 1 (n = 60) and type 2 (n = 41) diabetes 
using the FreeStyle Navigator® Continuous Glucose 
Monitoring System (Abbott Diabetes Care, Alameda, CA) 
in which glucose data were also not displayed to the 
patients found subjects were hypoglycemic (<70 mg/dl) 
for 1.9 hours per day and hyperglycemic (>180 mg/dl) for 
6.9 hours per day despite frequent blood glucose testing, 
averaging 7.9 tests per day.2

Continuous glucose monitoring is expected to assist 
patients with diabetes in achieving safer tight glycemic 
control more effectively.3–5 Historically, patients on 
intensive insulin therapy have had a markedly higher 
incidence of hypoglycemia.6 Accordingly, both the 
occurrence and the fear of hypoglycemia have been 
identified as primary barriers to effective glycemic control.7 
Patients using continuous glucose monitoring devices 
may be able to set more aggressive glycemic targets and 
therefore treat hyperglycemia more aggressively without 
incurring an increase in the incidence of hypoglycemia. 
Continuous glucose monitoring systems may further 
enable patients to reduce glycemic fluctuations, which 
have received increased attention for their role in the 
development of diabetic complications.8,9 Finally, accurate 
and reliable continuous glucose monitors are essential 
elements in the development of any future artificial pancreas 
devices incorporating automated insulin infusion.10,11

The utility of continuous glucose monitoring devices will 
largely be determined by the accuracy of the information 
that they can provide to both patients and their health-
care providers. A 5-day in-patient study involving 58 
subjects with type 1 diabetes was conducted to assess 
the accuracy of the FreeStyle Navigator system. Readings 
from the FreeStyle Navigator system were compared 
with frequent venous samples analyzed with an accepted 
clinical laboratory instrument. From all subjects, a total 
of 20,362 paired points between the FreeStyle Navigator 
system and the laboratory reference were collected 
during 50 hours of sampling scheduled throughout the 

5 days of sensor wear. At the time of the study, the 
FreeStyle Navigator system was an investigational device 
under review by the U.S. Food and Drug Administration 
(FDA).

In this study, the median absolute relative difference 
(ARD) of the FreeStyle Navigator system was found to 
be 9.3%, with 82% of the paired points falling within 
the clinically accurate A zone of the Clarke error grid.12 
The study also revealed that the level of accuracy of the 
continuous sensor measurements was dependent on the 
rate of glucose change.

When glucose values were relatively stable, meaning that 
the absolute rate of change was less than 1 mg•dl-1•min-1 
(75% of the time), the median ARD was 8.5%, with 85% 
of all points falling within the Clarke A zone. During 
the course of the 50 hours of frequent reference venous 
glucose sampling, study subjects were administered both 
insulin and glucose challenges in order to obtain periods 
of rapidly rising and rapidly falling glucose. When the 
absolute rate of blood glucose change was greater than 
2 mg•dl-1•min-1 (6.6% of the time), the median ARD was 
17.5%, with 59% of all points falling within the Clarke A 
zone. The frequency of these high rates of glucose change 
is consistent with what has been observed in simulated 
home-use studies.13,14 These results are summarized in 
Table 1.

Table 1.
Results from 5-Day In-Patient Study Using the 
Freestyle Navigator Continuous Glucose Monitoring 
System Demonstrate That Accuracy, as Measured by 
Standard Metrics, Is Strongly Dependent on Glucose 
Rate of Change

Rate of 
change 

(mg•dl-1 •min-1)

% of 
data

Clarke error grid zone
Median 

ARD 
(%)A B C D E

<-2 3.1 54.6% 42.3% 1.3% 1.8% 0.0% 17.4

-2 to -1 8.8 71.7% 26.2% 0.3% 1.8% 0.0% 11.8

-1 to 1 74.7 84.9% 13.5% 0.0% 1.5% 0.0% 8.5

1 to 2 10.0 79.8% 18.9% 0.0% 1.3% 0.0% 11.0

>2 3.5 63.5% 34.7% 0.0% 1.7% 0.0% 16.9
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An analysis was undertaken to elucidate the relationship 
between the observed accuracy and the glucose rate of 
change and to explore the role of the lag between blood 
and interstitial fluid (ISF) glucose measurements on this 
dynamic.

This lag is generally reported to range between 0 
and 15 minutes and is observed most readily during 
periods of rapidly changing blood glucose,15 which can 
be understood in terms of dynamic delay and dynamic 
error. Here, dynamic delay refers to the temporal delay 
for a transient change in blood glucose to be reflected in 
ISF glucose and is associated with the properties of mass 
transfer between compartments. Alternately, dynamic 
error is the difference between the glucose level in the 
blood and in the ISF and is the product of the dynamic 
delay and the rate of change in glucose. As such, the 
dynamic error, which is the observable manifestation of 
lag and which is reflected in standard accuracy metrics, 
is most pronounced during periods of rapidly changing 
glucose.16

Methods

A numerical simulation program, Continuous Glucose 
Metric (CGMetric) (Abbott Diabetes Care, Alameda, CA), 
was used to investigate sources of error in continuous 
glucose monitoring, focusing on the relationship between 
the rate of change of glucose and measures of sensor 
accuracy.

These sources of error have been well enumerated and 
include both instrumental and physiological sources. 
Instrumental sources may include such things as bias, 
drift, noise, and sensor response time.17 Physiological 
sources are associated primarily with the compartment 
in which continuous glucose measurements are 
made. Whereas current standards of treatment for 
the management of diabetes involve self-monitoring 
of capillary blood glucose, the present generation of 
continuous glucose monitoring systems (those systems 
approved for use as well as those currently under review 
by the FDA) involves subcutaneous sensors that measure 
glucose in the ISF and which are calibrated to reflect 
blood glucose levels. As such, physiological sources of 
error may include the concentration gradient between 
capillary blood glucose and ISF glucose levels, as well 
as any lag that exists as a consequence of the dynamic 
relationship between the two compartments.18 

CGMetric was designed to gain an understanding of 
the maximum accuracy (or the minimum error) that 
could be expected for a given data set (or, alternatively, a 

given clinical study design) when comparing continuous 
glucose monitoring results to blood glucose reference 
values. The program allows real or simulated continuous 
glucose data to be analyzed using standard accuracy 
metrics with respect to appropriate pseudo-reference 
data. Continuous glucose data are imported into the 
simulation environment, and values at regular intervals 
(e.g., 15 or 30 minutes) are selected to serve as pseudo-
reference data. Imported continuous glucose data can 
then be perturbed by introducing lag, drift, bias, and 
noise. Pseudo-reference data are left unperturbed. 
Perturbed continuous data can then be analyzed with 
respect to pseudo-reference data, and standard measures 
of accuracy can be calculated to allow the sources of 
error in continuous glucose monitoring to be studied 
independently or in conjunction with one another.

The basic functionalities of the CGMetric program 
were validated using simple analytical functions as the 
imported continuous glucose data sets. These data sets 
were perturbed as described earlier, and the reported 
accuracy measures were compared with those calculated 
independently.

The CGMetric program also allows for imported 
continuous glucose data sets to be preconditioned 
prior to perturbation. Preconditioning may include 
the rearrangement of continuous glucose data to 
systematically alter the glucose rate-of-change distribution. 
For example, if glucose values in the imported data set 
are ordered from lowest to highest, this creates a glucose 
rate-of-change distribution that is skewed toward lower 
rates of change. Alternatively, glucose values may be 
systematically rearranged such that a higher frequency 
of large glucose rates of change can be observed. For 
illustration, glucose values can be rearranged by dealing 
out the values such that the lowest value is first, the 
second lowest is last, the third lowest is second, the 
fourth lowest is second to last, and so on. This creates a 
data set with a characteristic frequency equal to half that 
of the simply ordered data set. This procedure may be 
repeated, each time shuffling and redealing out the same 
glucose values to achieve increasing rates of change. 
In this way, the distribution of glucose values is kept 
constant while the distribution of the rates of change may 
be rearranged such that the effect of different glucose 
rate-of-change distributions on apparent sensor accuracy 
can be explored.

The Wired Enzyme™ sensor chemistry used by the 
FreeStyle Navigator Continuous Glucose Monitoring 
System minimizes the instrumental error associated with 
that device.19 The sensor is largely unaffected by bias and 
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drift, as demonstrated by the reported agreement between 
FreeStyle Navigator system glucose measurements and 
those obtained from a clinical laboratory reference 
instrument and from the similar performance observed 
on the first and fifth days of wear (12.6% mean ARD on 
day 1 as compared to 13.0% mean ARD on day 5) despite 
only four required calibrations over the 5 days of wear 
(including none during the final 48 hours). Accordingly, 
bias and drift were not applied to the data sets in the 
simulations reported here.

Comparison of the accuracy of FreeStyle Navigator 
sensors worn on the arm and abdomen simultaneously 
showed no clinical or statistically significant difference. 
Matched sensors had a coefficient of variation (CV) of 
10%, consistent with a random noise level, including both 
sensor noise and any error imparted during calibration, 
of approximately 20%.12

A temporal delay in continuous glucose monitoring is 
studied most appropriately using a diffusion model that 
addresses the properties of mass transfer between blood 
and ISF compartments.20 However, simplification of a 
fixed temporal offset is often referenced in the literature. 
The CGMetric program was used to model the effects 
of lag using both a fixed temporal offset of 12 minutes, 
consistent with results of an analysis of time-shifted 
FreeStyle Navigator data from the 5-day in-patient study, 
which found that the mean ARD could be minimized if a 
12.6-minute offset were applied,12 and a two-compartment 
diffusion model with a time constant, t, of 9 minutes.21 
Numerical simulations revealed only minor differences 
between the two methods over physiologically relevant 
rates of glucose change. For simplicity, all data reported 
here were obtained using a fixed temporal offset of 12 
minutes unless otherwise noted.

Data used in the following analyses were obtained as 
part of a clinical study conducted at Diablo Clinical 
Research (Walnut Creek, CA). The protocol was approved 
by an institutional review board and the subjects gave 
informed consent for their participation.

Results

A typical 24-hour glucose profile obtained from a 
subject with type 1 diabetes is used as seed data for the 
simulations discussed later. This glucose profile is shown 
in Figure 1 along with graphs that identify distributions 
of the glucose values and the glucose rates of change.

During the period of observation the subject’s blood 
glucose, as measured once per minute by the FreeStyle 

Navigator system, was less than 80 mg/dl 24% of the 
time, between 80 and 200 mg/dl 65% of the time, and 
above 200 mg/dl 9% of the time. The glucose values 
ranged from 43 to 353 mg/dl. The glucose rate of change 
was calculated using data obtained from the FreeStyle 
Navigator system after the application of a low-pass 
filter which retained the physiological fluctuations in 
the subject’s blood glucose while significantly reducing 
the random error associated with the derivative used to 
calculate the glucose rate of change. This is demonstrated 
in Figure 1 by the agreement of the smoothed data with 
the original dataset. The low-pass filter employed used 
a Fourier transform (Numerical Recipes, v. 2.11) with a 
look back of 30 minutes.

During this 24-hour period, the subject’s glucose was relatively 
stable, changing at a rate between -1 and 1 mg•dl-1•min-1 
63% of the time; moderately unstable, with an absolute 
rate of change between 1 and 2 mg•dl-1•min-1 25% of the 
time; and highly unstable, with an absolute rate of 
change greater than 2 mg•dl-1•min-1 12% of the time.

In the first example presented, the imported continuous 
glucose data set was analyzed with the temporal integrity 
intact (i.e., preserving both glucose distribution and 
glucose rate-of-change distribution). Pseudo-reference 
data were selected from the imported data set at 15-
minute intervals. The imported data set was subjected to 
a perturbation involving the application of 20% random 
noise and a temporal offset of 12 minutes. (In all cases 
where the signal perturbation included random noise, 
Visual Basic “Randomize” and “Rnd” functions were 
used to generate pseudo-random values based on the 
indicated percentage of imported continuous glucose 
data.) Perturbed data were then compared to pseudo-
reference data and standard accuracy metrics were 
calculated. This procedure was performed 10 times 
on the original imported data set such that statistical 
measures of accuracy averaged over the ensemble results 
could be reported. Results of the analysis of perturbed 
data, shown in Figure 2, reveal a median ARD of 12.0% 
(range 10.4–13.2%) with 80% (range 75–85%) of all points 
falling within the Clarke A zone, consistent with the 
level of accuracy observed for the FreeStyle Navigator 
system in the 5-day in-patient study.

In the next example offered, the imported data set was 
preconditioned prior to perturbation and the selection of 
pseudo-reference values was such that the distribution 
of glucose values could be kept constant while the 
distribution of the glucose rate-of-change could be varied 
widely, as shown in Figure 3. Glucose rate-of-change 
distributions with between 1 and 38% of all points with 
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an absolute rate of change greater than 2 mg•dl-1•min-1 
were utilized. The identical perturbation as used in the 
previous example, involving the addition of 20% random 
noise and a temporal offset of 12 minutes, was applied to 
these preconditioned data sets and statistical measures of 
accuracy were calculated. Both the median ARD and the 
percentage of paired points falling in the Clarke A zone 
were observed to depend strongly on the glucose rate-of-
change distribution. With decreasing glucose stability (as 
quantified by an increasing percentage of glucose values 
with an absolute rate of change greater than 2 mg•dl-1•min-1), 
the median ARD was observed to rise and the percentage 
of paired points falling in the Clarke A zone was observed 
to fall (Figure 4).

Discussion

The approach presented here provides unique insight 
into the relationship among the rate of change of 
glucose, the physiological lag between blood glucose 
and interstitial fluid glucose, and statistical measures 
of sensor accuracy. The model developed for analyzing 
the performance of the FreeStyle Navigator Continuous 
Glucose Monitoring System—based on only the measured 
system characteristics of a random noise level of 20% 
and a temporal lag of 12 minutes—was able to simulate 
the level of accuracy observed in the aggregate statistical 
results obtained from the 5-day in-patient study. In 
addition, the aforementioned analysis was able to 

Figure 1.  (A) The imported 1-minute FreeStyle Navigator continuous glucose profile is shown as red open circles. Filtered data, used to calculate the 
glucose rate of change, are shown as an underlying solid black line. The glucose rate of change is shown as a solid blue line. (B) The distribution of 
glucose values is reported in 40 mg/dl bins. (C) The distribution of glucose rates of change is reported in 1 mg•dl-1•min-1 bins from -2 to 2 mg•dl-1•min-1.
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Figure 2.  (A) The imported data set is shown in red with pseudo-reference data points indicated by black circles. The perturbed data set (20% 
random noise and 12-minute temporal offset) is shown in blue. Typical results are shown. (B) The Clarke error grid analysis of glucose data from A 
is presented. The displayed error grid is representative of typical results obtained from the ensemble analysis performed.

demonstrate that the glucose rate-of-change distribution 
of a data set significantly affects the measured accuracy 
of a continuous glucose sensor.

This concept is further demonstrated in the following 
example. Analysis of a glucose data set with modest rates 
of change (trace C from Figure 3, with 88% of all glucose 
rate-of-change values between -1 and 1 mg•dl-1•min-1) 

reveals that a perfect sensor with a 12-minute temporal 
offset would result in 96% of all paired glucose values 
falling in the Clarke A zone. However, a glucose data set 
with high rates of change (trace E from Figure 3, with only 
12% of all glucose rate-of-change values between -1 and 1 
mg•dl-1•min-1) reveals that the identical perfect sensor with 
a 12-minute temporal offset would result in only 58% of 
all paired glucose values falling in the Clarke A zone.
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Figure 3.  The glucose trace from Figure 1 has been conditioned to achieve varying glucose rate-of-change distributions. Examples are shown from 
top to bottom with increasing rates of change. Glucose traces are shown in red, and the glucose rate of change and rate-of-change distributions are 
shown in blue. All traces consist of the identical distribution of glucose values.

These results become even more interesting when we 
include the effects of 20% random noise on system 
performance. When 20% random noise is added to the 
12-minute temporal offset, the simulated accuracy of 
the low rate of change glucose data set (trace C from 
Figure 3) decreases from 96 to 86%, as measured by the 
percentage of paired glucose values falling in the Clarke 
A zone. Here we see that sensor noise dominates lag at 
low rates of glucose change, with noise accounting for 
58.1% of the sensor deviation from ideality.

However, when we look at a glucose data set with a 
high rate of change (trace E from Figure 3), the addition 
of 20% random noise to the 12-minute temporal offset 
lowers the simulated accuracy of the continuous sensor 
readings from 58 to 46%, as measured by the percentage 
of paired glucose values falling in the Clarke A zone. 
For these high rates of glucose change, sensor lag 
dominates noise, with noise accounting for 16.2% of the 
sensor deviation from ideality. These results are detailed 
in Table 2.



692

Numerical Simulation of the Effect of Rate of Change of Glucose on Measurement Error of Continuous Glucose Monitors Taub

www.journalofdst.orgJ Diabetes Sci Technol Vol 1, Issue 5, September 2007

This type of analysis can also be extended to explore 
the theoretical limits of accuracy of continuous glucose 
monitoring. Even a perfect sensor that measures glucose in 
the ISF will require calibration to capillary blood glucose 
in order to account for any concentration gradient between 
those two physiological compartments. Calibration itself 
will impart error into the system. Highly accurate home 
blood glucose meters have a CV of approximately 5%,22,23 
which will be reflected as approximately 10% random 
noise in the sensor. The lag between blood glucose and 
ISF glucose must also be considered.

In the previous examples offered, the applied 12-minute 
temporal offset accounted for both physiological and 
intrinsic sensor lags. In vitro laboratory experiments 
measuring the sensor response to a step change in 
glucose have shown that the FreeStyle Navigator sensor 
response time is on the order of 2 minutes. Therefore, 
even with an ideal sensor, imparting no intrinsic sensor 
lag, it is reasonable to expect that a physiological lag of 
approximately 10 minutes will be present.

Typical distributions of glucose rates of change for people 
with type 1 or type 2 diabetes requiring insulin (e.g., 75–
85% of all points < ± 1 mg•dl-1•min-1)13,14 were modeled 
(using the glucose trace shown in part C of Figure 3). 
When this glucose trace is analyzed with 10% random 
noise and a 10-minute temporal offset, the median ARD 
is found to be 5.5%, with 97% of all paired points falling 
in the Clarke A zone.

For comparison, the FreeStyle Navigator Continuous 
Glucose Monitoring System was found to have a median 
ARD of 9.3%, with 81.7% of all paired points falling in 
the Clarke A zone when calibrated with capillary blood 
glucose using the integrated FreeStyle meter for a similar 
distribution of glucose rates of change.12 This median 
ARD is only 3.8% higher than a simulated perfect sensor 
with a 10-minute physiological lag calibrated with a state-
of-the-art blood glucose meter.

While the numerical simulations discussed earlier were 
compared to clinical data obtained using the FreeStyle 
Navigator sensor, this approach is not limited to any 
particular sensor or sensor device and was intended to 
minimize the sensor-specific nature of the analysis.

Figure 4.  Median ARD (circles) and percentage of paired points falling 
in the Clarke A zone (triangles) are plotted versus the percentage of high 
rate-of-change glucose values. Black open shapes are from analysis of the 
imported data set with intact temporal integrity, and black closed shapes 
are from preconditioned data sets. All data sets have been perturbed with 
20% random noise and a temporal offset of 12 minutes. Red shapes indicate 
the rate of change and statistical measures of accuracy observed in the 5-
day in-patient study.12

Table 2. 
CGMetric Simulation Results (Using Data from Traces C and E from Figure 3) Are Shown Detailing Relative 
Contributions of Lag and Noise on Apparent Sensor Accuracy for Two Different Glucose Rate-of-Change 
Distributions

Applied signal 
perturbation

Low rate-of-change trace
(88% of values between -1 and 1 mg•dl-1•min-1)

High rate-of-change trace
(12% of values between -1 and 1 mg•dl-1•min-1)

Clarke A zone Median ARD Error contribution 
because of noise Clarke A zone Median ARD Error contribution 

because of noise

12-minute temporal 
offset 96% 4.4% 0% 58% 22.2% 0%

12-minute temporal 
offset and 20% 
random noise

86% 10.5% 58.1% 46% 26.5% 16.2%
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Conclusion

The analysis presented provides insight into the 
relationship between glucose rates of change and the 
measured accuracy of continuous glucose sensors. These 
numerical simulations show that the decrease in accuracy 
measured at high rates of change may be attributable to 
the effects of physiological lag rather than to any decrease 
in fundamental sensor performance. That is, the actual 
accuracy of the sensor may remain unchanged, while 
the measured error relative to reference blood glucose 
values increases because of the effect of lag associated 
with mass transfer between the two physiological 
compartments. This is consistent with expectations 
for a system involving time-dependent mass transfer 
where the intrinsic sensor lag is small compared to the 
relevant physiological lag between two compartments. It 
is important to note that that the effects of physiological 
lag on measured sensor accuracy may be minimized 
through the use of deconvolution techniques that involve 
reconstructing modeled plasma glucose levels from ISF 
glucose measurements.24

These results have a number of profound implications 
for the assessment of new continuous glucose monitoring 
technologies and for the design of clinical studies and 
regulatory reviews of those technologies.

1. When reporting accuracy measures from clinical 
studies, the distributions of glucose values and 
glucose rates of change must be detailed and direct 
comparisons of accuracy between studies should be 
limited to those with largely equivalent distributions.

2.  Study designs must include physiologically relevant 
glucose distributions and relevant rate-of-change 
distributions and may include appropriate insulin and 
glucose challenges to achieve those distributions.

3.  The measured accuracy of continuous glucose monitors 
may be different in certain populations characterized 
by greater or lesser glucose variability.

a. Studies of continuous glucose monitoring systems in 
subjects with type 2 diabetes may have less glucose 
variability and report higher measures of accuracy 
than those in patients with type 1 diabetes.

b. Studies in special populations such as children and 
adolescents with greater glucose variability may 
have lower reported measures of accuracy as a 
consequence of the rate of change effects described 
earlier.

In addition, as performance standards for continuous 
glucose monitoring technologies are further developed,25 
those standards should include performance goals 
that include references to the range of physiologically 
relevant distributions of glucose values and glucose rates 
of change. Comparisons of different continuous glucose 
monitoring systems should also include assessments of 
the glucose range and variability present in the studies.
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