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Abstract

Tight glycemic control slows or prevents the development of short- and long-term complications of diabetes 
mellitus. Continuous glucose measurements provide improved glycemic control and potentially prevent 
these diabetic complications. Glucose sensors, especially implantable devices, offer an alternative to classical 
self-monitored blood glucose levels and have shown promising glucose-sensing properties. However, the 
ultimate goal of implementing the glucose sensor as the glucose-sensing part of a closed loop system (artificial 
pancreas) is still years ahead because of malfunctions of the implanted sensor. The malfunction is partly a 
consequence of the subcutaneous inflammatory reaction caused by the implanted sensor. In order to improve 
sensor measurements and thereby close the loop, it is crucial to understand what happens at the tissue-sensor 
interface.
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Introduction

The prevalence of diabetes is rapidly increasing, 
almost reaching epidemic proportions (WHO, Fact sheet 
No. 236). The main target in the treatment of diabetes 
mellitus is to control the plasma glucose levels, as 
persistent or frequent episodes of hyperglycemia lead to 
damage of various organs (long-term effect). However, 
intensive medical treatment to control plasma glucose 
levels might lead to increased hypoglycemic events 
(short-term effect). Therefore, one of the central themes 
in controlling the short- and long-term effects of diabetes 
mellitus is the monitoring of plasma glucose levels. 
Human trials have convincingly demonstrated that 

strict control of hyperglycemia will delay the onset and 
progression of long-term effects of diabetes mellitus.1–3 
The most common approach to control hyperglycemia, 
including medical treatment, involves effective and 
regular monitoring of the blood glucose concentration. 
The preferred method has been the self-monitoring 
of glucose levels (SMBG) by puncture of capillaries in 
the finger tip and withdrawal of blood for analysis.4,5 
However, this method only provides a snapshot of the 
glucose concentration, and nocturnal hypoglycemia will 
remain undetected by SMBG. In contrast, continuous 
glucose measurements (CGM) potentially deliver the 
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information needed for optimal control of blood glucose 
levels. The benefit of CGM vs SMBG is shown in Figure 1.

Different invasive and noninvasive techniques have been 
developed to obtain continuous glucose measurements.6–

11 In general, invasive techniques seem to be superior 
to noninvasive techniques because of better accuracy 
and reduced lag time of glucose measurements.6,10 One 
of the most promising invasive techniques involves the 
implantation of glucose sensors in the subcutaneous 
tissue, but the sensors may malfunction, causing 
unreliable glucose measurements.12–15 Suggested causes 
of the observed instability of glucose measurements 
are protein/cellular biofouling at the membrane surface, 
tissue interferents affecting the electrode, enzymatic 
dysfunction, and unstable levels of oxygen.12,16–19 In order 
to elucidate these problems, it is important to focus on 
the inflammation caused by implanted sensors. Thus, it is 
crucial to understand what happens at the tissue–sensor 
interface in the future development and improvement of 
glucose sensors for implantation in the subcutis.

Continuous Glucose Measurements in 
Subcutis

The subcutis is easily accessible and suitable for 
implantation of glucose sensors. However, needle-type 
glucose sensors implanted in the subcutis do not measure 
the blood glucose concentration per se, but rather the 
glucose concentration in the subcutaneous interstitial 
fluid (ISF). Obviously, the measurements must correlate 
to blood glucose levels if this method is to be used as 
a clinical tool for the intervention of glucose levels in 
diabetic patients. 

mg/dl

SMBG
CGM

A milestone in glucose sensor development was 
demonstration of a correlation of glucose levels in the 
blood and ISF as shown by Fischer et al.20 Their results 
opened the gate for the development and application of 
subcutaneous glucose sensors. Since then, several studies 
in animal models, e.g., cynomolgus monkeys,21 pigs,22 
dogs,15,23–25 rats,26–29, cats,23,30 and horses,23 have shown a 
correlation between glucose concentrations in the blood 
and the ISF in subcutaneous tissue. Furthermore, there 
are numerous human reports on this subject and, as in 
animal studies, there is a correlation between blood and 
ISF glucose levels in healthy volunteers,31–33 nondiabetic 
and insulin-dependent diabetes mellitus volunteers,34 
type 1 diabetics,35–37 and pediatric type 1 diabetic 
patients.38

However, despite these encouraging reports of 
subcutaneously implanted glucose sensors, the method 
has not resulted in widespread use, partly because of 
several problems in relation to implantation. Differences 
between in vivo and in vitro performance of sensors 
in dogs have been demonstrated,39-40 highlighting the 
need for an in vivo calibration procedure. However, 
the calibration drift can be overcome with multiple 
calibrations against a reference. An example is that 
measurements from the MiniMed Continuous Glucose 
Monitoring System® (CGMS, MiniMed Medtronic, 
Northridge, CA) are based on four daily calibrations.

After implantation of sensors in the subcutis, several 
studies have revealed that the in vivo sensor characteristics, 
i.e., zero (=background) current, linearity, and sensitivity, 
are different between sensors and, more importantly, also 
fluctuate for the same sensor over time.12–15,22 This is partly 
because of the lack of reproducibility in the production 
of sensors, but most likely also because of physiological 
differences at the implantation site. This is further 
emphasized by the demonstration that the sensitivity of 
glucose sensors changed significantly after explantation 
from the subcutis and following placement in an in vitro 
environment.7,40,41 This indicates the role of a reversible 
biological factor affecting the sensor measurements.

Furthermore, there is a delay in ISF glucose equilibrium 
after changes in the plasma glucose concentration, as 
the glucose sensor inevitably has an intrinsic delay 
due to glucose diffusion over membranes. The delay is 
reported to vary from 3 to 15 minutes15,20,36,42,43 depending 
on species, sensor design and size,44 and the applied 
stimulus (meal, intravenous, subcutaneous, or oral 
glucose or insulin administration).

Figure 1. Comparison of information from standard SMBG and 
CGM from a person with diabetes mellitus. According to blood 
glucose measurements, the diabetic person controls glucose levels 
in the normal glycemic range and seems to be controlling the blood 
glucose levels well. However, CGM reveals that there is undetected 
hypoglycemia at 04.00 and hyperglycemia at 10.00, 16.00, and 21.00. 
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In conclusion, the major drawback of subcutaneously 
implanted electrochemical sensors is the bioinstability 
with unpredictable drift and reproducibility of sensor 
measurements.13,20,43,45,46 The bioinstability is partly 
explained by the sensor design, but obviously is also 
affected by the subcutaneous inflammatory reaction to 
implanted sensors. Suggested causes of the observed 
bioinstability have been attributed to protein/cellular 
biofouling in or on the membrane, tissue interferents 
affecting the electrode, enzymatic dysfunction, or 
unstable levels of oxygen.12,16–18 Therefore, there is a need 
for a more detailed evaluation of the sensor-related 
subcutaneous inflammatory reaction.12,47,48

Inflammation and Biocompatibility of 
Implanted Materials

Understanding the interaction between tissue/cells and 
the implanted glucose sensor is indispensable for the 
optimization of continuous glucose measurements in the 
subcutis. Immediately after implantation of a biomaterial, 
e.g., a glucose sensor, an inflammatory process is 
initiated.11,49 This is followed by different characteristic 
phases of the inflammatory response, optimally leading 
to total resolution after the biomaterial/sensor has been 
removed.

Initiation and Development of Inflammation

The manifestations of acute inflammation are related to 
vascular and cellular changes.

Once implanted, the polymeric material, i.e., the sensor 
membrane, is covered rapidly with plasma proteins 
as a result of increased vascular permeability and/or 
disrupted vessels, where fibrinogen especially seems to 
play an important role in the subsequent development 
of inflammation.49,50–52 In parallel with these initial 
events, there is a release of cell-mediated factors, causing 
inflammatory cells to leave blood vessels and migrate 
to the implant where they are activated. In chronic 
stages, the implant is walled off by granulation tissue 
and eventually a fibrous capsule is formed.53 Here the 
continued presence of an implant prevents the tissue 
from returning to normal, but it is possible to achieve a 
steady state where no progressive changes occur.54

Inflammatory Reaction to Subcutaneously Implanted 
Glucose Sensors

The aforementioned description of inflammatory responses 
to biomaterials is based primarily on functional studies 
to characterize the mechanisms behind the inflammatory 

reaction to biomaterials in general. Few reports have been 
published on the subcutaneous inflammatory reaction 
caused by implanted glucose sensors. Publications 
related to the evaluation of the in vivo biocompatibility 
of implanted glucose sensors are summarized in Table 1. 
The infiltration of neutrophils and macrophages in the 
tissue surrounding the implanted sensor is a common 
observation. The study of Mang and colleagures55 

contributed to future decisions in material selection for 
sensor membranes, and Klueh and Kreutzer56 established 
the first murine model for the in vivo evaluation of 
implantable glucose sensors. However, other animal 
studies probably have little relevance in comparison 
with modern sensors for short-term implantation. This 
is mostly because of suboptimal experimental design,12,26 
uncontrolled sensor production, i.e., ill-defined material 
selection57 or nonsterile sensors,58 size of sensors,58 and 
duration of implantation.26,55,57 Moreover, evaluation 
of the inflammation has in general been restricted 
to a histomorphological examination performed on 
hematoxylin and eosin (HE)-stained sections. Selective 
staining (Masson’s trichrome stain) was used in only one 
study to evaluate the extent of fibrosis.56 In conclusion, so 
far only a few studies have focused on in situ detection of 
specific immune cells, proteins, or genes in evaluation of 
the inflammation caused by implanted glucose sensors.

Future Perspectives

Sensor characteristics such as sensitivity, zero current, 
and linearity have been found to differ between in 
vitro and in vivo environments.39,40 Furthermore, it has 
also been shown that in vivo sensor characteristics 
change over time, i.e., the local tissue reaction affected 
sensor measurements. It has also been found that the 
biocompatibility of glucose sensors should be considered 
from a perspective linked to the events of inflammation. 
The technique used to describe the inflammatory reaction, 
i.e., the biocompatibility of sensors, is the detection of 
specific immune cells (cell surface markers) or cytokines 
at the protein and the gene levels.

Today, certain proteins, genes, and immune cells have 
now been identified as key players in the development 
of lesions caused by an implanted glucose sensor over 
time, i.e., knowledge that will be beneficial in future 
attempts to control inflammation, thereby improving the 
sensing properties.22,49,59,60 However, the specific events 
of inflammation around the sensor need to be linked 
to the quality of sensor measurements before a targeted 
approach to dampen components of the immune response 
can be performed successfully.
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An obvious way to eliminate or reduce the inflammation 
caused by short-term implanted glucose sensors, thereby 
potentially reducing the bioinstability of measurements, 
is the release of drugs from the device. A dexamethasone/
poly(lactide-co-glycolide) (PLGA) microsphere system was 
used to reduce the inflammation around subcutaneously 
implanted materials (cotton threads), and this method 
showed a significant reduction in tissue reaction in 
rats.61 However, it did not improve the long-term effect 
on foreign body reaction.62 The dexamethasone/PLGA 
system has been tested with glucose sensors.63 However, 
that study did not focus on showing that a reduction 
in inflammation around the sensors could be correlated 
with improved sensor measurements. A glucose sensor 

releasing the anti-inflammatory factor nitrite oxide from 
the outer membrane has also been tested.64 It was shown 
that the inflammatory response at the implantation site 
was reduced and that the sensing properties seemed 
to improve. Furthermore, a novel technique of coating 
devices with a DNA-based structure demonstrated the 
devices to be fully histocompatible after subcutaneous 
implantation.65 In combination with functionalization 
of DNA-based coatings with angiogenic factors, this 
technique showed an increase in the vascularity around 
the implant.65 The future may show if the technique 
is compatible with the production of glucose sensors 
for implantation and if the increased vascularity will 
improve measurements in in vivo settings.

Table 1. 

In Vivo Studies in Evaluation of the Inflammatory Reaction (Biocompatibility) to Subcutaneously Implanted 
Glucose Sensorsa

Aim of study Technique/enzyme Outer membrane
Duration of 

implantation/
animal species

Comment on histopathology Reference

Sensing properties and 
biocompatibility of sensor

Electrodes covered by 
membranes/GOD MPC 24 h, 72 h, 28 

and 56 days/rats

Fibrin deposition and increased numbers 
of infiltrated neutrophils, eosinophils, and 
lymphocytes were present at 24 and 72 h. 

Fibrous capsule formation at 4 and 8 weeks 
postimplantation.

Henninger et 
al., 200760

Sensing properties and 
biocompatibility of sensor

Electrodes covered by 
membranes/GOD Polyurethane/PDMS 1, 2, 24, 48, 72 h 

and 7 days/pigs

Fibrin deposition from 1 h to 7 days, and 
various extents of infiltration of neutrophils, 

eosinophils, macrophages, B and T 
lymphocytes. The proinflammatory cytokines 
tumor necrosis factor-α and interleukin-1 are 

involved in inflammation.

Kvist et al., 
200622,49,59

Sensing properties and 
biocompatibility of sensor

Electrodes connected 
with wires and covered by 

membranes/GOD

Nafion® (electrodes) and 
Teflon (connecting wire)

1, 3, 7, 14, and 
30 days/mice

The inflammatory reaction ranged from 
edema, necrosis, infiltration of neutrophils 

and macrophages to giant cell formation and 
collagen deposition. Moreover, there was a 
significant decrease in inflammation in the 

tissue around the wire and reference electrode 
compared with the working electrode.

Klueh and 
Kreutzer, 

200556

Biocompatibility of 
glucose sensor

Membranes on foil 
and/or porous hollow fiber 

(polyamide)/GOD
MPC and/or polyamide 10 days/rats

Inflammatory reaction signifcantly increased 
around electrode. Significant decrease of 
inflammation when using MPC, porous 

membrane, and a combination.

Mang et al., 
200555

Biocompatibility of 
glucose sensor

Electrodes covered by 
membranes/GOD Regenerated cellulose 50 h/dogs

There is considerable infiltration of inflammatory 
cells at the tissue–sensor interface and a 

diffusion barrier of exudative fluid around the 
sensor.

Fischer et al., 
199458

Sensing properties and 
biocompatibility of sensor

Electrodes covered by 
membranes/GOD

Cellulose acetate or 
polyurethane 14–96 h/dogs

Characteristic acute inflammation together with 
exudative fluid (<0.5 ml) in tissue surrounding 
the sensor. Bacteria were cultivated from the 

exudative fluid.

Rebrin et al., 
199212

Sensing properties and 
biocompatibility of sensor

Electrodes covered by 
membranes/GOD

Polyurethane (working 
electrode) and Teflon

3, 4, and 7 
days/rats

Histological examination showed a 
fibrovascular tissue reaction with infiltration of 
mainly macrophages, plasma cells, and few 

neutrophils.

Moatti-Sirat 
et al., 199226

Sensing properties and 
biocompatibility of sensor

Electrodes covered by 
silicone rubber tube/GOD

Silicone rubber and 
enzyme; enzyme is cross 
linked to serum albumin 

with glutaraldehyde

10 days/rats

The border is sharply defined at the tissue–
silicone rubber interface and is characterized 

by capillary-rich connective tissue and few 
inflammatory cells. In contrast, tissue adjacent 

to the enzyme layer is infiltrated by many 
inflammatory cells.

Ertefai and 
Gough, 
198957

aGOD, glucose oxidase; MPC, 2-methacryloyloxyethyl phosphorylcholine; PDMS, polydimethylsiloxane.
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As the local release of drugs might have systemic effects, 
different procedures to reduce local inflammation 
might be preferred. Therefore, modification of the 
outer membrane to improve biocompatibility and 
reduce inflammation is a major field of interest and 
has been excellently reviewed elsewhere.66,67 A simple 
strategy to reduce local inflammation is to inhibit the 
protein adsorption to the sensor surface by coating 
the outer membrane with phosphorylcholine (PC). PC 
mimics red blood cell surface, thereby transferring the 
nonthrombocytogenic properties to the sensor surface. 
This method has been applied to glucose sensors 
with success.55 Despite the question asked and the 
strategy chosen for reduction of the local subcutaneous 
inflammation and improvement of sensor measurements, 
the newly established in vivo models will be useful in 
achieving proper answers (Figures 2 and 3).22,49,56,60

The ultimate goal, creating an artificial pancreas, can be 
realized with an automated insulin dosage system, but 
it requires a reliable glucose measurement system. In 
the last decade, glucose sensors have been introduced 
to the market, but the systems are still not ready for 
implementation as the glucose-sensing part of the 
artificial pancreas. With a better understanding of 
problems related to the biology, chemistry, and physics of 
sensors, the goal of developing an artificial pancreas will 
come closer. Meanwhile, diabetic patients can improve 
their glycemic control with implantable glucose sensors.

Figure 2. The pig is a good model for evaluating the performance 
and biocompatibility of implantable glucose sensors due to practical, 
anatomical (e.g., subcutis), physiological, and immunological reasons. 
Here seven sensors were implanted in the subcutis, and performance 
of the sensors was tested with a setup of a glucose pump connected 
to a venous (implanted in the jugular vein) catheter and a catheter for 
blood sampling. After termination of the experiment, tissue around 
sensors were sampled (see Figure 3).

Figure 3. Skin 3 days after implantation of a MiniMed Continuous 
Glucose Monitoring System® sensor. Inflammatory cells have infiltrated 
the tissue in a limited area around the sensor; HE ×40.
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