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Abstract

Background:
Dulaglutide (dula, LY2189265), a long-acting glucagon-like peptide-1 analog, is being developed to treat type 2 
diabetes mellitus.

Methods:
To foster the development of dula, we designed a two-stage adaptive, dose-finding, inferentially seamless 
phase 2/3 study. The Bayesian theoretical framework is used to adaptively randomize patients in stage 1 to 
7 dula doses and, at the decision point, to either stop for futility or to select up to 2 dula doses for stage 2. 
After dose selection, patients continue to be randomized to the selected dula doses or comparator arms.  
Data from patients assigned the selected doses will be pooled across both stages and analyzed with an analysis of 
covariance model, using baseline hemoglobin A1c and country as covariates. The operating characteristics of 
the trial were assessed by extensive simulation studies.

Results:
Simulations demonstrated that the adaptive design would identify the correct doses 88% of the time, compared to 
as low as 6% for a fixed-dose design (the latter value based on frequentist decision rules analogous to the 
Bayesian decision rules for adaptive design).

Conclusions:
This article discusses the decision rules used to select the dula dose(s); the mathematical details of the adaptive 
algorithm—including a description of the clinical utility index used to mathematically quantify the desirability 
of a dose based on safety and efficacy measurements; and a description of the simulation process and results 
that quantify the operating characteristics of the design.
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Introduction

Dose selection is a pivotal milestone in drug develop-
ment and has important implications for the ultimate 
usefulness of a drug. In a typical development program, 
data available at the end of phase 2 are reviewed and 
discussed with regulators, and a decision is made 
about which dose or doses to study in phase 3. In the 
development program of dulaglutide (dula, LY2189265), 
a once-weekly glucagon-like peptide‑1 (GLP-1) analog in 
development for the treatment of type 2 diabetes mellitus 
(T2DM), dose selection, and dose confirmation will be 
combined into a single adaptive, inferentially seamless 
trial. (Additional details of this study, entitled “A Study 
of LY2189265 Compared to Sitagliptin in Patients With 
Type 2 Diabetes Mellitus on Metformin,” can be found at 
http://clinicaltrials.gov as NCT00734474.)

Dose selection will be based on prespecified rules in 
the adaptive algorithm. The study team prespecified 
criteria used to select doses to measure the value of the 
different doses—the characteristics needed for a dose to 
be considered efficacious, safe, and competitive in the 
expected marketplace. These criteria also used to adapt 
treatment allocation.

Geiger and coauthors1 describe the rationale and final 
study design for an adaptive, dose-finding, inferentially 
seamless phase 2/3 study known as the Assessment of 
Weekly AdministRation of LY2189265 in Diabetes 5 
(AWARD‑5), applied in the development of dula. There are  
three main features that make this design adaptive. First, 
the probability of a new patient being assigned to a 
given dose of dula will change, or adapt, based on 
accumulating data in stage 1. AWARD‑5 is divided into 
two stages that are based on two randomization schemes: 
an adaptive scheme (stage 1) and a fixed scheme (stage 2).1 

Four response measures based on expert opinion, 
regulatory feedback, and scientific understanding of 
the GLP-1 analog class of therapeutics and experience 
with dula were identified as potentially dose limiting.  
These measures encompassed both safety and efficacy 
and together will be combined into a single measure 
known as the clinical utility index (CUI), which will be 
used in the adaptive treatment algorithm. Second, dula 
dose selection for stage 2 will be determined in stage 1 
based on accumulating data. Third, sample sizes in stage 1 
and stage 2 will be determined adaptively and inform 
the decision as to how much data will be sufficient to 
draw conclusions. The design is inferentially seamless  
(i.e., final analysis and conclusions will combine data 

from patients enrolled in both stage 1 and stage 2).  
The final analysis to support advancement to phase 3 
will use frequentist statistical methods. The adaptive 
algorithm employs Bayesian methods. This article discusses 
the mathematical details of the adaptive algorithm, 
including a description of the CUI, the decision rules 
used to select the dula dose(s), and a description of 
the simulation process and results that quantify the 
operating characteristics of the design.

Methods
This study was developed as a two-stage design. In the 
first stage of the trial, a Bayesian framework is used to 
adaptively allocate patients to 7 doses of dula and to 
assess decision rules. Patients are allocated with equal 
probability to the placebo and active comparator arms. 
We will evaluate two decision rules after 200 subjects 
were randomized: (1) to stop for futility, based on both 
safety and efficacy; or (2) to start stage 2 with up to two 
doses selected from stage 1, based on predefined decision 
rules. If there is insufficient evidence to make either of 
these decisions, patients continue to be randomized in 
stage 1. If sufficient evidence cannot be gathered to make 
either decision after 400 patients are enrolled, the study 
will be terminated. If dose selection does occur, stage 2  
will commence and will use fixed randomization and 
a fixed sample size, based on a predictive probability 
calculation of meeting the study objectives based on 
stage 1 data. The additional patients from stage 2 will 
enable further characterization of the safety and efficacy of 
the selected dula doses. A fundamental difference between 
the two stages is the randomization scheme. In stage 2,  
randomization proportions are fixed. To maintain control 
of a type I error, design implementation could not 
deviate from the prespecified algorithm unless the Data 
Monitoring Committee (DMC) stopped the doses for 
safety considerations.

Dose-Response Measures
As described in Geiger and coauthors,1 the following four 
response measures of efficacy and safety were chosen: 
hemoglobin A1c (HbA1c), weight, heart rate (HR), and 
diastolic blood pressure (DBP).

For each of the four measures, normal dynamic linear 
models (NDLM) were used to model the dose response 
for each dula dose.2,3 A nonparametric approach to 
model correlated data, NDLM “borrows” information 
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from neighboring doses but does not force any particular 
shape to the overall response curve. The dose-response 
model for HbA1c is modeled at 12 months and at 6 months 
for other measures. The same measures for placebo  
and sitagliptin were modeled distinctly from NDLM, 
with no “borrowing” from other therapies. A normal 
prior distribution is adopted for the mean end point  
for each measurement and dose. (See section on  
Bayesian Methods and Decision Rules for an explanation 
of prior distributions.)

Clinical Utility Index
Every therapy has benefits and risks. The relative 
importance of these characteristics depends on the disease, 
the patient, and how the drug is used. The CUI is a 
means of weighting and quantifying these tradeoffs 
and provides a single metric for multiple dimensions of 
benefit and risk.4

The CUI for this study was based on the aforementioned 
four response measures. The goal of adaptation is 
to optimize patient exposure to those dula doses 
demonstrating the best balance of efficacy (HbA1c), 
desirability (weight reduction), and minimization of 
potential cardiovascular safety concerns (HR and DBP). 
To do this, a multiplicative CUI was developed, i.e., a 
mathematical formula in which these four response 
measures are differentially quantified and transformed 
into a single utility index value for each dose. Whenever 
an adaptation is made in stage 1, all available data from 
these four  response measures will be used to make 
inferences for the following outcomes: mean 12‑month 
change from baseline in HbA1c relative to sitagliptin and 
mean 6‑month change from baseline in weight, HR, and 
DBP relative to placebo. In short, the CUI is a weighting 
of these four end points, which are well accepted as 
important aspects in diabetes management. Patients were 
adaptively randomized according to the CUI, and the 
decision rules were based on the CUI. Uncertainty is 
associated with evaluating the utility of a dose because 
evaluation is based on observed data that has inherent 
variability; therefore, decision rules are implemented with 
probability statements around the utility.

In constructing the CUI, individual component utility 
functions for each of the measures were derived based on 
input from the entire design team and from external  
consultants, including regulatory authorities. The component 
utility for HbA1c is anchored so that a minimal clinically 
acceptable decrease has a value of 1. For each of the other 
measures, the component function is anchored at a value 
of 1 for neutrality (i.e., any end point that has a neutral 

effect on benefit assessment maps to 1). A value greater 
than 1 signifies added benefit, and a value less than 1 
signifies the converse (the components are multiplied).

Figure 1 relays a monotonic behavior for all four functions. 
A greater reduction in HbA1c or weight translates to 
added value for a given dula dose. The utility for weight 
depends on the change from baseline for HbA1c. If the 
change from baseline is ≥ x% (actual value not shown for 
proprietary reasons), then the change will follow the red 
line. If the change is < x%, then the change will follow 
the blue dashed line.

Increases in HR or DBP are considered undesirable. 
There is no increase in the utility for reductions in HR or 
DBP; however, neither HR nor DBP can exceed the value 
of 1. The utility penalizes for increases in either of these 
safety parameters; in fact, with significant increases in HR 
or DBP, the CUI decreases to 0 regardless of efficacy 
parameters (because of the multiplicative nature of the 
CUI). This is an advantage over the more commonly 
used additive CUI. With an additive CUI, efficacy can 
overwhelm safety; whereas, with the multiplicative CUI, 
a strong safety signal can trump efficacy.

To illustrate the CUI, pharmacodynamic (PD) models 
for the four end points previously developed and based 
on dula phase 1 data were applied. Although there is 
still uncertainty in these models, they are considered 
to be our best estimate of dula attributes given the 
available data and current knowledge about the 
mechanism of action for dula and, therefore, they offer 
an early assessment of the probability of trial success 
to support the business case. Figure 2 illustrates the 
dose responses predicted from the PD models for the 
four measurements, and Figure 3 shows application of 
the CUI based on these four responses. Figure 2 shows 
four plots corresponding to the dose responses from 
the “most likely models” and resulting utilities for each 
component of the CUI. The top left plot shows that with 
increasing doses of dula, greater reductions in HbA1c 
are observed, and this is reflected as an increase in the 
utility function. Similarly, greater reductions in weight 
translate into an increasing utility function (top right 
plot). The bottom two plots show that with greater dula 
doses, the PD model predicts increases in HR and DBP, 
and the utilities for these two components of the CUI 
decrease with each dose until the value of 0 is reached.

Figure 3 shows the utility for each of the doses from the 
most likely model, illustrating how the four responses 
map to a single curve that yields the resulting CUI for 
each dula dose. The utilities (as a function of dose) go in 
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Figure 1. Utility components for the CUI plotted for (A) HbA1c, (B) weight, (C) HR, and (D) DBP. The utility components are a function change 
from baseline (CFB) relative to sitagliptin for HbA1c and placebo for the remaining measures. Note: x-axis not shown for proprietary reasons.

opposite directions for HbA1c and weight compared to 
HR and DBP. The lowest and highest dula doses have 
a CUI value below 1; however, each dose between the 
lowest and highest doses has a CUI above 1. These dula 
doses are predicted by the “most likely models” to be 
therapeutically optimal, reflecting the ideal balance of 
these four measures based on the CUI (see Simulation 
Process for further information on the “most likely models”).

As mentioned previously, there is substantial uncertainty 
in these PD models. They are based on exposures of no 
more than 5 weeks, and they rely on assumptions and  
literature data to project 6 months for safety and 12 months 

for efficacy. The decision rules require a sufficient level 
of evidence to be met (i.e., sufficient certainty) in order 
to select doses. After learning more about the effect of 
dula in this study about the effect of dula, the CUI for 
dula may turn out to be different from those suggested 
by these PD models.

Longitudinal Modeling
Longitudinal models are built to help understand the 
long-term effects of each treatment based on early 
observations of the four end points. For example, a model  
is built for the change in HbA1c through time for each 
treatment arm. As the study accrues data, this longitudinal 
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modeling creates a bridge between the early and later 
time periods and “learns” about the relative changes 
over time, providing information about the end points 
while the study is ongoing. The mean HbA1c at time t 
is modeled as a function of the final 12-month HbA1c 
change:

exp(γt)θ(d)

The γt parameters determine the mean at time t, relative 
to the 12-month end point, where θ(d) is the mean at 

12 months for dose ‘d’. A value of γt =  0 implies that 
the mean at time t is the same as the 12-month mean 
θ. The γt parameters are assumed to be identical across 
all doses, while the mean for placebo is assumed to be 
constant across time. This model was selected because it 
is flexible. This robust approach can be adapted to any 
growth scenario for each end point. Prior information on 
the longitudinal parameters can be easily incorporated. 
Separate versions of the longitudinal model were carried 
out for sitagliptin and for the dula doses. Placebo was 
assumed to have a constant mean HbA1c over time.

Figure 2. Change from baseline relative to comparator and corresponding values from utility components. Plot of the change from baseline of 
HbA1c, weight, HR, and DBP based on the most likely model and the corresponding utility component values.
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This robust approach allows the relative means between 
time points to be determined by data, i.e., the longitudinal 
growth (decay) model. Prior information about the time 
course was explicitly incorporated to improve design 
efficiency. (See the next section on Bayesian Methods 
and Decision Rules for an explanation of priors).  
Prior distributions on γt are important during the adaptive 
steps in this trial because the amount of 12-month data 
may be limited or nonexistent. Independent normal 
distributions are selected as prior distributions for each  
of the γts. Prior distributions are subjectively derived 
from prior data on this compound and on compounds in 
the same class.

Bayesian Methods and Decision Rules
Current knowledge about a parameter of interest, such as  
mean HbA1c for a given dose, is represented by the 
posterior probability distribution and is formed by 
updating prior distribution with data from the experiment. 
Prior probability distribution represents a probability 
distribution that transparently represents the belief of the 
clinical team based on expertise, which was informed by 
early-phase clinical results from dula and by data from 
other molecules in the same class. Posterior distribution 
builds on the prior, being guided by new data to create 
a current distribution of the phenomenon of interest.  
This Bayesian approach can be considered as a type 
of “active learning,” where distribution is continually 
updated to represent the most up-to-date information.

Decision rules are based on thresholds for posterior 
probabilities for the CUI and thresholds for the predictive 
probabilities of meeting the primary objective of the 
study. The clinical utility of each dose is used to update 
the randomization probabilities and to assess decision 
rules. Safety and efficacy data drive the randomization 
scheme (by means of CUI) to allocate more patients to 
the most beneficial doses and fewer patients to less 
beneficial doses.

A major strength of the Bayesian approach is the ease 
with which predictions about future observations can 
be made. As part of the Bayesian approach, predictive 
probabilities are essential for designing clinical trials and 
have become a natural and useful tool for monitoring 
ongoing clinical trials.5,6 The predictive probability can be 
described as a forward-thinking statistical tool that relates 
the probability of observing responses in future patients 
given current data. Based on cumulative information 
at the time, a predictive probability can be used to 
understand the probability of a positive result by the end 
of a trial. In this way, a predictive probability can be used 

to determine efficiently whether a trial is likely to be 
conclusive. Therefore, the predictive approach is used to 
evaluate whether a given sample size is appropriate for 
demonstrating the desired conclusion.

Based on data from stage 1, predictive probabilities provide 
useful information to determine the sample size for 
stage 2.6 Bayesian approaches to determine sample size 
are discussed by Adcock7 and Joseph and Belisle.8 In the  
case of dula-dose selection, a predictive probability 
calculation will be used to choose between two sample-
size schemes for stage 2 to ensure that a sufficient number 
of patients are enrolled to meet the study objectives. If the 
predictive probability of showing superiority to sitagliptin 
with a total of 263 patients per arm (including data on 
patients in the same arm from stage 1) was ≥85%, then 
263 patients would be used; otherwise, 333 patients per 
arm would be used. In addition, stage 2 sample size will 
be augmented, if necessary, to ensure that at least 70% 
of the patients in each treatment arm come from stage 2 
in order to mitigate against selection bias that may be 
introduced into the final analysis by including stage 1 data.

Final Analysis and Type I Error
The primary objective herein is to demonstrate that 
glycemic control of a high dose of dula is noninferior to 
that of sitagliptin at 12 months, as measured by change 
from baseline in HbA1c, with a noninferiority margin of 
0.25%. This relatively strict margin was selected based on 
the previously reported variable efficacy of sitagliptin9 

Figure 3. Plot of CUI derived by multiplying the four component 
utility measures. Plot of the CUI based on the most likely model for 
all 7 dulaglutide doses. The CUI for each of the dulaglutide doses 
from the “most likely” model is plotted in red.
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and limited efficacy data after 12 months of treatment9 
available during study design. This conservative margin  
will reduce the probability of falsely concluding non-
inferiority. The final analysis (assuming that dose decision 
occurred) pools data from all randomized patients (the 
intent-to-treat population) from selected treatment arms 
(i.e., selected dula doses, placebo, and sitagliptin) and 
assesses the end point with a traditional analysis of 
covariance model, using the last observation with carried-
forward imputation for missing HbA1c data. The prior 
distributions used in the Bayesian adaptive components 
of the design only affect the selection of doses for stage 2;  
they have no impact on the final frequentist-based analysis 
other than a (potentially) small increase in type I error, 
which will be adjusted for in the final analysis. Each of 
the selected dula doses will be tested for noninferiority 
and superiority to sitagliptin (at 12 months) and for 
superiority to placebo (at 6 months), resulting in 6 
hypotheses if two doses are selected and 3 hypotheses  
if one dose is selected.

Because the entire trial is intended to be a phase-3 
confirmatory trial, strong control of a type I error (i.e., the 
chance of observing a false-positive result) must be 
maintained, meaning that the overall probability of at 
least one hypothesis rejection being made falsely is less 
than a prespecified type I error level. Because potentially 
six hypotheses will be tested, inflation of a type I 
error caused by multiple comparisons may be an issue.  
To address this, a tree-gatekeeping strategy was chosen. 
Strong control of a type I error is guaranteed with the tree-
gatekeeping strategy when applied to a fixed design.10

In this inferentially seamless design, selection bias could 
inflate a type I error,11 the probability of a false positive. 
For example, a false-positive finding in stage 1 could lead to  
a false-positive conclusion in the overall analysis because  
the overall analysis combines data from patients in  
stages 1 and 2. To mitigate selection bias, ≥70% of patients 
within each treatment arm are enrolled during stage 2, 
and a conservative nominal α-level of 0.02 will be used in 
the final analysis to ensure that the overall type I error 
is maintained at 0.025. Simulations demonstrated that 
this adjustment will be more than adequate to ensure 
strong control of a type I error. In addition, the study 
is designed to have sufficient power to assess primary 
objectives with stage 2, alone, if there is a concern about 
selection bias.

Simulation Process 
Modeling and simulation were critical to the development 
of this design. As discussed in Geiger and coauthors,1 

dose–response models for HbA1c and weight and 
exposure‑response models for HR and DBP were created. 
Seven dula doses, placed incrementally over a 12-fold  
dose range, were chosen to allow for adequate exploration 
of the dose-response curves. Thousands of trials over a 
wide range of scenarios were simulated, with varying 
assumptions about response measures (dose response 
and longitudinal profile), enrollment rates, and dropout 
rates. Typically, 1000 trial replicates per scenario were 
simulated with the exception of null-set simulations, 
which required 10,000 replicates. Each of the simulations 
was initialized by its own input file consisting of 
parameters for the particular simulation and a random 
initialization seed. These independent jobs were run in 
parallel on a Sun Grid Engine cluster; the simulation 
program was written in Fortran 77.

Creation of the adaptive algorithm and finalization of  
the decision rules were iterative processes. Emphasis was  
placed on the selection accuracy of particular dula doses 
(“right” doses) and how often the trial continued into 
stage 2 with dula doses that met the prespecified 
dose-selection criteria. Likewise, probabilities of early 
termination, randomization of patients to ineffective 
treatment arms, and incorrect termination decisions were 
carefully accessed by simulation.

A wide range of scenarios were simulated, and the 
algorithm was modified iteratively based on its performance. 
We analyzed data from dula preclinical studies, dula 
phase 1 studies, and published data on other GLP‑1 
analogs to understand the dula drug‑disease state and 
to synthesize the information into PD models for end 
points of interest. These models can be referred to as 
the “most likely models” because they represent our 
best understanding of the dula-dose response (shown in 
Figure 4).

Results
Pharmacodynamic modeling predicted that several dula 
doses would meet the predefined 88% safety and efficacy 
criteria for dose selection. Using the proposed adaptive 
design, trials simulated from the “most likely models” 
correctly identified at least one dose that met these 
criteria. In contrast, simulation studies for a traditional 
fixed-dose design (assuming 50 patients assigned to placebo 
and four dose groups consisting of dula 0.5, 1, 2, and 
3 mg) indicated a low chance of success (6 to 12% at 
12 weeks or 26 weeks, respectively) to yield adequate 
information for a dose decision due to the failure to 
identify a dose that satisfied strict criteria for safety 
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measures. In a fixed design, the variability in the safety end 
points was too great to assess with adequate precision. 

Figure 4 shows a plot of results from trial simulations 
using PD models and illustrates why adaptive randomi-
zation performs better than a fixed design. The probability 
of dose selection follows the pattern of the CUI. The sample 
size also follows the value of the CUI; more patients 
are allocated to safe and effective doses compared with 
doses that are less beneficial because the adaptive design 
considers the available data to learn about dose response 
(compared with a fixed design in which the number of 
patients is equally allocated to each dose regardless of 
their observed safety and efficacy).

Not only did the algorithm select doses when it should, 
it also stops the study when it should, as illustrated in 
Table 1, with six different response scenarios in which 
the annual dropout rates vary between 0 and 20% and 
the enrollment rates between five  and eight patients per 
week (see Appendix A for longitudinal dose-response 
models). The results from the first and third scenarios 
show that despite (simulated) robust efficacy, the 
algorithm stops the trial before stage 2 at least 90% of 
the time when the mean increase in HR is +10 beats per 
minute (bpm) compared with placebo or when the mean 
increase in DBP is +5 mm Hg compared with placebo. 
When either HR or DBP is mildly elevated (+5 bpm and 
+2 mm Hg, respectively) and there is borderline efficacy, 
the algorithm stops the trial without entering into stage 
2 more than 50% of the time. When both HR and DBP 
are mildly elevated, the algorithm stops the trial more 
than 85% of the time even with borderline efficacy.  
A weight gain of 5 kg causes the algorithm to stop the 
trial 100% of the time.

To evaluate a type I error, scenarios were assessed 
in which dula lacked efficacy (inferior to sitagliptin).  
In these scenarios, the type I error was well controlled.  
In simulations with no dropouts, all type I error estimates 
were at least 2 simulation standard errors below the 
targeted 5% (2-sided). In simulations with dropouts, the 
type I error was controlled to the same level of an 
analogous fixed-dose design. 

The simulations provided robust evidence that the type I  
error is controlled. In fact, the simulations indicate that  
the nominal  level is conservative, and the resulting type I  
error is <5% (2-sided). The decision rules (based on the 
CUI and the predictive probability of noninferiority) 
affect the type I error by limiting the opportunities to  
enter into stage 2 to only doses that show evidence of 

being both safe and efficacious. The probability of making 
a false decision in the final analysis (based on the selected 
doses studied in both stage 1 and stage 2) is greatly 
reduced when there are safety issues because the study 
tends to end at stage 1 because of the “futility” rules 
in this study. The scenarios studied to assess the type I  
error were conservative, with the goal of maximizing 
the type I error, even if the scenario was unrealistic.  
In all of the scenarios, there were no safety issues, and 
the dula doses were exactly noninferior; nonetheless, the 
proportion of trials with a false positive was no worse 
than what one would expect from a fixed design.

Simulations demonstrated that an enrollment rate greater 
than eight patients per week resulted in suboptimal 
design performance, i.e., a decreased probability that the 
algorithm would select the “right” dose(s) or would stop 
the study for futility when it should. As a result, a mean 
enrollment rate of no more than eight patients per week 
was targeted.12 Other factors to consider are frequency 
of updating the randomization scheme and assessing the 
decision rules. Improvement in operating characteristics 
should be weighed against the logistical implications in 
a clinical trial setting (drug supply, data management, 
statistical analysis, and DMC reviews).12 The ideal 
frequency of updates depends in part on the time-to-
effect of the biomarkers being studied, which are related 

Figure 4. Plot of operating characteristics of the adaptive algorithm 
for the most likely model. A bar plot of the P (dose is selected given 
that stage 2 was conducted) is given with the scale on the left y-axis.  
The purple line plots the sample size with the corresponding scale 
given on the right y-axis. The CUI is plotted in red with no scale 
given. A reference line for CUI = 1 is provided.
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Table 1. Simulation Results for Scenarios Assessing the “Futility” Rules for Safety.

Simulation Scenario
Execution Parameters Decision-Point Metrics

DO ER P(GO) P(CAP) P(FUT)

HR elevated + 10 bpm, great efficacy, all doses 
    HbA1c model = 1, Weight loss model = 1,
    HR model = 3, DBP model = 3

0 5 0.007 0.007 0.986

0 8 0.012 0.013 0.975

20 5 0.006 0.003 0.991

20 8 0.008 0.005 0.987

HR elevated + 5 bpm, borderline efficacy, all doses
    HbA1c model = 3, Weight loss model = 5
    HR model = 5, DBP model = 3

0 5 0.318 0.348 0.334

0 8 0.260 0.387 0.353

20 5 0.290 0.355 0.355

20 8 0.255 0.377 0.368

DBP elevated + 5 mmHg, great efficacy, all doses
    HbA1c model = 1, Weight loss model = 1
    HR model = 4, DBP model = 2

0 5 0.059 0.085 0.856

0 8 0.079 0.121 0.800

20 5 0.068 0.096 0.836

20 8 0.093 0.114 0.793

DBP elevated + 2 mmHg, borderline efficacy, all doses 
    HbA1c model = 3, Weight loss model = 5
    HR model = 4, DBP model = 4

0 5 0.388 0.373 0.239

0 8 0.350 0.398 0.252

20 5 0.372 0.402 0.226

20 8 0.336 0.423 0.241

HR and DBP elevated with borderline efficacy, all doses 
    HbA1c model = 3, Weight loss model = 5
    HR model = 5, DBP model = 4

0 5 0.099 0.249 0.652

0 8 0.078 0.263 0.659

20 5 0.090 0.245 0.665

20 8 0.089 0.275 0.636

Weight gain of +5 kg, all doses
    HbA1c model = 1, Weight loss model = 3
    HR model = 4, DBP model = 3

0 5 0.000 0.000 1.000

0 8 0.000 0.000 1.000

20 5 0.000 0.000 1.000

20 8 0.000 0.000 1.000

DO, dropout rate (%); ER, enrollment rate (patients per week); FUT, futility; N1, noninferiority; P(CAP), probability of stopping for reaching the 
cap; P(FUT), probability of stopping in stage 1 for futility; P(GO), probability of continuing the study into stage 2; Sup, superiority.

to how much learning can take place within a given 
interval of time between updates. In this study, through 
simulations, updating every 2 weeks and assessing 
decision rules after the enrollment of 200 patients were 
found to be adequate.

This study design was more efficient with a controlled 
enrollment rate of no more than eight patients per week  
to allow the adaptive algorithm to “learn” and to adjust 
the randomization properties appropriately.

Discussion
Other adaptive designs, such as group sequential 
designs, may also be considered for diabetes studies. 
Group sequential designs employ early stopping rules for 
either the presence of or lack of efficacy.13-16 Early stopping 

for efficacy is typically not accepted because regulators 
require a minimum amount of exposure to a given 
therapy for T2DM. Early-stopping rules for lack of 
efficacy could be applied, but this fails to incorporate 
information about safety in the decision to terminate the  
study. Often the question in developing a diabetes drug 
is not whether or not the drug is efficacious but, rather, 
if there is a therapeutic window in which the drug is 
both efficacious and safe. For this purpose, safety data 
need to be explicitly incorporated in clinical trial 
adaptations, which group sequential designs fail to do. 
Group sequential designs also use a fixed randomization 
scheme, allocating patients to all treatments with fixed 
probabilities. In contrast, AWARD-5 uses an adaptive 
randomization scheme, randomizing patients to doses 
in proportion to the desirability of the doses. This is a 
more efficient randomization scheme, allocating patients 
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to desirable doses instead of treating all doses equally 
despite data indicating that some doses are less desirable 
than others.

Our study design owes much to the Acute Stroke Therapy 
by Inhibition of Neutrophils (ASTIN) trial design3,17,18 
but has incorporated several additional novel features. 
Adaptations in ASTIN were based on a single efficacy 
measure, whereas our adaptive algorithm and dose-
selection criteria are based on a CUI inclusive of safety, 
desirability, and efficacy measures. The ASTIN trial was 
intended to be seamless in design, but the trial never 
progressed to that stage because it was terminated 
due to futility. Our design uses a Bayesian decision 
theoretical approach; the ASTIN trial17 relied solely on 
an assessment of the posterior probability of clinically 
meaningful effects to make decisions. In addition, the 
ASTIN trial suffered from unrealistic assumptions 
and limited updating of the linear regression models 
used in its longitudinal modeling. Our trial used 
exponential growth models, which are not susceptible 
to the parameterization issues described by Berry and 
coauthors3 and by Grieve and coauthors18 and are 
much more robust to influential observations that may 
not be representative of the population. We update the 
longitudinal models from the start of the trial.

Conclusions
Patients may be exposed to dula for up to 12  months in 
stage 1, potentially enabling detection of safety signals 
much earlier (in terms of the drug development of 
diabetes compounds) than is possible in a development 
program that uses a shorter, fixed phase 2 study design. 
Additionally, this approach enables more safety data to 
be available at the time of dose decision, which increases 
the likelihood of choosing the best dose(s) for continued 
evaluation in phase 3 studies. The adaptive design features 
of this trial offer a safer and more effective approach 
for the evaluation of dula than a fixed design, given the 
enhanced probability of correctly identifying a dose and 
its additional safety features.
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Appendix A. HbA1c Longitudinal Dose–Response Models (1–11)

Table 1.
HbA1c Model 1

WK PLA 0.25 mg 
LY

0.50 mg 
LY

0.75 mg 
LY

1 mg 
LY

1.5 mg
LY

2 mg 
LY

3 mg 
LY Sitagliptin

2 0 -0.30 -0.37 -0.49 -0.78 -0.93 -1.11 -1.18 -0.49

4 0 -0.36 -0.44 -0.59 -0.93 -1.12 -1.33 -1.42 -0.59

8 0 -0.40 -0.49 -0.65 -1.04 -1.24 -1.48 -1.58 -0.65

12 0 -0.43 -0.52 -0.70 -1.10 -1.32 -1.57 -1.68 -0.70

26 0 -0.47 -0.58 -0.77 -1.22 -1.47 -1.75 -1.86 -0.77

39 0 -0.49 -0.59 -0.79 -1.26 -1.50 -1.79 -1.91 -0.79

52 0 -0.49 -0.60 -0.80 -1.27 -1.52 -1.81 -1.93 -0.80

LY, LY2189265; PLA, placebo; WK, week.

Table 2.
HbA1c Model 3

WK PLA 0.25 mg 
LY

0.50 mg 
LY

0.75 mg 
LY

1 mg 
LY

1.5 mg 
LY

2 mg 
LY

3 mg 
LY Sitagliptin

2 0 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49

4 0 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59

8 0 -0.65 -0.65 -0.65 -0.65 -0.65 -0.65 -0.65 -0.65

12 0 -0.70 -0.70 -0.70 -0.70 -0.70 -0.70 -0.70 -0.70

26 0 -0.77 -0.77 -0.77 -0.77 -0.77 -0.77 -0.77 -0.77

39 0 -0.79 -0.79 -0.79 -0.79 -0.79 -0.79 -0.79 -0.79

52 0 -0.80 -0.80 -0.80 -0.80 -0.80 -0.80 -0.80 -0.80

LY, LY2189265; PLA, placebo; WK, week.

Table 3.
Weight Loss Model 1

WK PLA 0.25 mg 
LY

0.5 mg 
LY

0.75 mg 
LY

1 mg 
LY

1.5 mg 
LY

2 mg 
LY

3 mg 
LY Sitagliptin

2 0 -0.2 -0.4 -0.6 -0.7 -0.8 -0.8 -1.1 0

4 0 -0.4 -0.8 -1.1 -1.3 -1.4 -1.4 -1.7 0

8 0 -0.6 -1.4 -1.9 -2.3 -2.4 -2.6 -2.9 0

12 0 -0.8 -1.8 -2.5 -2.9 -3.1 -3.4 -3.7 0

26 0 -1.1 -2.4 -3.4 -4 -4.3 -4.5 -4.8 0

39 0 -1.2 -2.6 -3.7 -4.4 -4.7 -5 -5.3 0

52 0 -1.2 -2.7 -3.8 -4.5 -4.8 -5.2 -5.5 0

LY, LY2189265; PLA, placebo; WK, week.
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Appendix A. HbA1c Longitudinal Dose–Response Models (1–11)

Table 4.
Weight Loss Model 3

WK PLA 0.25 mg 
LY

0.5 mg 
LY

0.75 mg 
LY

1 mg 
LY

1.5 mg 
LY

2 mg 
LY

3 mg 
LY Sitagliptin

2 0 5 5 5 5 5 5 5 0

4 0 5 5 5 5 5 5 5 0

8 0 5 5 5 5 5 5 5 0

12 0 5 5 5 5 5 5 5 0

26 0 5 5 5 5 5 5 5 0

39 0 5 5 5 5 5 5 5 0

52 0 5 5 5 5 5 5 5 0

LY, LY2189265; PLA, placebo; WK, week.

Table 5.
Weight Loss Model 5

WK PLA 0.25 mg 
LY

0.5 mg 
LY

0.75 mg 
LY

1 mg 
LY

1.5 mg 
LY

2 mg 
LY

3 mg 
LY Sitagliptin

2 0.00 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 -0.31 1.41

4 0.00 -0.85 -0.85 -0.85 -0.85 -0.85 -0.85 -0.85 2.14

8 0.00 -1.57 -1.57 -1.57 -1.57 -1.57 -1.57 -1.57 3.14

12 0.00 -2.00 -2.00 -2.00 -2.00 -2.00 -2.00 -2.00 3.72

26 0.00 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 4.41

39 0.00 -2.56 -2.56 -2.56 -2.56 -2.56 -2.56 -2.56 4.51

52 0.00 -2.59 -2.59 -2.59 -2.59 -2.59 -2.59 -2.59 4.54

LY, LY2189265; PLA, placebo; WK, week.

Table 6.
Heart Rate Model 3

WK PLA 0.25 mg 
LY

0.5 mg 
LY

0.75 mg 
LY

1 mg 
LY

1.5 mg 
LY

2 mg 
LY

3 mg 
LY Sitagliptin

2 0 5 5 5 5 5 5 5 0

4 0 10 10 10 10 10 10 10 0

8 0 10 10 10 10 10 10 10 0

12 0 10 10 10 10 10 10 10 0

26 0 10 10 10 10 10 10 10 0

39 0 10 10 10 10 10 10 10 0

52 0 10 10 10 10 10 10 10 0

LY, LY2189265; PLA, placebo; WK, week.
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Appendix A. HbA1c Longitudinal Dose–Response Models (1–11)

Table 7.
Heart Rate Model 4

WK PLA 0.25 mg 
LY

0.5 mg 
LY

0.75 mg 
LY

1 mg 
LY

1.5 mg 
LY

2 mg 
LY

3 mg 
LY Sitagliptin

2 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0

26 0 0 0 0 0 0 0 0 0

39 0 0 0 0 0 0 0 0 0

52 0 0 0 0 0 0 0 0 0

LY, LY2189265; PLA, placebo; WK, week.

Table 8.
Heart Rate Model 5

WK PLA 0.25 mg 
LY

0.5 mg 
LY

0.75 mg 
LY

1 mg 
LY

1.5 mg 
LY

2 mg 
LY

3 mg 
LY Sitagliptin

2 0 5 5 5 5 5 5 5 0

4 0 5 5 5 5 5 5 5 0

8 0 5 5 5 5 5 5 5 0

12 0 5 5 5 5 5 5 5 0

26 0 5 5 5 5 5 5 5 0

39 0 5 5 5 5 5 5 5 0

52 0 5 5 5 5 5 5 5 0

LY, LY2189265; PLA, placebo; WK, week.

Table 9.
Diastolic Blood Pressure Model 2

WK PLA 0.25 mg 
LY

0.5 mg 
LY

0.75 mg 
LY

1 mg 
LY

1.5 mg 
LY

2 mg 
LY

3 mg 
LY Sitagliptin

2 0 2 2 2 2 2 2 2 0

4 0 5 5 5 5 5 5 5 0

8 0 5 5 5 5 5 5 5 0

12 0 5 5 5 5 5 5 5 0

26 0 5 5 5 5 5 5 5 0

39 0 5 5 5 5 5 5 5 0

52 0 5 5 5 5 5 5 5 0

LY, LY2189265; PLA, placebo; WK, week.
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Appendix A. HbA1c Longitudinal Dose–Response Models (1–11)

Table 10.
Diastolic Blood Pressure Model 3

WK PLA 0.25 mg 
LY

0.5 mg 
LY

0.75 mg 
LY

1 mg 
LY

1.5 mg 
LY

2 mg 
LY

3 mg 
LY Sitagliptin

2 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0

26 0 0 0 0 0 0 0 0 0

39 0 0 0 0 0 0 0 0 0

52 0 0 0 0 0 0 0 0 0

LY, LY2189265; PLA, placebo; WK, week.

Table 11.
Diastolic Blood Pressure Model 4

WK PLA 0.25 mg 
LY

0.5 mg 
LY

0.75 mg 
LY

1 mg 
LY

1.5 mg 
LY

2 mg 
LY

3 mg 
LY Sitagliptin

2 0 2 2 2 2 2 2 2 0

4 0 2 2 2 2 2 2 2 0

8 0 2 2 2 2 2 2 2 0

12 0 2 2 2 2 2 2 2 0

26 0 2 2 2 2 2 2 2 0

39 0 2 2 2 2 2 2 2 0

52 0 2 2 2 2 2 2 2 0

LY, LY2189265; PLA, placebo; WK, week.


