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Abstract

Background:
Numerous tests have been developed to estimate insulin sensitivity (SI). However, most of the established 
tests are either too expensive for widespread application or do not yield reliable results. The dynamic insulin 
sensitivity and secretion test (DISST) uses assays of glucose, insulin, and C-peptide from nine samples to 
quantify SI and endogenous insulin secretion (UN) at a comparatively low cost. The quick dynamic insulin 
sensitivity test has shown that the DISST SI values are robust to significant assay omissions.

Methods:
Eight DISST-based variations of the nine-sample assay regimen are proposed to investigate the effects of assay 
omission within the DISST-based framework. SI and UN were identified using the fully-sampled DISST and 
data from 218 nine-sample tests undertaken in 74 female individuals with elevated diabetes risk. This same 
data was then used with appropriate assay omissions to identify SI and UN with the eight DISST-based assay 
variations.

Results:
Median intraprocedure proportional difference between SI values from fully-sampled DISST and the 
DISST-based variants was in the range of -17.9 to 7.8%. Correlations were in the range of r = 0.71 to 0.92 
with the highest correlations between variants with the greatest commonality with the nine-sample DISST.  
Metrics of UN correlated relatively well between tests when C-peptide was assayed (r = 0.72 to 1) but were 
sometimes not well estimated when samples were not assayed for C-peptide (r = -0.14 to 0.75). 

Conclusions:
The DISST-based spectrum offers a series of tests with very distinct compromises of information yield, accuracy, 
assay cost, and clinical intensity. Thus, the spectrum of tests has the potential to enable researchers to better  
allocate funds by selecting an optimal test configuration for their particular application.
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Introduction

Numerous investigations have found that insulin 
sensitivity (SI) is an important metabolic marker of risk for 
cardiovascular disease1–4 and type 2 diabetes.5–8 However,
use of SI to investigate the pathophysiology of these 
conditions has been limited by the lack of a widely 
accepted insulin sensitivity test that is both economical 
and accurate. Existing tests involve either intensive high-
cost protocols that produce reliable SI values or lower 
intensity protocols that provide less accurate SI values 
at a lower cost.9,10 Surrogate measures of insulin sensi-
tivity derived from oral glucose tolerance test data 
have exhibited reasonable compromises of cost and 
accuracy11–13 but have not become widely used.

The dynamic insulin sensitivity and secretion test (DISST) 
was originally developed to provide a means of assessing 
SI and endogenous insulin secretion (UN) with a favorable 
compromise of economy and accuracy.14–16 Subsequent 
investigation has shown that the cost of the original 
DISST could be significantly reduced by eliminating 
the insulin and C-peptide assays with only a moderate 
associated reduction in accuracy.17,18 Using only glucose 
measurements, the quick dynamic insulin sensitivity test 
(DISTq) is able to identify SI in real time.17,18 Although the 
DISTq can generate participant-specific SI values at a 
substantially lower cost, the standard DISST provides 
metrics of both SI and UN to provide a comprehensive 
observation of the participant’s metabolic health.

The DISST and DISTq use two very distinct assay protocols 
with different trade-offs on cost and accuracy of SI and 
UN identification. However, numerous variations of the 
standard DISST-based assay regimens could potentially 
provide tests with optimal compromises of information 
yield, assay cost, metric accuracy, and clinical intensity 
for a number of potential clinical applications. This article 
describes eight such variations that utilize the standard 
DISST protocol, and presents their accuracy in terms of 

repeating the findings of the fully sampled DISST15 in a 
moderately insulin-resistant cohort.19

Methods

Participants
Eighty-two female participants from the Otago region of 
New Zealand took part in a 10-week dietary intervention 
trial described by Te Morenga and colleagues.19 Inclusion 
criteria required that participants either had a body mass 
index greater than 25, or greater than 23 and a family 
history of type 2 diabetes, or ethnic disposition toward 
type 2 diabetes. Participants were excluded if they had a  
major illness, including established diabetes, at the time 
of testing. In total, 74 subjects provided 218 full DISST 
data sets. Participant characteristics are summarized in 
Table 1. Ethical approval for this study was granted by 
the University of Otago Ethics Committee.

DISST Protocol
The DISST was conducted at weeks 0, 4, and 10 of the  
intervention by a research nurse under medical super-
vision. Participants attended the test after a 10–12 h fast 
and remained in a seated position for the test’s duration. 
Samples were drawn at t = 0, 5, 10, 15, 20, 25, 30, 35, 
and 45 min through a cannula that was inserted into the 
antecubital fossa. A 10 g bolus of intravenous glucose 
containing 50% dextrose and 50% normal saline was given 
via the same cannula within 1 min after the fasting sample.  
One unit of insulin (Actrapid®, Novo Nordisk, Copenhagen, 
Denmark) was given immediately after the 10 min sample. 
Immediately after drawing each blood sample, the 
cannula was flushed with 1–2 ml normal saline to prevent 
clotting. Approximately 3 ml of blood were withdrawn 
to remove the saline just prior to taking each blood 
sample. Samples were collected into separate vacutainers  
containing coagulant for measurement of insulin and 

Table 1.
Participant Characteristics and Insulin Sensitivity Results

Status
NGT/IFG/T2DMa

Body mass index
Q1 Q2 Q3

Sex
M/F

Age
Q1 Q2 Q3

HOMA-IR
Q1 Q2 Q3

DISST-SI
Q1 Q2 Q3

63/11/0
27.6
32.4
36.3

0/74
34.8
43

50.3

1.37
2.15
3.11

0.83
1.13
1.57

a NGT, normal glucose tolerance; IFG, impaired fasting glucose; T2DM, type 2 diabetes mellitus.
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C-peptide, and fluoride and oxalate anticogulants for 
measurement of glucose concentrations.

Whole blood samples were centrifuged at 1650 g for  
15 min, and then the plasma was pipetted into poly-
ethylene cryovials and stored at -80 °C for up to 12 months. 
At the completion of the data collection period, laboratory 
analyses of all assays were performed by batch to 
minimize laboratory measurement bias.  Serum insulin 
and C-peptide were measured using a specific insulin 
electrochemiluminescence immunoassay (Roche, Catalog 
Number 12017547) for the Elecsys® analyzer (Roche 
Diagnostics, Mannheim, Germany) after polyethylene glycol 
precipitation of immunoglobulins, with a coefficient of 
variation of 1.5%. Plasma glucose was measured enzyma-
tically with Roche kits and calibrators on a Cobas Mira® 
analyzer (Hexokinase Catalog Number 11447513216, 
Roche, Mannheim, Germany) with a coefficient of 
variation of 0.5%.

Design Strategy of the Various Proposed Protocols
Eight variations of the standard DISST sampling and assay 
protocol were evaluated by their ability to reproduce the 
SI and UN values identified by the fully sampled DISST 
(DISST-FS).15 Each variation uses different sampling and 
assay regimens to provide a distinct compromise of 
economy, accuracy, and information. Sample omissions 
effectively reduce clinical effort and intensity by skipping 
some DISST-FS scheduled blood samples. Assay omissions 
still require the same blood samples but only one or 
two species are assayed to minimize overall assay cost. 
Five of the sampling protocols were based on DISTq 
identification methods.17 Thus, these protocols could 
not provide estimates of patient-specific first and 
subsequent pass hepatic extraction (xL and nL, respectively) 
and UN values.

DISST-FS
DISST-FS is a low-dose, short-duration insulin modified 
intravenous glucose tolerance test.14–16,20 The DISST 
modeling approach has enabled high accuracy insulin 
sensitivity and insulin secretion metrics to be derived 
from a 45 min, nine-sample protocol that is less 
frequently sampled than established dynamic protocols. 
It utilizes C-peptide, insulin, and glucose assays from 
every available sample time.

Short
The Short protocol was designed to capture the major 
dynamics of C-peptide, insulin, and glucose responses 
with reduced overall test time and fewer samples.

DISST-E/SI
The DISST-E/SI identification method uses six glucose, 
six insulin, and three C-peptide assays from seven samples. 
Three significant metrics can be derived from typical UN 
profiles: the basal insulin production rate (UB), the first-
phase secretion (U1), and the second-phase production 
(U2). Only three C-peptide assays are required to directly 
and uniquely identify these rates.

Sparse
The Sparse protocol was designed to reduce clinical 
intensity by taking only three samples to define the three  
major UN metrics and SI. The second sample taken 5 min 
after the glucose bolus in the DISST-FS is subject to  
incomplete mixing of the glucose bolus in the blood-
stream14–21 and is thus not used to define the participant’s 
specific glucose distribution volume (VG). A proportion 
(29%) of the participant’s lean body mass (LBM)22 is used 
to estimate VG in this protocol.

DIST-SI
DIST-SI identifies SI but not UN, thus it does not 
require C-peptide assays. Population-based parameter 
estimations from the DISTq17 were used to estimate the 
UN profiles based on the participants’ SI values. The DISST 
nomenclature is reduced to DIST when insulin secretion 
values are not reported.

DIST-SI-2
DIST-SI-2 involves further simplification of the DIST-SI  
protocol by taking fewer samples and performing fewer 
assays than the DIST-SI protocol. The period of greatest 
importance to SI identification is the later part of the test 
protocol. Thus, only two samples, taken at the end of 
the test, were assayed for insulin, while the full glucose 
response was observed with four glucose assays.

DISTq-FS
DISTq-FS requires eight glucose assays to define SI in an 
iterative identification process.17,18 The method estimates 
the participant’s endogenous insulin production and 
insulin pharmacokinetics with a series of functions of the 
participant’s SI and anatomical data (height, weight, age, 
and sex).23 Thus, the method is a posteriori and iterative 
in nature.

DISTq-S
This protocol is a simplification of the Short DIST 
specifically and uses only four glucose assays to define a 
value for SI. The second sample (at t = 5) is not assayed 
for this identification method. However, this sample may 
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allow for later assays of the insulin or C-peptide to increase 
resolution of the insulin concentration reconstruction  
or obtain metrics of first-phase insulin production.

DISTq30
DISTq30 identifies SI using very sparse data (two glucose 
assays only). Functions of the participant’s LBM are used 
to define the glucose distribution volume in the absence 
of measured data.

Table 2 shows the sampling and assay protocols used by 
each protocol. Table 3 summarizes the clinical burden 
of the tests in terms of protocol duration and assay cost as  
well as the potential outcomes. Assay costs in New Zealand 
are approximately $2.50 for glucose, $25 for insulin, and 
$35 for C-peptide (NZ$).

The homeostasis model assessment (HOMA) metric 
is included to provide context and comparison to the 
DISST-based outcomes.

SI and UN Identification Methods
Insulin sensitivity and secretion metrics are defined by 
identifying parameters of a physiological model against 
DISST test data. The model is presented in detail by Lotz 
and colleagues.14–15

UN profiles are either defined using deconvolution (DC) 
when C-peptide assays are available or the population-based 
estimates of the DISTq method (EDISTq) when C-peptide 
assays are not available. The DC method was developed 
by Eaton and colleagues.24 and validated by Van Cauter 

Table 2.
Proposed Sample and Assay Schedules for Glucose (G), Insulin (I), and C-Peptide (C). S Denotes a Sample 
that is Drawn and Stored but Not Assayed

Assay regimen Assays

0 5 10 15 20 25 30 35 45 G I C

DISST-FS GIC IC GIC GC GIC GIC GIC GIC GIC 8 8 9

Short GIC IC GIC - GIC - GIC - - 4 5 5

DISST-E/SI GIC IC GI G GIC GI GI - - 6 6 3

Sparse GIC IC - - - GIC - - - 2 3 3

DIST-SI GI I GI G GI GI GI - - 6 6 0

DIST-SI-2 G - G - GI - GI - - 4 2 0

DISTq-FS G S G G G G G G G 8 0 0

DISTq-S G S G - G - G - - 4 0 0

DISTq30 G - - - - - G - - 2 0 0

HOMA GI - - - - - - - - 1 1 0

Table 3.
Duration, Relative Assay Cost, and Outcomes of 
the Proposed Protocols

Samples
Protocol 
duration 

(min)

Assay 
cost 
(NZ$)

Real-
time 

results

Measured 
UN

DISST-FS 9 45 535 Y

Short 5 30 310 Y

DISST-E/SI 7 30 270 Y

Sparse 3 25 185 Y

DIST-SI 7 30 165

DIST-SI-2 4 30 60

DISTq-FS 9 45 20 Y

DISTq-S 5 30 10 Y

DISTq30 2 30 5 Y

HOMA 1 2 27

and colleagues.23 It has been used with the DISST test 
data14,20,25 and proven robust to assay omissions.26 
The DISTq identification methods and population-based 
estimates have been published elsewhere.17,18 The identi-
fication of UN metrics from the DISST-E/SI data requires 
a slight variation on the stated DC approach as the 
final blood sample of the DISST-E/SI is not assayed for 
C-peptide. Thus, the UN rate is assumed constant after 
the final C-peptide assay.

Plasma and interstitium insulin concentrations are defined 
using either the iterative integral method (IIM)17,27 or the 
DISTq estimation methods (EDISTq).17,18 The IIM identifies 
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participant-specific values of nL and xL to simulate the 
observed insulin pharmacokinetics and simulated profiles 
of insulin in the two compartments. The DISTq method  
uses the population-based parameter estimation equations 
to define nL as a function of SI and sets xL to a population 
constant (70%).28–30 These values are used to simulate 
the participant’s insulin concentration in the plasma and 
interstitium. Note that the DIST-SI-2 uses the DISTq 
parameter estimation for basal insulin (Ib) and IIM to 
identify nL with a fixed xL.

SI and VG are identified using the IIM. However, the 
Sparse and DISTq30 protocols do not have sufficient 
glucose data to identify VG. In these cases, VG is estimated 
as a proportion (29%) of LBM as calculated by Hume.22 
The value of 29% was defined using linear regression of 
the VG value identified from DISST-FS data to LBM in an 
isolated cohort.

Table 4 summarizes the identification methods used by 
each sampling protocol.

Analysis
DISST-FS data (n = 218) with appropriate assay omissions 
will be used to directly identify SI and UN using the 
standard DISST-FS method15 and the eight DISST-based 
variants. The SI, UB, U1, and U2 values from the alternative 
protocols were compared to the corresponding values 
obtained by the DISST-FS using Pearson’s correlation 
coefficients and quartiles of the proportional differences 
(∆). The proportional differences will be defined with 
Equation (1).

                  (1)

where VP is the value defined by the DISST-based variant 
and VFS is the DISST-FS value.

The simple HOMA insulin sensitivity index was also 
calculated from plasma insulin and glucose assays derived 
from the fasting blood samples taken during each DISST-FS. 
The correlation between HOMA and DISST-FS is presented 
for comparison.

Results
The accuracy and information produced by the tests 
were intrinsically linked to assay cost and clinical burden. 
Table 5 summarizes the performance of all proposed 
protocols with respect to their ability to replicate 
the SI and UN values identified using the DISST-FS. 

Table 4.
Identification Methods for the Various Protocols

UN Insulin Glucose

DISST-FS DC IIM IIM

Short DC IIM IIM

DISST-E/SI DCa IIM IIM

Sparse DC IIM IIMa

DIST-SI EDISTq IIM IIM

DIST-SI-2 EDISTq IIM-EDISTq
a IIM

DISTq-FS EDISTq EDISTq IIM

DISTq-S EDISTq EDISTq IIM

DISTq30 EDISTq EDISTq IIMa

a Indicates that the identification method must be adjusted to 
account for sparse sampling.

Figure 1 presents Bland-Altman representations of the 
equivalence between SI values from DISST-FS and the 
DISST-based variants.

The sparser DIST-SI-2 method showed the greatest 
ability to replicate the SI metrics of the DISST-FS. It was 
closely followed by DIST-SI, Short protocol, DISST-E/SI, 
and Sparse protocol. DISTq-S and DISTq30 correlated 
highly to DISTq-FS at r = 0.94 and r = 0.89, respectively. 
Despite a substantial reduction in the number of assays, 
the DISTq30 estimates of insulin sensitivity were highly 
correlated with the DISTq-FS (r = 0.89) with limited bias 
(-4.2%), thus providing validation for the LBM-based 
estimation of VG.

Protocols that assayed C-peptide from the t = 0 and 
t = 5 min samples generated the same measures of UB 
and U1 to those generated by the DISST-FS, as expected. 
Reducing the number of C-peptide samples had a greater 
effect on U2. DISTq was not intended for estimation of 
UN metrics.

The correlations between HOMA and the insulin sensitivity 
metrics of DISST-FS were weaker than correlations between 
the DISST-FS and all alternative DISST-based protocols.

Discussion
Relatively high SI correlations (r ~0.9) and a lack of bias 
(Q2 bias range -17.9 to 7.8%) between the protocols that 
assayed insulin and the DISST-FS test show that the 
limited sampling protocols could be used as low-cost 
alternatives to the fully sampled test without significantly 
diminishing test resolution. In particular, the Sparse 

    VP − VFS

2 × (VP + VFS)
∆ =
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protocol insulin sensitivity values identified using only 
three samples correlated well to the fully sampled test 
(r = 0.84) and also captured all major dynamics of the 
UN profile. This is despite the protocol requiring just 
over half the time and one third of the assay cost. DISTq 
provided accurate estimates of SI values that compared 
favorably with estimates generated by more intense and 
costly fully sampled methods. The DISTq-FS method 
performed in accordance with published findings. 
DISTq-S and DISTq30 also correlated relatively well to 
the DISST-FS, particularly in comparison with the well-
accepted HOMA, which performed poorly.

Overall, the findings of the spectrum analysis show the 
considerable robustness of the DISST model-based SI metric 
to significant assay omissions. While the highest possible 
accuracy is achieved with the most frequently sampled 
tests and comprehensively assayed samples, reducing the 
sample resolution only has a mildly deleterious effect on 
the accuracy of the insulin sensitivity outcomes. 

Sampling regimens that utilized C-peptide measurements 
produced insulin secretion metrics that were highly 
correlated to the DISST-FS despite reductions in sampling. 
Lotz and colleagues26 found a similar robustness of 
endogenous insulin production metrics to assay omission. 
In particular, the Sparse protocol has shown that most 

of the insulin secretion information obtained from nine 
C-peptide assays can be obtained with only three [r(UB) = 1, 
r(U1) = 1, r(U2) = 0.88]. As C-peptide assays contribute 
to a significant portion of the standard DISST assay cost, 
considerable cost savings are enabled by the robustness 
of the model to assay omissions. Protocols that utilized 
DISTq estimation methods were not intended to accurately 
predict participant-specific values of insulin secretion. 
Thus, the poor correlation is not considered a negative 
result and the minimal bias indicates that the general 
magnitude of prediction was accurate at a cohort level.

The participant inclusion criteria led to selection of a 
cohort that tended toward the insulin-resistant range. 
As correlations measure variable spread as well as 
linearity,31 it is likely that the correlations reported for 
this targeted cohort are less than would be identified 
with the same analysis undertaken with a general cohort. 
Furthermore, the insulin secretion metrics of insulin-
resistant participants are much more variable than those  
of sensitive individuals.17,18,32

This investigation used clinical data from the same test 
procedure to analyze each DISST-based test and HOMA. 
Thus, the effects of participant variation between tests, 
which reduces the equivalence measured by most 
intertest investigations, did not affect the outcomes of 

Table 5.
Correlations and Quartiles of Proportional Differences of SI and UN Values Identified with the Proposed 
Protocols and the DISST-FS

SI
r(Q1, Q2, Q3 [%])

UB
r(Q1, Q2, Q3 [%])

U1
r(Q1, Q2, Q3 [%])

U2
r(Q1, Q2, Q3 [%])

DISST-FS 1
(0, 0, 0)

1
(0, 0, 0)

1
(0, 0, 0)

1
(0, 0, 0)

Short 0.90
(-1.1, 7.8, 17.0)

1
(0, 0, 0)

1
(0, 0, 0)

0.89
(-14.6, -4.44, 9.5)

DISST-E/SI 0.90
(-19.3, -3.6, 15.6)

1
(0, 0, 0)

1
(0, 0, 0)

0.72
(-11.0, 8.9, 33.0)

Sparse 0.84
(-39.3, -17.9, 5.7)

1
(0, 0, 0)

1
(0, 0, 0)

0.88
(-22.2, 2.5, 25.6)

DIST-SI 0.91
(-7.0, 4.2, 15.5)

0.62
(-20.0, -5.3, 15.0)

0.07
(-27.3, -7.6, 23.9)

0.75
(-31.8, -10.6, 14.5)

DIST-SI-2 0.92
(-10.9, 1.0, 11.2)

0.68
(-17.4, -2.2, 17.1)

0.09
(-28.4, -6.2, 24.7)

0.74
(-27.9, -7.6, 23.5)

DISTq-FS 0.83
(-13.8, 3.2, 22.4)

0.56
(-19.9, -2.5, 16.7)

-0.07
(-28.2, -7.9, 24.7)

0.70
(-33.0, -9.6, 15.7)

DISTq-S 0.77
(-12.7, 6.4, 34.9)

0.53
(-25.2, -6.7, 14.6)

-0.14
(-30.7, -8.6, 24.6)

0.69
(-36.8, -15.3, 11.6)

DISTq30 0.71
(-25.1, -4.2, 26.4)

0.53
(-22.7, -0.8, 20.9)

-0.14
(-30.7, -6.4, 25.7)

0.71
(-30.4, -3.9, 21.5)

HOMA -0.35
(—) — — —
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Figure 1. Bland-Altman representations of the proportional differences between SI values from DISST-FS and the DISST-based variations. 
DISTq30 is also compared to DISTq-FS. Median and interquartile ranges are shown as gray lines.

this analysis. Furthermore, assay error had a distinct 
and lesser impact on this analysis compared to normal 
intertest investigations. In particular, assay error may 
cause the over- and underestimation of subsequent test 
outcomes in typical intertest investigations, whereas assay 
error in this analysis only varied the outcomes between 
tests when there were distinct assay regimens within a 
species. Intraindividual repeatability was not assessed in 
this study. The original data was from a 10-week dietary 
intervention study in which significant changes in SI 
were expected for half the cohort and limited changes 
for the control group. Thus, true SI changes, or the lack 
thereof, across subjects would be arguable. Equally, the 
time between tests of 10 weeks would, even for the control  
group, also include other natural variations. A properly 
designed repeatability investigation would focus on multiple 

tests over 3–7 days to mitigate these issues, which was not 
the case here.

The tests of the DISST-based spectrum have wide potential 
for a number of applications. In particular, the lower-cost 
DISTq measures could potentially enable screening of 
insulin resistance where the cost or poor resolution of 
the established tests has been a deterrent in the past. 
DISTq provides a better compromise of accuracy and  
economy than that made available by established low-cost 
surrogate insulin sensitivity measures and is also capable 
of providing real-time results.

The higher cost tests that also quantify insulin secretion 
could be used in clinical investigations of metabolic 
conditions or changes over time. Although these tests 
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require a greater clinical intensity and assay cost than the 
DISTq protocols, they are considerably less burdensome 
than established high-accuracy sensitivity measures. Thus, 
DISST-based tests could potentially enable greater numbers 
of participants to be tested. Furthermore, the established 
measures do not frequently measure UN, which is a key 
indicator of β-cell function and the pathogenesis of 
type 2 diabetes.9,33,34

Optimal numbers of test participants could be recruited 
for lower resolution investigations of insulin sensitivity 
and secretion by using the DISST-based tests that 
provide a compromise between cost and resolution.  
For example, investigations that aim to measure the 
effects of a particular dietary intervention on a number 
of physiological markers including insulin sensitivity,  
the DIST-SI-2 protocol may be appropriate. In contrast, 
cost-restrictive pathophysiological studies of type 2 diabetes 
with large insulin-resistant cohorts should perhaps utilize 
the low cost but informative Sparse protocol, which can 
also produce β-cell function estimates.

The DISTq test could also be used to measure the 
efficacy of intervention provided the intervention was 
expected to have a minimal effect on the participant’s 
insulin clearance rates and insulin production response 
to the DISST stimulus. The DISTq SI identification 
process estimates the participant’s insulinemic response 
to test stimulus rather than observing it through insulin 
or C-peptide assays. Thus, changes in glucose decay 
as a result of shifts in the participant’s insulinemic 
response will be incorrectly attributed to SI by the DISTq 
identification process. However, the DISTq tests would 
be suitable for tracking SI changes provided that consistency 
in insulin clearance and insulin production can be 
reasonably assumed for the duration of the intervention.

Finally, the various sampling schedules could allow 
more assays from the samples taken to enable higher 
resolution analyses, or less assays to be performed to 
reduce overall cost. The DISST-based hierarchy does not 
require an additional clinical procedure to be undertaken 
to increase the SI resolution. For example, the DIST-SI
protocol requires seven blood samples, which yield six 
glucose and six insulin assays. If cost savings were desired, 
only two glucose assays could be undertaken on the 
available samples and the DISTq30 could provide a 
comparatively low resolution SI result. However, if this 
result was close to a diagnostic threshold and a more 
accurate diagnosis were desired, stored samples could be 
reassayed. Further assays of insulin and/or C-peptide, as 
well as glucose when not done previously, could result 

in a higher resolution SI value using the DIST-SI method, 
or a DISST-S result that includes participant-specific UN 
metrics. This approach increases storage costs but 
minimizes cost for participants who can be diagnosed 
with a lower resolution test. Table 6 shows all potential 
sample schedules and subsequent possible assay and 
identification methods for each sampling protocol defined.

Table 6.
Potential for Different Sample Regimens to Allow 
Reassays and Reanalyses with Alternative Tests

Protocol 
completed

Analyses possible with samples

D
IS

ST
-F

S

Sh
or

t

D
IS

ST
-E

/S
I

Sp
ar

se

D
IS

T-
SI

D
IS

T-
SI

-2

D
IS

Tq
-F

S

D
IS

Tq
-S

D
IS

Tq
30

DISST-FS Y  Y Y Y Y Y Y Y Y

Short Y Y Y Y

DISST-E/SI Y Y Y Y Y Y

Sparse Y

DIST-SI Y Y Y Y Y Y Y

DIST-SI-2 Y Y Y

DISTq-FS Y Y Y Y Y Y Y Y Y

DISTq-S Y Y Y Y

DISTq30 Y

Conclusions
The DISST-based spectrum of tests utilizes the robustness 
of the model-based insulin sensitivity and secretion 
metrics to the omission of assays to provide a series of  
tests that encompass a wide range of compromises between 
economy and accuracy. Thus, researchers could potentially 
select the best DISST-based test for a wide range of 
clinical applications. In particular, the more intensely 
sampled and assayed tests could offer comprehensive 
metabolic information, while the low-cost tests could 
enable screening applications that were inhibited by the 
poor resolution of low-cost insulin sensitivity surrogates. 
The tests that compromise accuracy and cost could 
potentially allow an optimal number of participants to 
be tested in clinical trials, thus making the best use of 
available funds.
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Appendix 1

The DISST physiological model is shown in Equations (2) to (6). Equations (2) and (3) define the C-peptide 
pharmacokinetics. Equations (4) and (5) define the plasma and interstitial insulin pharmacokinetics, respectively. 
Equation (6) describes the decay of glucose as a function of available interstitial insulin and glucose suppression of hepatic 
glucose production.

𝐶𝐶 = 𝑘𝑘!𝑌𝑌 − 𝑘𝑘! + 𝑘𝑘! 𝐶𝐶 +
𝑈𝑈!
𝑉𝑉!

	
                                               (2)

𝑌𝑌 = 𝑘𝑘!𝐶𝐶 − 𝑘𝑘!𝑌𝑌	
                                                      (3)

𝐼𝐼 =
𝑛𝑛!
𝑉𝑉!

𝑄𝑄 − 𝐼𝐼 − 𝑛𝑛!𝐼𝐼 − 𝑛𝑛!
𝐼𝐼

1 + α!𝐼𝐼
+ 1 − 𝑥𝑥!

𝑈𝑈!
𝑉𝑉!

+
𝑈𝑈!
𝑉𝑉!

	
                              (4)

𝑄𝑄 =
𝑛𝑛!
𝑉𝑉!

𝑄𝑄 − 𝐼𝐼 − 𝑛𝑛!𝑄𝑄	
                                                  (5)

𝐺𝐺 = −𝑝𝑝! 𝐺𝐺 − 𝐺𝐺! − 𝑆𝑆𝑆𝑆 𝐺𝐺𝐺𝐺 − 𝐺𝐺!𝑄𝑄! +
𝑃𝑃!
𝑉𝑉!

	
                                    (6)

where C and Y are the plasma and interstitial C-peptide concentrations, respectively (pmol·liter-1); k1-3 are transport 
rate parameters (min-1); UN is the endogenous insulin production profile (pmol·min-1); VP and VQ are the volumes 
of distribution of insulin in the plasma and interstitium, respectively (liter); nI is the rate of transition of insulin between 
the plasma and interstitium (liter·min-1); nK is the renal insulin clearance rate (min-1); nL is the hepatic insulin clearance 
rate (min-1); aI is the saturation of clearance (liter·pmol-1); xL is the proportion of first pass hepatic insulin extraction (1); 
UX is the exogenous insulin bolus (pmol·min-1); nC is the rate of insulin clearance in the interstitium (min-1); G

.
is the 

concentration of glucose (mg·dl-1); pG is the rate of glucose-dependent suppression of hepatic glucose release (min-1); 
PX is the exogenous glucose bolus (mg·min-1); SI is the insulin sensitivity (l·pmol-1·min-1); VG is the glucose distribution volume 
(dl); and the B subscript denotes the basal concentration of the respective species.

The basal rate of insulin production (UB) is defined as the UN value at t = 0, while the first phase production rate (U1) 
is defined as the average of UN between t = 1 and 6 min, and the second phase (U2) is defined as the average of UN 
between t = 6 and 36 min. SI measures the effect of interstitial insulin on the decay of available glucose.


