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Abstract

Background:
Achieving good postprandial glycemic control, without triggering hypoglycemia events, is a challenge of 
treatment strategies for type 1 diabetes subjects. Continuous subcutaneous insulin infusion, the gold standard 
of therapy, is based on heuristic adjustments of both basal and prandial insulin. Some tools, such as bolus 
calculators, are available to aid patients in selecting a meal-related insulin dose. However, they are still based on 
empiric parameters such as the insulin-to-carbohydrate ratio and on the physicians’ and patients’ ability to fit 
bolus mode to meal composition.

Method:
In this article, a nonheuristic method for assessment of prandial insulin administration is presented and 
evaluated. An algorithm based on set inversion via interval analysis is used to coordinate basal and bolus insulin 
infusions to deal with postprandial glucose excursions. The evaluation is carried out through an in silico study 
using the 30 virtual patients available in the educational version of the Food and Drug Administration‑accepted 
University of Virginia simulator. Results obtained using the standard bolus strategy and different coordinated 
basal–bolus solutions provided by the algorithm are compared.

Results:
Coordinated basal–bolus solutions improve postprandial glucose performance in most cases, mainly 
in terms of reducing hypoglycemia risk, but also increasing the percentage of time in normoglycemia.  
Moreover, glycemic variability is reduced considerably by using these innovative solutions.

Conclusions:
The algorithm presented here is a robust nonheuristic alternative to deal with postprandial glycemic control.  
It is shown as a powerful tool that could be integrated in future smart insulin pumps.
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Introduction

The Diabetes Control and Complications Trial1 and 
the UK Prospective Diabetes Study2 first demonstrated 
that chronic hyperglycemia is responsible for diabetic 
complications, both in type 1 diabetes mellitus (T1DM) 
and type 2 diabetes mellitus. A growing body of 
evidence has stressed the importance of postprandial 
hyperglycemia and glycemic variability as possible 
determinants of diabetes-related complications, as well as 
increased cardiovascular risk in people with diabetes.3,4 
Indeed, impairment of postprandial control has been 
shown to be the first alteration of glycemia homeostasis 
contributing to chronic hyperglycemia,5 and it is 
associated with an increase of oxidative stress and 
accelerated atherosclerosis.6,7

The need to optimize postprandial control has prompted 
the development of insulin analogs with more physiologic 
pharmacokinetic properties.8 It has also stimulated 
research in the field of subcutaneous continuous glucose 
monitoring (CGM) and continuous subcutaneous insulin 
infusion (CSII), with the introduction of different bolus 
strategies and bolus calculators to counteract meal‑related 
blood glucose excursions and to prevent insulin stacking.9,10 
Tools have been developed to account for differences 
in meal absorption with respect to nutritional content, 
including fat and protein counting in the bolus computation 
(standard, square, or dual wave).11 However, despite 
the development of these new tools, optimization of 
postprandial control is still an empiric process based on 
the experience of both the physician and the patient.

Control of postprandial glycemia excursions is also a 
barrier to the development of the artificial pancreas. 
Certainly, meals are one of the major perturbations to 
counteract and the main challenge found in current clinical 
validations of the few existing prototypes of automated 
glycemia control systems.12–19 Different approaches 
have been suggested to deal with meal disturbances 
in this context, including fully closed‑loop systems, 
semi-closed-loop with meal announcement, and hybrid 
approaches, using proportional-integral‑derivative (PID) 
controllers12 or algorithms such as model predictive 
control (MPC).13,16–19 Fully closed-loop systems have 
shown poor performance, with postprandial glucose 
higher and postmeal nadir glucose lower than desired.12 
The less ambitious semi‑closed-loop and hybrid approaches 
have demonstrated improved efficacy as compared 
with fully closed-loop systems. However, published 
clinical trials showed unsatisfactory results in terms of 

postprandial glucose control,17–19 failing to demonstrate 
superiority to open-loop control.18,19 Indeed, despite the 
use of meal announcement, the main challenge of current 
control algorithms is still the avoidance of overcorrection 
and subsequent hypoglycemia. In an attempt to solve this 
problem, constraints on residual insulin activity (insulin 
on board) have been introduced both in PID-12 and MPC-
based13 systems. Bihormonal closed-loop control, with 
the inclusion of glucagon as counterregulatory control 
action, has also been proposed.20,21 Clinical results still 
show the incidence of hypoglycemia, although it may be 
reduced with high‑gain glucagon delivery.20

Interval techniques22–25 have shown to be particularly 
suitable to deal with constraints under uncertainty, 
and they are applied in a wide range of fields such as 
robotics, control, computer graphics, economy, global 
optimization, and fault detection, among others.24 
These techniques were first introduced in the context of 
postprandial glucose control in insulin pump therapy 
for T1DM by Bondia and colleagues.26 The Set Inversion 
Via Interval Analysis (SIVIA) algorithm22 was proposed to 
compute the feasible set of insulin profiles (consisting 
of an insulin bolus at mealtime and a basal insulin 
deviation from baseline during 5 h postmeal) to fulfill 
the International Diabetes Federation  recommendations 
on postprandial glycemia27 according to a patient’s 
mathematical prediction model.

Results of Bondia and colleagues,26 although obtained 
in a virtual patient (i.e., in silico) suggest that a coordinated 
action of basal and bolus insulin is required to maintain 
blood glucose in a physiological range in the postprandial 
state, outperforming standard bolus. However, some 
limitations were found in their study:

1.	 The algorithm considers a basal deviation from 
baseline at mealtime of arbitrary fixed duration  
(5 hours).

2.	 It remains unanswered how a mismatch between a 
patient’s model and actual patient’s behavior, as it 
will be found in any attempt to identify a patient’s 
model, will affect the behavior of the algorithm.

3.	 There was no formal evaluation of the methodology 
in a virtual patient population representative of 
T1DM subjects to support its superior performance 
versus standard bolus.
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In this article, these limitations are addressed, and an 
innovative, nonheuristic method for the assessment of 
the most appropriate prandial insulin administration 
is presented. Indeed, duration of basal deviation is 
incorporated into the original algorithm proposed by 
Bondia and colleagues26 as a new design parameter, 
leading to a three-dimensional set inversion problem. 
This allows, for a given meal, the determination of the 
optimal insulin administration mode: standard, square, 
and dual-wave boluses currently available in insulin 
pumps, as well as the new mode of temporal basal 
decrement (currently not available in pumps), which 
can be considered as a generalization of the concept 
of superbolus introduced by Walsh and Roberts.28,29 
A thorough evaluation of the methodology is performed 
in a population of virtual T1DM, CSII-treated patients 
included in the Food and Drug Administration  
(FDA)-accepted University of Virginia (UVa) simulator,30 
with the consideration of structural mismatch between 
the patient’s model and the model used to describe  
he virtual patient.

Methods

Virtual Population
The UVa simulator was accepted by the FDA in January 
2008 as a substitute for animal trials for the preclinical 
testing of control strategies in artificial pancreas studies 
in T1DM patients. The educational version used 
here includes a total of 30 virtual patients (10 adults,  
10 adolescents, and 10 children) based on data of real 
individuals.

Table 1 shows the demographic, anthropometric, and 
metabolic parameters of the 30 patients. Nominal basal  
is taken as the basal infusion normalizing glucose 
around 100 mg/dl, and the insulin-to-carbohydrate ratio 
(I:C) is estimated through simulations trying to obtain a 
2 h glucose concentration below 140 mg/dl.

Main Algorithm: Three-Dimensional (3D) Set-
Inversion-Based Prandial Insulin Delivery
The algorithm presented by Bondia and colleagues26 is 
extended here to a parameterization of prandial insulin 
infusion consisting of:

1.	 bolus dose at mealtime (IU),

2.	 basal rate at mealtime (IU/h), and

3.	 time of restoration of basal rate to baseline (min).

Table 1.
Demographic, Anthropometric, and Metabolic 
Parameters of the 30 in Silico Subjects Available 
in the Educational Version of the University of 
Virginia Simulator

Adults

Age Weight (kg)
Nominal

basal (IU/h)
I:C (g/IU)

Mean 51.6 86.07 1.685 9.92

Standard 
deviation

16 15.79 0.25 6.33

Adolescents

Age Weight (kg)
Nominal

basal (IU/h)
I:C (g/IU)

Mean 16.5 47.7 1.17 9.65

Standard 
deviation

1.75 7.89 0.24 6.09

Children

Age Weight (kg)
Nominal

basal (IU/h)
I:C (g/IU)

Mean 9.4 35.865 0.502 21.11

Standard 
deviation

1.56 5.96 0.07 13.76

The SIVIA algorithm is applied to get, given a patient’s 
model characterizing postprandial behavior up to 5 h, 
the feasible set of insulin infusion according to the 
aforementioned parameterization fulfilling the following 
constraints:

1.	 The IDF guidelines for postmeal control: nonhypo-
glycemia (plasma glucose >70 mg/dl) and 2 h 
postprandial glucose value below 140 mg/dl in a  
5 h time horizon.

2.	 Terminal constraints: 5 h postprandial glucose value 
above 90 mg/dl and a maximum glucose slope 
of 0.05 mg/dl/min starting 4 h after the meal  
(i.e., conditions of glycemic stability).

Terminal constraints are included here to minimize 
both the risk of hypoglycemia after the first 5 h and late 
undesirable glucose rebounds. It must be considered that 
these are constraints applied to the model prediction, 
which is not considered reliable enough after a few 
hours after the meal. They were tuned so as to get a good 
blood glucose response in spite of model prediction 
discrepancies.
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As a result, the SIVIA algorithm produces an inner 
subpaving consisting of a 3D volume made up of a 
collection of hyperrectangles, as shown in Figure 1 (left). 
A point inside this volume represents an insulin infusion 
profile, as defined by the selected parameterization, 
fulfilling the above constraints according to the patient’s 
model.

Interpretation of the resulting feasible set is eased by the 
consideration of the 2D projection onto the basal–bolus 
dimensions (Figure 1, right). This projected set contains 
all the basal–bolus combinations at mealtime so there 
exists a time of restoration of basal to baseline in the  
(0,5) h interval fulfilling the constraints. The projected 
basal–bolus space can be divided into regions 
corresponding to different bolus administration modes 
present in current insulin pumps, plus a new one coined 
here as temporal basal decrement:

1.	 a “standard bolus” corresponds to an insulin 
infusion profile with nominal basal at mealtime,

2.	 a “square bolus” corresponds to an insulin infusion 
profile with no bolus and basal rate at mealtime 
above baseline,

3.	 a “dual-wave bolus” corresponds to an insulin 
infusion profile with basal rate at mealtime above 
baseline and nonzero bolus, and

4.	 a “temporal basal decrement bolus” corresponds 
to an insulin infusion profile with basal rate at 
mealtime below baseline.

This is illustrated in Figure 2, where basal and bolus axes 
have been normalized with respect to nominal basal and 
nominal bolus for the given meal (computed from the 
patient’s I:C), respectively. Point (1,1) corresponds thus  
to the standard therapy.

This is especially important since it allows the 
automatic selection of the best administration mode. 
For a given meal, the projected set reveals which bolus 
administration modes are feasible. As the carbohydrate 
content of the meal increases, fewer options are available, 
until no solution exists (Figure 3). In this case, either 
the patient reduces the meal intake or constraints must 
be relaxed.

Figure 1. Three-dimensional feasible set of insulin infusions and its corresponding 2D projection onto the basal–bolus dimensions.

Figure 2. Plot that illustrates all possible bolus administration modes. 
The figure is normalized with respect to the patient’s nominal 
basal and standard bolus from its I:C. Therapies with higher basal 
infusion than nominal correspond to the dual-wave and square 
bolus administration modes already implemented in insulin pumps.  
A decrement in the postprandial basal infusion results in the 
innovative temporal basal decrement mode. Therapies with nominal 
basal correspond to the standard bolus mode.



1428

Combining Basal–Bolus Insulin Infusion for Tight Postprandial Glucose Control:  
An in Silico Evaluation in Adults, Children, and Adolescents Revert

www.journalofdst.orgJ Diabetes Sci Technol Vol 4, Issue 6, November 2010

Once the projected feasible set is computed and an 
administration mode is selected, a basal–bolus combination 
in the corresponding subset must be chosen. This can be 
done in several ways, and different approaches will be 
considered here:

1.	 Centroid solution: The basal–bolus combination 
is chosen as the geometric centroid of the 
corresponding subset. This alternative leads to a 
conservative solution where the glucose response 
remains as far as possible from the constraints. 

Although this solution does not optimize the 
glucose profile, it is the most robust solution 
against mismatches between patients’ model and 
actual patients.

2.	 Maximal-bolus solution: The basal–bolus combination 
is chosen by applying the highest possible bolus to 
optimize the 2 h postprandial glucose concentration. 
This solution follows a similar philosophy to the 
typical physicians’ approach for selecting the 
appropriate I:C for each patient. The difference here is 

Figure 3. Plot that shows the evolution of the 2D basal–bolus projection feasible sets for a particular example and different carbohydrate 
content meals. For 40 g, any administration mode will lead to a good postprandial control according to the defined constraints.  
For 60 and 80 g, a square bolus is not feasible. For values greater than 100 g, only a temporal basal decrement bolus will lead to a good postprandial 
control. As the carbohydrate content of the meal increases, the projected feasible set shrinks, reducing the possible bolus administration modes. 
The vertical red line represents the standard bolus strategy, with basal equal to its baseline value.
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that the coordinated basal–bolus action will allow 
an optimal 2 h postprandial glucose control, while 
avoiding hypoglycemia.

Figure 4 shows the two strategies used in this work for 
the case of temporal basal decrement bolus administration 
mode. This will be the case discussed in this article 
because of its innovative nature.

After the selection of the desired basal–bolus combination, 
the time of restoration of basal to baseline is selected 
from the third dimension in the 3D feasible set, which 
corresponds to an interval of feasible times of restoration. 
The mid-value is considered here.

Summarizing, after identification of the patient’s model 
characterizing postprandial behavior up to 5 hours,  
the algorithm consists of the following steps:

1.	 Computation of the feasible set of prandial insulin 
infusions in the 3D space (bolus insulin at mealtime, 
basal rate at mealtime, time of basal restoration).

A.	 If it is empty, relax constraints and go to 1.

B.	 If it is not empty, go to 2.

2.	 Projection onto the two-dimensional space (bolus 
insulin, basal rate at mealtime).

3.	 Selection of the desired administration mode 
among the feasible ones in the two-dimensional 
projection.

4.	 Selection of a bolus insulin and basal rate at 
mealtime among the selected subset.

5.	 Selection of a feasible time of basal restoration, 
according to the selection in 4, from the 
three‑dimensional feasible set.

Constraints relaxation is only applied to the hyper-
glycemia constraint. It is relaxed in steps of 20 mg/dl until 
a solution exists, up to a glucose value of 300 mg/dl.  
If this value is reached, it is concluded that the patient  
is impossible to control for that specific meal. 

Patient’s Model Identification
The algorithm requires obtaining an individual model 
for each of the patients, characterizing their postprandial 

Figure 4. The two different basal–bolus combination approaches 
compared with the standard solution. The green point represents the 
centroid basal–bolus combination, whereas the pink point represents 
the maximal-bolus solution. The grey point represents the standard 
bolus strategy with basal equal to its baseline value and the bolus 
given by the I:C. In this particular example, standard therapy is out  
of the set of feasible solutions.

glucose behavior. The UVa simulator uses the Cobelli 
model31,32 as a mathematical description of T1DM patients. 
In order to force a mismatch between patient’s model 
and the virtual patient behavior, the Hovorka model,33,34 
structurally different, is used as the patient’s model.  
Its parameters are identified from 4-day virtual patient’s 
data for a period of 5 h after a meal, following an optimal 
experiment design (OED).35,36 The setup parameters 
considered in the OED are the ingested amount of 
carbohydrates, the bolus insulin dose, and the time 
instant of bolus insulin infusion. Constraints are added 
to avoid glucose concentrations below 70 mg/dl or 
above 300 mg/dl. The experiment can be carried out in 
ambulatory conditions.

The use of a model that is structurally different than 
the model used in the UVa simulator is justified by the 
unavoidable discrepancies that always exist between 
the real behavior of a patient and the response of its 
model. Choosing a different model for identification 
than the one used in the simulator allows evaluating the 
robustness of the algorithm with respect to model and 
patient mismatch.

Algorithm Evaluation
Once an individual patient model is obtained for each 
of the 30 virtual patients available, the feasible sets 
are computed for meals in the range of 40–140 g of 
carbohydrates and initial normoglycemia. In this study, 
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temporal basal decrement is selected among the feasible 
bolus administration modes. Indeed, for some situations,  
it is the only feasible solution26 (see Figures 3 and 4).

Efficiency of postprandial glucose control for both the 
centroid and the maximal-bolus solution from the 
temporal basal decrement feasible set is measured and 
compared with the standard bolus. A 7 h postprandial 
horizon is considered to evaluate the risk of late 
hypoglycemia and hyperglycemia. Different indicators 
are used for this comparison:

1.	 The area under the curve (AUC) of glucose 
concentration above 140 mg/dl and below 70 mg/dl 
is calculated using the trapezoidal rule37 in the 0–2, 
0–5, and 0–7 h postprandial periods for the whole 
40–140 g range of carbohydrates.

2.	 The percentage of time spent in normoglycemia 
(70 mg/dl < glucose < 140 mg/dl), as well as the 
percentage of time spent in hypoglycemia (glucose 
<70 mg/dl) are also calculated.

3.	 The blood glucose standard deviation within the 
0–5 and 0–7 h time intervals (SDws h)38 is calculated 
as a measure of the glycemic variability associated 
with each prandial insulin administration strategy.

Total and bolus insulin dose are also reported to 
allow for correct interpretation of the aforementioned 
indicators. The AUC0–2h, AUC0–5h, and the AUC0–7h, as well 
as the insulin dose, are normalized with respect to the 
respective values obtained using the standard bolus.

All data are subjected to repeated-measures analysis of 
variance with Huynh–Feldt adjustment for nonsphericity.39 
The analysis of variance model includes only the test 
condition (standard bolus, centroid, and maximal-bolus 
temporal basal decrement), as within‑subjects factor, and 
post hoc comparisons (Tukey test) are carried out to pinpoint 
specific differences on significant interaction terms.

As a visual and qualitative indicator, the mean glucose 
response using the three different bolus strategies is 
plotted for the adults, adolescents, and children.

Results
Tables 2, 3, and 4 show the mean AUC of the three 
groups of patients (adults, adolescents, and children, 

respectively) following meals with different carbohydrate 
content. A comparison among the percentages of time 
in normoglycemia and hypoglycemia for each of the 
solutions is also provided along with the amount of 
prandial bolus insulin and total insulin dose in the 
7 h postprandial period. One virtual child (child  
number 8, weighing 23.73 kg) was eliminated from 
the study because the feasible set of prandial insulin 
infusions was empty for meals higher than 60 g, even 
relaxing constraints.

As a whole, results demonstrate the feasibility and 
effectiveness of the proposed algorithm-based insulin 
administration. It performed generally better than the 
traditional bolus in all of the considered time horizons. 
In particular, both centroid and maximal-bolus temporal 
basal decrement solutions were associated with 
significantly less hypoglycemic exposure in all groups 
of patients (Tables 2, 3, and 4). This was associated 
with a lower (or at least not different) overall exposure 
to undesired glycemic levels (both hyperglycemia and 
hypoglycemia), as indicated by the AUC values and the 
percentage of time spent in the normoglycemic range 
(the latter did not approach statistical significance only 
in children).

Total insulin dose was generally lower with the 
algorithm-based administration as compared with the 
standard therapy, and this was mainly attributable 
to a reduction in the basal insulin dose. In the adult 
population, total insulin dose was lower with the 
algorithm-based administration, but the difference was 
statistically significant only for the centroid solution 
(Table 2). Indeed, bolus increase with the maximal-
bolus solution is compensated with reduction of basal 
insulin in the following hours. The increase in the bolus 
insulin dose was not seen in the adolescent and children 
populations in most of the tested meals. This fact may  
be explained by the high incidence of hypoglycemia in 
those groups as compared with the adult population.

Table 5 represents the glycemic variability during the 5 and 
7 h postprandial period for the centroid, maximal‑bolus, 
and standard solution, showing significant improvement 
with temporal basal decrement solutions in all the 
considered meals.

In Figures 5, 6, and 7, the mean glucose response of the 
adults, adolescents, and children is shown for different 
carbohydrate content meals.
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Discussion and Conclusions
This study was carried out to test an algorithm based on 
set inversion (SIVIA) for prandial insulin administration. 
Results demonstrate the feasibility, efficacy, and robust- 
ness of this approach. To the best of our knowledge, this is 
the first study describing and evaluating a nonheuristic 

approach for the control of postprandial glucose 
excursions. Algorithm-based bolus insulin administration 
is associated with lower hypoglycemic risk and less 
glycemic variability, as compared with standard strategy, 
in both the 5 h and the 7 h postprandial horizons. 

Table 2.
Mean Different Indicator Values for the 10 Adults in the University of Virginia Simulator.

Adults

AUC 2 h AUC 5 h AUC 7 h
% of time
Normo 7 h

% of time
Hypo 5 h

% of time
Hypo 7 h

Bolus
Total IU

7 h

40 
g

Standard 1 1 1 92.28 0.83 6.34 1 1

Centroid 0.57 0.53 0.15 97.91 0 0 0.88 0.88a

Maximal-bolus 0.08 0.08 0.02 99.55 0 0 1.54a,b 0.92a

p value 0.409 0.148 0.06 0.06 0.135 0.135 <0.001 <0.001

60 
g

Standard 1 1 1 81.59 2.83 9.90 1 1

Centroid 0.91 0.78 0.39 91.57a 0 0.71 1.01 0.89a

Maximal-bolus 0.62a 0.53a 0.28a 93.99a 0 0.93 1.38a,b 0.93b

p value 0.034 0.034 0.006 0.011 0.135 0.368 <0.001 0.007

80 
g

Standard 1 1 1 71.30 3.53 11.80 1 1

Centroid 1.02 0.98 0.60 82.94a 0 0.59 0.97 0.88a

Maximal-bolus 0.73a,b 0.66a,b 0.41a 87.60a,b 0 1.07 1.26a,b 0.92b

p value 0.002 0.002 <0.001 <0.001 0.135 0.204 0.001 0.007

100 
g

Standard 1 1 1 61.04 3.87 14.56 1 1

Centroid 0.96 0.91 0.63 76.41a 0 1.47a 0.99 0.87a

Maximal-bolus 0.80a,b 0.73a,b 0.50a 80.00a,b 0.33 1.35a 1.17a,b 0.90

p value 0.007 0.007 <0.001 <0.001 0.368 0.043 0.001 0.002

120 
g

Standard 1 1 1 54.47 3.97 16.77 1 1

Centroid 1.05 1.03 0.78a 63.59a 0 4.75a 0.94 0.85a

Maximal-bolus 0.88 0.82 0.62a 69.24a 0 5.04a 1.10a,b 0.88

p value 0.184 0.111 <0.001 0.002 0.135 0.005 0.039 0.002

140 
g

Standard 1 1 1 49.24 4.13 17.53 1 1

Centroid 1.09 1.09 0.86 54.89 0a 4.92a 0.92 0.83a

Maximal-bolus 0.96 0.91 0.73a 60.97 0a 6.08a 1.02 0.85

p value 0.249 0.180 0.004 0.056 0.05 <0.001 0.061 0.006

a p < .05 versus standard bolus
b p < .05 versus centroid
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Results indicate that, when looking for tight postprandial 
glucose control, a parallel reduction in basal insulin dose 
is required to limit late postabsorptive hypoglycemia, 
especially for meals with higher carbohydrate content.

A strength of the proposed method is its robustness.  
The use of a model significantly different than the virtual 

patient for the identification of the patient’s postprandial 
behavior shows the feasibility of the method in spite 
of imperfect glucose predictions due, for instance, to 
intrapatient variability. Robustness of the solution could be 
further increased, if needed, with explicit consideration 
of intrapatient variability (as interval quantities in model 
parameters) in the computation of the feasible solution 

Table 3.
Mean Different Indicator Values for the 10 Adolescents in the University of Virginia Simulator

Adolescents

AUC 2 h AUC 5 h AUC 7 h
% of time
Normo 7 h

% of time
Hypo 5 h

% of time
Hypo 7 h

Bolus
Total IU

7 h

40 
g

Standard 1 1 1 63.7 10.97 27.43 1 1

Centroid 1.38 0.91 0.43a 87.17a 0 1.42a 0.89 0.82

Maximal-bolus 1.25 0.83 0.47a 84.94a 2.10 5.84 1.18b 0.88

p value 0.163 0.18 0.01 0.01 0.066 0.011 0.027 0.273

60 
g

Standard 1 1 1 56.22 11.63 28.38 1 1

Centroid 1.33 1.13 0.64a 74.06a 0a 5.11a 0.85 0.81a

Maximal-bolus 1.14 0.93 0.59a 68.41a 2.50a 13.92a 1.07 0.86

p value 0.106 0.054 <0.001 0.012 0.016 0.011 0.184 0.049

80 
g

Standard 1 1 1 48.15 12.33 29.81 1 1

Centroid 1.23 1.13 0.75a 58.50 0a 13.06a 0.85 0.80

Maximal-bolus 1.13 1.03 0.72a 58.08 2.13a 16.82a 0.99a,b 0.84

p value 0.138 0.205 <0.001 0.236 0.01 0.023 0.045 0.061

100 
g

Standard 1 1 1 40.36 12.37 29.90 1 1

Centroid 1.22 1.22 0.89 49.74a 1.30a 16.27a 0.81a 0.77

Maximal-bolus 1.14 1.13 0.85a 49.22a 2.70a 19.24 0.92b 0.81

p value 0.111 0.082 0.017 0.023 0.002 0.006 0.045 0.061

120 
g

Standard 1 1 1 36.13 12.03 29.19 1 1

Centroid 1.21 1.25 0.98 44.20a 1.40a 16.39a 0.78a 0.75

Maximal-bolus 1.15 1.19 0.94 48.79a 1.97a 15.11a 0.87b 0.78

p value 0.096 0.061 0.067 0.002 0.004 0.023 0.045 0.273

140 
g

Standard 1 1 1 49.24 4.13 17.53 1 1

Centroid 1.09 1.09 0.86 54.89 0a 4.92a 0.92 0.83a

Maximal-bolus 0.96 0.91 0.73a 60.97 0a 6.08a 1.02 0.85

p value 0.249 0.180 0.004 0.056 0.05 <0.001 0.061 0.006

a p < .05 versus standard bolus
b p < .05 versus centroid



1433

Combining Basal–Bolus Insulin Infusion for Tight Postprandial Glucose Control:  
An in Silico Evaluation in Adults, Children, and Adolescents Revert

www.journalofdst.orgJ Diabetes Sci Technol Vol 4, Issue 6, November 2010

Table 4.
Mean Different Indicator Values for Nine Children Analyzed from Those Available in the University of 
Virginia Simulator

Children

AUC 
2 h

AUC  
5 h

AUC  
7 h

% of time
Normo  

7 h

% of time
Hypo  
5 h

% of time
Hypo  
7 h

Bolus
Total IU

7 h

40 
g

Standard 1 1 1 66.77 10.26 22.75 1 1

Centroid 1.64 1.95 1.33 69.52 0.00a 0.00a 1.33 0.78a

Maximal-bolus 1.41 1.46 1.04 71.47 0.00a 0.00a 1.04 0.80a

p value 0.278 0.129 0.642 0.923 0.041 0.003 0.06 <0.001

60 
g

Standard 1 1 1 61.12 11.96 24.49 1 1

Centroid 1.36 1.27 0.87 73.24 0.00a 3.93a 0.87 0.78a

Maximal-bolus 1.29 1.27 0.90 72.34 0.00a 4.70a 0.90 0.80a

p value 0.278 0.129 0.642 0.251 0.007 0.006 0.092 <0.001

80 
g

Standard 1 1 1 51.31 14.04 30.48 1 1

Centroid 1.34a 1.36 1.00 61.52 0.04a 6.91a 1.00 0.77a

Maximal-bolus 1.27 1.27 0.95 64.71 0.30a 7.31a 0.95b 0.78a

p value 0.031 0.154 0.187 0.164 0.002 <0.001 0.019 <0.001

100 
g

Standard 1 1 1 46.95 11.74 30.40 1 1

Centroid 1.33a,c 1.41a,c 1.08 54.50 0.67a 7.47a 1.08a 0.75a

Maximal-bolus 1.27 1.33 1.04 56.85 0.85a 7.86a 1.04b 0.77a

p value <0.001 <0.001 0.328 0.278 0.048 0.001 0.004 <0.001

120 
g

Standard 1 1 1 40.83 10.74 30.19 1 1

Centroid 1.29a 1.41a 1.13 47.43 0.37a 7.44a 1.13a 0.74a

Maximal-bolus 1.26 1.37 1.11 48.19 0.44a 7.73a 1.11b 0.76a

p value 0.006 <0.001 0.209 0.406 0.031 0.001 0.019 <0.001

a p < .05 versus standard bolus
b p < .05 versus centroid
c p < .05 versus maximal-bolus

set with SIVIA (that would yield smaller feasible sets 
and thus more constrained solutions). This is a unique 
feature of the presented algorithm. Another one is the 
possibility of determining, in a nonheuristic way, the 
feasible insulin administration modes for a given meal, 
which could be included in smarter insulin pumps in 
the future.

The main limitation of this study is that its results may 
not apply to the real diabetes patient population in 

daily life. Adult virtual patients are built on data from 
real patients’ response to a specific (and nonphysiologic) 
mixed meal,40 not necessarily representative of the 
postprandial response to a meal of different composition. 
Extrapolation of results from virtual adolescents and 
children to the real population should be done even 
more cautiously. Indeed, to the best of our knowledge, 
no published data are available on traced mixed meal 
postprandial response of nonadult people with diabetes. 
Data published so far for young people have been 
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Table 5.
Glycemic Variability over the Course of Five and Seven Hours

Adults Adolescents Children

Standard 
deviation 5 h

Standard 
deviation 7 h

Standard 
deviation 5 h

Standard 
deviation 7 h

Standard 
deviation 5 h

Standard 
deviation 7 h

40 
g

Standard 13.48 15.91 24.90 28.20 27.19 27.99

Centroid 9.30a 9.72a 17.80a 20.13a 18.69a 19.53a

Maximal-bolus 11.59 11.12a 20.69a 21.71 19.17a 19.95a

p value 0.009 <0.001 0.002 <0.001 <0.001 <0.001

60 
g

Standard 19.77 23.18 33.89 39.63 29.35 40.05

Centroid 14.68a 15.81a 27.53a 31.71a 28.74 30.22a

Maximal-bolus 16.92 16.93b 29.15a 32.03a 29.35 30.22a

p value 0.002 <0.001 <0.001 <0.001 0.154 <0.001

80 
g

Standard 25.79 29.85 42.00 49.86 48.05 51.55

Centroid 20.22a 22.07a 36.47a 42.51a 39.63a 41.88a

Maximal-bolus 21.96a 22.37a 37.14a 42.13a 39.42a 40.96a

p value 0.002 <0.001 0.006 <0.001 <0.001 <0.001

100 
g

Standard 31.67 35.96 50.23 59.78 57.05 61.99

Centroid 25.84a 27.82a 45.03a 52.99a 50.57a 54.45a

Maximal-bolus 27.00a 27.70a 45.16a 52.30a 50.11a 53.09a

p value 0.001 <0.001 0.006 <0.001 0.01 0.005

120 
g

Standard 37.36 42.02 57.87 68.97 65.83 71.72

Centroid 31.00a 33.95a 53.35a 63.37a 60.27 65.20

Maximal-bolus 31.78a 33.32a 52.57a 61.91a 60.04 64.18

p value <0.001 <0.001 <0.001 <0.001 0.067 0.328

140 
g

Standard 42.37 47.66

Centroid 35.82a 39.33a

Maximal-bolus 36.30a 38.72a

p value <0.001 <0.001

a p < .05 versus standard bolus
b p < .05 versus centroid

obtained from oral glucose tolerance test studies,41 but 
results are certainly not equivalent to a mixed meal.

Another limitation of the study is that choosing one 
point from the algorithm-generated feasible set of  
basal–bolus combinations is still an empiric process. 
However, data from ongoing clinical studies conducted 

by our research team may help to develop the most 
appropriate strategies for basal–bolus selection, leading 
to optimized algorithms for its implementation in future 
smart insulin pumps.

Finally, identification of the patient model will definitely 
require specific protocols to be followed by the patient 
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Figure 5. Mean glucose response of the 10 adults in the UVa simulator. The blue line represents the response applying the standard bolus, whereas 
the green and the red line correspond to the centroid and maximal-bolus solution, respectively. These latter solutions produce a flatter profile than  
the one observed with the standard bolus, avoiding late hypoglycemia. In addition, the peak in the glucose profile remains similar or even lower.

Figure 6. Mean glucose response of the 10 adolescents in the UVa simulator. The blue line represents the response applying the standard bolus, 
whereas the green and the red line correspond to the centroid and maximal-bolus solution, respectively. These latter solutions produce a flatter 
glucose profile than the one observed with the standard bolus, avoiding late hypoglycemia. The peak in the glucose profile using any of the 
solutions is similar.
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during several days to avoid nonidentifiability issues. 
This can be inconvenient for the patient. This problem 
also arises in the context of closed-loop glucose control.

In conclusion, despite its limitations, this is a proof‑of‑ 
concept study that may prelude the development of new 
robust nonempiric (CGM-based) tools, aiding patients 
and physicians to attain a better metabolic control.
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