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Abstract

Aims:
While there has been much debate about the clinical importance of glycemic variation (GV), little attention  
has been directed to the properties of data sets from which it is measured. The purpose of this study is to assess  
the minimum frequency of glucose measurements from which GV can be consistently and meaningfully 
measured.

Methods:
Forty-eight 72 h continuous glucose monitoring traces from children with type 1 diabetes were assessed. 
Measures of GV included standard deviation (SD), mean amplitude of glycemic excursion (MAGE), and 
continuous overlapping net glycemic action (CONGA1–4). Measures of GV calculated using 5 min sampling 
were designated as the 100% or “best estimate” value. Calculations were then repeated for each patient using 
glucose values spaced at increasing intervals. For each of the specified sampling frequencies, the ratio (%) of  
the between-subject SD based on the reduced subset of data to the estimate of the SD based on the full 5 min 
sampling data set was calculated.

Results:
As the interval between observations increased, so did the variability of the estimators of GV. Standard deviation 
exhibited the least systematic change at all measurement intervals, and MAGE exhibited the greatest systematic 
change.

Conclusions:
In patients with type 1 diabetes, GV as measured by SD or CONGA4, becomes unreliable if observations are 
more than 2–4 h apart, and estimates of MAGE become unreliable if glucose measurements are more than 
1 h apart. MAGE is more unstable and prone to random measurement error than either SD or CONGA.  
The frequency of glycemic measurements is thus pivotal when selecting a parameter for measurement of GV.

J Diabetes Sci Technol 2010;4(6):1382-1385

ORIGINAL ARTICLES



1383

The Minimum Frequency of Glucose Measurements from Which Glycemic Variation Can Be Consistently Assessed Baghurst

www.journalofdst.orgJ Diabetes Sci Technol Vol 4, Issue 6, November 2010

Introduction

There is currently debate as to the clinical significance 
of glycemic variation (GV) in determining risk of cellular 
damage and microvascular pathology.1,2 The debate has 
been complicated due to use of multiple measures of 
disease outcome, differing measures of GV, and different 
experimental designs and the nature of the data sets 
from which GV has been estimated. The range of data 
sets reported varies from 5 min continuous glucose 
monitoring (CGM) described by Monnier and colleagues3 
to 7-point glucose measures used in the Diabetes 
Control and Complications Trial described by Kilpatrick 
and associates4 and 70 measurements over 4 weeks 
(an average of 2.5 measures per day) reported by Bragd 
and coworkers.5 While there has been some discussion 
as to the optimal metric of GV, there has been virtually 
no discussion as to what constitutes a minimal data 
set from which GV can be meaningfully assessed. 
The purpose of this study is to assess the minimum 
frequency of glucose measurements from which GV can  
be consistently and meaningfully measured.

Methods
Forty-eight CGM traces were chosen from our clinical 
research data set of primary-school-aged patients with 
type 1 diabetes receiving twice daily free-mixed insulin 
regimens (ages 4.3 to 10.3 years, mean duration of diabetes 
3.5 years, mean hemoglobin A1c 8.1%). Seventy-two-hour 
CGM traces were obtained using the Minimed® CGMS 
(Northridge, CA) system on each patient. Each CGMS 
trace was calibrated by a minimum of four capillary 
blood glucose measurements per 24 h. In order for a data 
set to be included, a calibration had to be performed at  
least once every 8 h. Data cleaning entailed confirmation 
of calibration frequency, identification of errors with 
paired sensor values, and review of missing data points 
and was performed using Stata™ statistical software.

The measures of glycemic variability examined included 
the standard deviation (SD) of all glucose values in the 
series for a given patient; continuous overlapping net 
glycemic action (CONGAn) at n = 1, 2, and 4 h;6 and mean 
amplitude of glycemic excursion (MAGE) as proposed by 
Service and colleagues.7 All five measures of glycemic 
variability were calculated for each patient using all data 
(5 min sampling). These values were designated as the 
100% or “best estimate” value. The calculations were then 
repeated for each patient, using glucose values spaced at 
10, 15, 20, 30, 60, …, 240 min. The corresponding values 

obtained using 10–240 min sampling for each subject 
were expressed as a percentage of the “best estimate” 
value calculated using the 5 min sampling. The SD of the 
ratio of the estimate based on the reduced subset of data 
to the estimate based on the full 5 min sampling data set  
(expressed as a percentage) was then calculated for each 
of the specified sampling frequencies. The SD of these 
percentages, which can be regarded as a percentage of 
error in the estimate of the glycemic variability relative 
to the “best estimate,” was plotted against the sampling 
frequency and the relationship fitted with a least‑squares 
linear regression line using log–log regression [this 
corresponds to a power function relationship, percentage 
error in estimate of GV = a*(sampling frequency)b, 
where b is the slope of the log–log plot.] Only a subset 
of the possible spacings provided data sets in which 
measurements were available at exactly 1, 2, or 4 h intervals 
as required by the definition of CONGA1–CONGA4. 
The MAGE was calculated by a new automated algorithm 
designed by Peter A. Baghurst to locate all the peaks and  
nadirs in each CGM data set (and its subsets) according to 
the rules defined by Service and colleagues7 with two minor 
modifications: the SD required to determine whether a 
glycemic excursion was eligible to be included in MAGE 
was estimated from each subject’s entire 72 h CGM data 
set—and not recalculated for each 24 h period—and only 
the magnitudes of upward excursions were averaged.

Results
As the interval between consecutive observations increases, 
so does the variability of all the estimators of glycemic 
variability (Figure 1). Table 1 shows the coefficients of 
variation of the various measures of GV as the interval 
of glucose data points increases from 1 to 4 h, utilizing 
the values from the fitted lines in Figure 1. For SD, 
the variability of estimates (expressed as a percentage) 
is 10.2% of the estimate based on 288 glucose values per 
day when the observations are 4 h apart. For CONGA4, 
the percentage error is 15.1% with 4 h spacing, falling 
to 5.5% with 2 h spacing, and CONGA2 shows a larger 
percentage random error than CONGA4 (7.7% at 2 h spacing 
of glucose measurements), while CONGA1 is subject to 
more random error than either CONGA4 or CONGA2 
[at the maximum spacing that can be used to generate  
all three measures (1 h), the percentage errors for CONGA4, 
CONGA2, and CONGA1 were 2, 2.6, and 4.1%, respectively]. 
A dramatically larger random error was observed for 
MAGE. In order for the percentage error for MAGE to 
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remain less than 10% (relative to the “best” estimate 
based on all data at 5 min sampling), glucose values 
must be measured at least once per hour. The percentage 
error in the estimate of MAGE increases rapidly to 23.5% 
as the interval between glucose data points increases 
from 1 to 4 h.

Discussion
In patients with type 1 diabetes, the GV as measured by 
SD or CONGA4, becomes unreliable if observations 
are more than 2–4 hours apart, and estimates of MAGE 
become unreliable if glucose measurements are more 
than 1 h apart. The MAGE is more unstable and prone 
to measurement error than either SD or CONGA. 
MAGE, by definition, is based on “distances” between  
peaks and nadirs. When using CGMS data and ignoring 
every second observation, half the maxima and half 
the minima will be lost by chance alone, so that the 
graphical pattern of excursions is likely to remain  
nearly the same, but excursions will be slightly smaller in 
magnitude. As the interval between glucose measure-
ments is further increased, the pattern of peaks and 
nadirs in glucose may change significantly, and therefore 
MAGE is inevitably more unreliable as the interval 
between glucose values increases. At 4 h sampling  
(six observations per day) the percentage error for MAGE 
is 2.5-fold larger than the percentage error for SD. As 
sampling frequency increases (reading left to right in 
Figure 1), the percentage error in MAGE is reduced 
much more slowly than for SD or CONGA1–CONGA4. 
The slope of the log–log relationship in Figure 1 is -0.56 
for MAGE, which is close to the theoretically derived 
value (-0.5) when dealing with independent Gaussian-
distributed observations. In contrast, the slope of the log– 
log relationship for SD and CONGA4 is -0.72, which is 
significantly steeper. This may be explained by the fact 
that sequential CGM glucose measurements show a highly 
significant positive autocorrelation, and as sampling 
frequency decreases, the autocorrelation fades to zero, 
resulting in a more rapid change in the percentage error  
of the estimate.

An uncritical use of GV metrics and glycemic data sets 
has thus far been used as a basis for the debate as to 
the significance of GV in microvascular and cellular 
damage in diabetes.9 A meta-analysis concluded that, 
while there is evidence of an association between GV 
and microvascular complications in type 2 diabetes, this 
has not been found consistently in type 1 patients.9 

This conclusion may simply be a reflection of the different 

Figure 1. Pooled data from CGMS traces of 48 patients with 
type 1 diabetes plotting error of estimate of GV against the interval 
of glycemic data points. A plot of the variability of estimates of the 
MAGE, CONGA1,2,4, and SD as observations are progressively omitted 
from a full 72 h CGM data set containing measurements made at  
5 min intervals. The variability is expressed as a coefficient of 
variation relative to the estimate obtained from the full CGM data set.

Table 1.
Percentage Error in Measures of Glycemic 
Variability According to the Spacing between 
Glucose Measurements

Measure of GV
Spacing between successive glucose values

1 h 2 h 4 h

SD 1.4 3.8 10.2

CONGA4 2.0 5.5 15.1

CONGA2 2.6 7.7 not applicable

CONGA1 4.1 not applicable not applicable

MAGE 11.0 16.1 23.5

parameters used to characterize glycemic variability. 
Only three out of eight studies of type 1 diabetes patients 
reviewed by Nalysnyk and associates9 measured glucose at 
least once every 2 h. The validity of comparing 7‑point 
glucose profiles with CGM when using MAGE4 must 
be questioned in view of the findings presented in 
Figure 1. Our analyses imply that 7-point glucose profiles 
(or 5-point glucose profiles in the case of the Diabetes 
Control and Complications Trial10) are expected to have 
an unacceptably large level of random error. However, 
the present study did not directly compare CGM with 
glucose profiles. It is possible that 5- or 7-point glucose 
profiles, as conventionally employed, may behave 
differently than five or seven glucose values obtained at 
constant intervals throughout the day.
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This study is the first to demonstrate the importance of 
the frequency of glucose measurements in determining 
the reliability of measures of GV. It appears that glucose 
measurements must be no more than 2–4 hours apart in 
order for GV to be consistently assessed by SD, CONGA4, 
CONGA2, or hourly in the case of MAGE. This calls into 
question the validity of some of the previous studies 
that have investigated the pathophysiological significance 
of GV in type 1 diabetes. Further studies are needed to 
compare the consistency of measures of GV using CGM 
and self-monitoring of blood glucose simultaneously on 
the same subject subjected to the same protocol and to 
evaluate the reliability of results based on the use of 5-, 
7-, or 8-point glucose profiles vis a vis CGM. Despite this 
caveat, we conclude that there is a major advantage to 
the use of either SD (also designated SDT)11 or CONGA1

6 
in preference to MAGE.7


