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Abstract

Background:
In 2008–2009, the first multinational study was completed comparing closed-loop control (artificial pancreas) to 
state-of-the-art open-loop therapy in adults with type 1 diabetes mellitus (T1DM).

Methods:
The design of the control algorithm was done entirely in silico, i.e., using computer simulation experiments with 
N = 300 synthetic “subjects” with T1DM instead of traditional animal trials. The clinical experiments recruited 
20 adults with T1DM at the Universities of Virginia (11); Padova, Italy (6); and Montpellier, France (3). Open-loop 
and closed-loop admission was scheduled 3–4 weeks apart, continued for 22 h (14.5 h of which were in closed 
loop), and used a continuous glucose monitor and an insulin pump. The only difference between the two 
sessions was that insulin dosing was performed by the patient under a physician’s supervision during open 
loop, whereas insulin dosing was performed by a control algorithm during closed loop.

Results:
In silico design resulted in rapid (less than 6 months compared to years of animal trials) and cost-effective 
system development, testing, and regulatory approvals in the United States, Italy, and France. In the 
clinic, compared to open-loop, closed-loop control reduced nocturnal hypoglycemia (blood glucose below  
3.9 mmol/liter) from 23 to 5 episodes (p < .01) and increased the amount of time spent overnight within the 
target range (3.9 to 7.8 mmol/liter) from 64% to 78% (p = .03).

continued 
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Introduction

The concept of an “artificial pancreas,” or an external 
closed-loop control system that regulates blood glucose 
levels in patients with diabetes, has gained momentum. 
The roots of this concept can be traced back to the 
1970s, when exogenous regulation of blood glucose 
concentrations in people with diabetes became possible 
by using intravenous (IV) glucose measurement and 
IV infusion of glucose and insulin.1,2 Systems such as 
the Biostator™ were introduced and used in hospital 
settings to maintain normoglycemia. Subsequent work 
spanned a broader range of physiological modeling 
and control techniques, including adaptive and model-
based algorithms.3 However, IV closed-loop glucose 
control remains unsuitable for outpatient use because of 
the need for continuous IV access and the cumbersome 
technology that needs to be employed. An alternative 
to extracorporeal IV control of blood glucose is an 
implantable intraperitoneal system using IV glucose 
sampling and intraperitoneal insulin delivery.4 
Implanting these systems, however, is quite invasive. Thus, 
with the advent of minimally invasive subcutaneous (SC) 
continuous glucose monitors, which sample interstitial 
glucose through a micro needle implanted subcutaneously 
and then convert the values into blood glucose, increasing 
academic and industrial effort has been focused on the 
development of SC–SC closed-loop glucose control, using 
continuous glucose monitoring (CGM) coupled with an 
insulin pump and a control algorithm.5–7

The clinical utility of CGM for the optimization of glycemic 
control in type 1 diabetes mellitus (T1DM) has been 
demonstrated by a 2008 landmark study that showed a 
significant improvement in hemoglobin A1c after 6 months  
of CGM in adults with T1DM.8 The next logical step is 
the demonstration of the feasibility of SC–SC closed-loop 
control. To date, several studies have reported clinical 
results for closed-loop glucose control using SC CGM 
and insulin delivery.9–12 These studies used one of two 

algorithmic strategies known as proportional-integral-
derivative10,11 or model‑predictive control (MPC).12–15 Model-
based approach was also used for the detection of meals16 
or hypoglycemia17, as well as for the implementation of 
models that can “learn” the specifics of patients’ daily 
routine (e.g., timing of meals) and then optimize insulin 
response using this information.18,19

Two studies reported positive results from clinical trials  
of algorithm-based insulin delivery tested in children 
with T1DM12 in combination with glucagon assisting with 
prevention of hypoglycemia14 and brought closed‑loop 
control to the forefront of mainstream medical journals. 
This article extends their findings with the following new 
elements: (1) regulatory Food and Drug Administration 
(FDA) approval of the control system based entirely 
on in silico experiments, i.e., by a series of computer 
simulations performed on virtual subjects; (2) clinical 
experiments performed in three independent centers in 
the United States, Italy, and France, which enhances the  
external validity of the results; and (3) automated (as 
opposed to manual) transfer of CGM data to the control 
system, which brings the artificial pancreas one step 
closer to routine clinical application. Detailed clinician 
impressions of system performance during this study 
have been previously presented in this journal.20,21 
We now summarize these previous reports and present the 
overall statistical effect of closed-loop versus open-loop 
control performed under identical hospital conditions.

Methods
In Silico Design of the Control System
For artificial pancreas design, we have developed a 
computer simulator environment based on a previously 
reported mathematical model of glucose metabolism.22 
The computer simulation environment was equipped 
with a “population” of in silico images of N = 300 

Abstract cont.

Conclusions:
In silico experiments can be used as viable alternatives to animal trials for the preclinical testing of insulin 
treatment strategies. Compared to open-loop treatment under identical conditions, closed-loop control improves  
the overnight regulation of diabetes.
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“subjects” with T1DM, separated in three age groups:  
N = 100 simulated “children” below the age of 11 years, 
N = 100 “adolescents” 12–18 years old, and N = 100 

“adults” 21–78 years old. The simulated population has 
a wide range of intersubject variability approximating 
the variability observed between individuals in vivo.23 
Three CGM devices—Navigator (Abbot Diabetes 
Care, Alameda, CA), Guardian RT (Medtronic, 
Northridge, CA), Dexcom STS, 7–day sensor 
(Dexcom, San Diego, CA)—and two insulin pumps—
OmniPod Insulin Management System (Insulet 
Corp., Bedford, MA) and Deltec Cozmo (Smiths 
Medical MD, St. Paul, MN)—were simulated as well.  
With this technology, any open- or closed-loop control 
strategy and any meal and insulin delivery scenario 
can be pilot tested efficiently in silico prior to clinical 
application. This in silico algorithm design approach has 
been accepted by the FDA as a substitute for animal 
trials.23

Model-Predictive Control Algorithm
Using simulation experiments, we tested the robustness 
and the effectiveness of a new MPC algorithm with all 
300 simulated “subjects” (i) under a nominal scenario 
corresponding exactly to the clinical protocol of the study 
and (ii) under deviations from the nominal scenario in 
the timing and amount of meals. An overview of the 
algorithm characteristics is as follows: First, data from 
an outpatient screening evaluation are used to tailor 
the algorithm for each person. These data include the 
patient’s individual body weight (kg), average total 
daily insulin use (U), typical carbohydrate ratio (gram 
carbohydrate/insulin unit), and typical insulin infusion 
basal rate. This allows the optimal choice of a single 
parameter (q) that specifies the aggressiveness of the MPC 
reaction to deviations from normoglycemia.15 Second, 
because, in this study, closed-loop control was always 
preceded by an open-loop day, meal profile data (timing 
and amount of meals) from the open-loop day were 
made available to the control algorithm, which permitted 
the MPC to anticipate meal disturbances. Third, upon 
switch-on, the algorithm acquires previous measures of 
SC glucose concentration and records of injected insulin, 
which allows its introduction to the current status of the 
patient. After initialization, the algorithm acquires CGM 
data every minute and suggests insulin boluses every  
15 min. The 15 min actuation rate was set on the basis 
of previous results showing that, due to the “smoothing” 
inherent with SC insulin transport, blood insulin 
concentrations resulting from small, 15 min insulin 
boluses are indistinguishable from those resulting from 

a continuous basal rate.24 Full engineering details for the 
MPC algorithm have been published.15

Clinical Study Participants
Adults with T1DM were recruited at the Universities of 
Virginia, Charlottesville, Virginia (N = 11); Padova, Italy 
(N = 6); and Montpellier, France (N = 3). The average age 
of the participants was 41.1 (±10.4) years, the average 
duration of diabetes was 18.6 (±5.6) years, and the average 
hemoglobin A1c was 7.25% (±0.9%). There were 12 males 
and 8 females. Criteria for inclusion were 21 years of age  
or older, with T1DM for at least 2 years, use of insulin 
pump, and willingness to use lispro insulin for the 
duration of the study. Exclusion criteria were pregnancy, 
hematocrit <36% for females, hematocrit <38% for 
males, symptomatic coronary artery disease or history 
of a cerebrovascular event, use of a medication that 
significantly influences glucose metabolism (oral steroids), 
use of a device that may interfere electromagnetically 
with CGM (e.g., implantable defibrillator or electronic 
pacemaker), and allergy or adverse reaction to lispro insulin.

Clinical Procedure
Each patient had an outpatient screening evaluation, 
and two 22 h overnight hospital admissions separated 
by a 2- to 4-week waiting period. During the outpatient 
screening evaluation, the study physician reviewed the 
subject’s history and performed a physical examination. 
Routine vital signs were obtained, including height, 
weight, temperature, respiratory rate, and orthostatic 
measurement of blood pressure and pulse. Hematocrit/
hemoglobin, comprehensive chemistry panel, and insulin 
antibody titers were determined. Each inpatient admission 
began at 15:00 and ended at 13:00 on the following day. 
Subjects ate dinners and lunches with carbohydrate content 
that was the same at admission 1 and admission 2 and 
had identical morning meals of Ensure Plus (Abbott 
Nutrition, Columbus, OH) containing 50 g carbohydrate, 
11 g fat, and 13 g protein. Two days before each 
admission, two Freestyle Navigator CGM devices (Abbott 
Diabetes Care) continuous glucose monitors were applied 
to the patient to allow for stabilization of the sensors and 
for assessment of their performance. During admission 
1, open-loop control was used, with the subjects’ usual 
insulin routine and their personal insulin pump. During 
admission 2, an OmniPod Insulin Management System 
(Insulet Corp.) was inserted and used for closed‑loop 
control of blood glucose. Insulin lispro (Eli Lilly, 
Indianapolis, IN), chosen based on commercial assays 
available, was used during both inpatient admissions.
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Results

In Silico Testing of the Control System
The entire clinical protocol for the (then upcoming) 
clinical experiments was run in silico 2700 times, which 
took 3 months. The control algorithm was tested using the 
three populations of simulated “adults,” “adolescents,” 
and “children,” subjected to a number of scenarios, 
including nominal conditions emulating exactly the 
clinical protocol, as well as deviations from nominal 
conditions designed to assess the robustness of control. 
These deviations included initiation of the control at 
nearly hypoglycemic or nearly hyperglycemic blood glucose 
levels (4.4 and 10 mmol/liter, respectively), meals that 
are delayed or arriving early, and various degrees of 
CGM error. In order to focus on the control algorithm, 
these results were done under conditions of “perfectly 
working” CGM devices. It was therefore expected that 
malfunctioning CGM sensors would cause inferior 
control performance in vivo. Table 1 presents the 
outcomes of some of these tests for N = 100 simulated 
adults—a population that corresponds to the participants 
in the clinical studies.

At the beginning of admission 2, one of the two CGM 
devices was designated as primary, and the closed-loop 
control algorithm used the data of that system, unless a 
problem was detected. At 17:00, the MPC was initiated 
in a data-collection mode, automatically receiving CGM 
data every minute. Administration of the predinner 
insulin bolus was overseen by the attending physician. 
MPC closed‑loop control began at 21:30 and continued 
until 12:00 the next day for a total of 14.5 h.

Per FDA restrictions, the algorithm did not automatically 
control the insulin pump. Instead, the algorithm suggested 
insulin boluses every 15 min which, if accepted, were 
programmed into the insulin pump by the attending 
physician. This was done for safety reasons, allowing the 
physician to override insulin delivery suggestions at any 
time. Reference blood glucose (using a YSI Life Sciences 
or a Beckman glucose analyzer) was sampled every  
30 min. The protocol required switching to more frequent 
15 min reference blood glucose sampling if hypoglycemia 
occurred or was imminent. Fast-acting carbohydrate 
(glucose tablets or fruit juice) was given when reference 
blood glucose fell below 3.9 mmol/liter, regardless of the 
CGM readings.

Statistical Analysis
The primary outcomes of the study included the number 
of hypoglycemic events below 3.9 mmol/liter and the 
percentage of time within the range of 3.9 to 7.8 mmol/liter 
overnight (21:30 until 08:00). Both of these variables were 
measured by reference blood glucose (YSI), regardless 
of CGM. We tested directional hypotheses: closed-loop  
superior to open-loop control, which implied the reporting 
of one-sided significance levels. Because the primary 
outcomes were not normally distributed random variables, 
we used nonparametric Wilcoxon matched pairs test to 
compare open-loop versus closed-loop control. Secondary 
outcomes included time with target of 3.9–10 mmol/liter, 
the magnitude of postbreakfast glucose excursions, as 
well as outcomes based on CGM data.

Institutional and Regulatory Approvals
The three studies were approved by the Institutional 
Review Boards of their respective institutions. In addition, 
the study at the University of Virginia received an 
investigation device exemption from the FDA, which was 
based on extensive computer simulation experiments. 
Information was exchanged among the three studies only 
as de-identified data and was governed by established 
interinstitutional contracts.25

Table 1.
Adults: Safety and Effectiveness Endpoints From In 
Silico Testinga

Nominal 
scenario 

matching the 
clinical protocol

Control 
initiated at near 
hypoglycemia

(4.4 mmol/liter)

Control 
initiated at near 
hyperglycemia
(10 mmol/liter)

Mean blood 
glucose  
(mmol/liter)

6.77 6.65 7.19

Percentage 
of time within 
3.9–10  
mmol/liter

97% 96% 91%

Percentage 
of time <3.9 
mmol/liter

1% 3% 1%

a These in silico results are comparable to the clinical results 
presented in Table 2.

Illustrative Clinical Example
To illustrate the design of the study and the operation of 
the tested SC MPC, Figure 1 presents data on University 
of Virginia subject 104, which is representative of events 
occurring during closed-loop control.
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Summary Data
Figure 2 summarizes the course of glucose control 
overnight (upper panels) and following breakfast (lower 
panels) and during open-loop (gray bars) and closed‑loop 
control (black bars).

Average Glycemia and Time within Target Range
The average blood glucose concentration overnight 
(21:30–08:00) was not different in open and closed loop: 
6.78 ± 1.52 versus 6.89 ± 1.21 mmol/liter. However, the 
percentage of time spent within the narrow target range 
of 3.9–7.8 mmol/liter overnight increased from 64% in 
open loop to 78% in closed loop (Figure 2, panel A). 
Nonparametric Wilcoxon test showed that this increase 
was statistically significant: Z = 1.9, p = .029 (one-tail 
directional hypothesis).

Hypoglycemic Events
Overnight on open-loop, there were 1.15 hypoglycemic 
episodes (reference blood glucose below 3.9 mmol/liter) 
per subject, range 0–4 episodes. On closed-loop control, 
hypoglycemia was reduced to 0.25 episodes per subject, 

Figure 1. Illustration of open-loop versus closed-loop control in one 
study participant. The grey curve represents primary CGM data.  
The grey squares represent reference blood glucose data during 
admission 1 (open-loop control). The black curve shows primary CGM 
data, and the black triangles show reference blood glucose data during 
admission 2 (closed-loop control). The bars on the x axis display 
insulin delivery prior to initiation of closed-loop control before 21:30 
and display insulin boluses suggested by the control algorithm during 
closed-loop control after 21:30. Despite much higher glucose excursions 
after dinner immediately prior to initiation of closed-loop control, 
the control algorithm brings the subject within target and avoids 
any nocturnal hypoglycemia afterward. At 06:00 during closed‑loop 
control, the sensor lost sensitivity for approximately 30 min; 
nevertheless, the control algorithm (which uses only sensor but not  
reference blood glucose data) was robust, canceling one insulin bolus 
until the sensor stabilized. BG, blood glucose; CHO, carbohydrate.

Figure 2. Summary outcome data. Key parameters of glucose control 
overnight (upper panels) and following breakfast (lower panels) 
during open-loop (gray bars) and closed-loop control (black bars).  
Panel A: percentage of time within the target range (3.9–7.8 mmol/liter) 
overnight was 64% on open-loop control and 78% on closed‑loop control. 
With N = 20 matched pairs, a Wilcoxon nonparametric test was 
significant, p = .029, for a directional hypothesis: closed‑loop > open‑loop. 
Panel B: the number of hypoglycemic episodes overnight decreased 
from 23 on open-loop control to 5 on closed-loop control. With N = 20 
matched pairs, Wilcoxon nonparametric test was significant, p = .01. 
Panel C: percentage of time within the target range (3.9–10 mmol/liter) 
after breakfast was not significantly different between open- and 
closed-loop control. Panel D: the mean of the maximal blood glucose 
values following breakfast was not different between open- and 
closed-loop control. SD, standard deviation.

range 0–1. Thus, we observed a nearly five-fold reduction of 
nocturnal hypoglycemic episodes requiring a rescue with 
15 g carbohydrate (Figure 2, panel B)—from 23 episodes 
on open-loop control to 5 episodes on closed‑loop control. 
This effect was significant: Z = 2.5, p < .01 (Wilcoxon test, 
directional hypothesis).

Secondary outcomes are summarized in Table 2 and are 
presented using both YSI and CGM data. As seen, YSI 
and CGM results were quite close throughout the study 
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and were close to the results suggested by the preclinical 
in silico experiments (e.g., average blood glucose of 
6.77 mmol/liter and 1–3% hypoglycemia in Table 1). 
A significant difference between open- and closed‑loop 
control was marked by the percentage of time in 
hypoglycemia (below 3.9 mmol/liter), p = .01; there was 
also a trend toward lower variation of blood glucose 
(standard deviation) on closed loop (p = .055).

After breakfast, on closed loop, the participants spent 9% 
less time below 10 mmol/liter and had 0.4 mmol/liter 
higher average blood glucose (Figure 2, panels C and D). 
These differences were not statistically significant.

Other Events
The attending physician decided to override the insulin 
suggestions of the closed-loop control algorithm on four 
occasions, resulting in 2.5 h (2%) loss of closed‑loop 
control time in all 20 patients. The primary reason 
for overriding the algorithm was near-hypoglycemia 
indicated by reference blood glucose but not reflected by 
sensor data. At most admissions, the sensor experienced 
episodes of transient loss of sensitivity overnight (see 
Figure 1). All but two of these episodes recovered 
when the subject changed position and did not require 
switching to the backup sensor. One experiment at the 
University of Virginia (patient 107) had to be rescheduled 
because the patient was hypoglycemic at the time of 
initiation of closed-loop control, followed by adhesive 
failure of the insulin pump, kinking of the pump 
cannula, and termination of insulin delivery. This was 
the only insulin pump failure observed during the study.

Discussion
This work contributes two elements toward the quest 
for closed-loop control of T1DM. First, the regulatory 
approval of the clinical trials was based entirely on  
in silico experiments performed in a computer-simulation 
environment.23 Second, the control algorithm was tested 
at three centers in three different countries, which added 
external validity to the data. Fully automated CGM data 
transfer is another characteristic distinguishing this 
study from other reports.12 Key features of this MPC 
algorithm are therefore automated SC glucose monitoring, 
SC insulin delivery, and personalization for each study 
participant using routinely available characteristics.

An important feature of this study is its repeated‑ 
measures design: each participant was tested twice under 
identical conditions in a tightly controlled hospital setting. 
The only variable that differed between admissions 1 and 2 

Table 2.
Overnight (21:30–08:00) Characteristics Based on 
YSI and Continuous Glucose Monitoring Data

Open loop Closed loop

YSI CGM YSI CGM

Average blood glucose  
(mmol/liter)

6.78 6.66 6.89 6.75

Standard deviation of blood 
glucose (mmol/liter)a

2.0 1.83 1.57 1.35

Percentage of time within  
3.9–10 mmol/liter

80.6 81.1 89.0 90.2

Hypoglycemia (percentage of 
time below 3.9 mmol/liter)b

8.44 9.1 2.0 2.3

a Trend.
b Significant difference.

was, therefore, the control strategy: patient-directed 
open-loop control at admission 1 and algorithm-suggested 
closed-loop control at admission 2. This permitted an 
objective assessment of the performance of MPC. The major 
advantage of closed‑loop control was the nearly five-
fold reduction in the number of nocturnal hypoglycemic 
episodes, plus a greater percentage of time that blood 
glucose spent within the narrow target range of 
3.9–7.8 mmol/liter overnight. On the other hand, the 
performance of the MPC algorithm before and after 
breakfast was generally inferior to the open-loop control.

A weakness of the study was that the order of open‑loop 
versus closed-loop conditions was not randomized. Typically, 
such a randomization is required in order to avoid 

“learning” effects. In this study, we need to differentiate the 
effect of “algorithm learning,” i.e., the control algorithm 

“learning” about the subject and his/her meal profile 
from open-loop data, and the effect of “human learning,” 
which could potentially contaminate the results. The idea  
of algorithm learning is that, over time, a profile of a 
person’s characteristics and daily regiment can be estimated 
and then used for control. In order to test algorithm 
learning, in this first study we supplied the algorithm 
with information about meals from the open-loop trial. 
In order to do so, we departed from the gold-standard 
randomized-order trials and had open loop always first. 
However, this was a pilot study testing new technology  
and not necessarily aiming for perfection in study design. 
Our subsequent studies (now ongoing) employ randomized 
order. Human (patient, personnel) learning was possible 
in this trial, but during closed loop, the patient and the 
attending personnel had little influence on insulin dosing, 
which was entirely done by the closed-loop control 
algorithm. Thus the influence of the order of open- and 
closed-loop control experiments should be minimal.
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In terms of technology advancement, two comments are 
important. First, the control algorithm used insulin boluses 
administered every 15 min instead of the continuous 
basal rate. This was done because, in preparation for 
this study, we found that, due to SC insulin transport 
and “smoothing” of the insulin boluses during their transit 
from SC space to the circulation, 15 min boluses result in  
blood insulin concentrations that are indistinguishable from 
those generated by continuous insulin administration.24 
Other practical advantages of such a discrete insulin 
delivery include more precise insulin dosing and 
optimization of pump battery life. Second, although the 
overall CGM performance was satisfactory, the CGM 
devices suffered from transient loss of sensitivity, 
particularly overnight. Although the exact definition of 
such events is not possible, on approximately 15 occasions 
across all subjects, the CGM readings experienced rapid 
drops, which did not correspond to reference blood 
glucose changes. For example, in Figure 1, three such 
drops were observed—two during admission 1 and one 
during admission 2. Such events may have been caused 
by increased pressure on the sensor during sleep that 
recovered after the patient repositioned.

Conclusions
A system using personalized MPC to control blood glucose 
in T1DM has been developed entirely in silico and then 
tested successfully in the clinic. We anticipate that the 
routine clinical application of such a technology is in the 
future. Nevertheless, the merging of contemporary CGM 
and insulin pumps with models of human metabolism 
and MPC algorithms may result in viable closed-loop 
glucose control based entirely on SC glucose sensing and 
insulin delivery.
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