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Abstract
Background:
In healthcare, patients with diabetes are instructed on how to apply intensified insulin therapy in an optimal 
manner. Tight blood glucose control is also performed on patients treated in the intensive care unit (ICU). 
Different blood glucose meters and glucose monitoring systems (GMSs) are used to achieve this goal, and some 
may lack reliability.

Methods:
The GLYCENSIT procedure is a statistical assessment tool we are proposing for evaluating the significant 
difference of paired glucose measurements. The performance of the GlucoDay® system in the ICU is analyzed 
with GLYCENSIT.

Results:
The GLYCENSIT analysis comprises three phases: testing possible persistent measurement behavior as a 
function of the glycemic range, testing the number of measurement errors with respect to a standard criterion 
for binary assessment of glucose sensors, and computing the tolerance intervals that indicate possible test 
sensor deviations for new observations. The probability of the tolerance intervals directly reflects the number 
of samples and additionally improves current assessment techniques. The method can be tuned according  
to the clinician’s preferences regarding significance level, tolerance level, and glycemic range cutoff values. 
The measurement behavior of the GlucoDay sensor is found to be persistent but inaccurate and returns wide 
tolerance intervals, suggesting that the GlucoDay sensor may not be sufficiently reliable for glycemia control  
in the ICU.

Conclusions:
The GLYCENSIT procedure aims to serve as statistical guide for clinicians in the assessment of glucose sensor 
devices.
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Introduction

Frequent and accurate monitoring of glycemia is 
an important keystone for intensive insulin treatment 
in critically ill patients and patients with diabetes. 
Both blood glucose meters (resulting in time-discrete 
measurements) and glucose monitoring systems (GMSs, 
resulting in near-continuous measurements) are used 
to achieve this goal.1 Some blood glucose meters and 
GMSs, however, show insufficient reliability. Moreover, 
no generally accepted procedure for testing reliability 
exists to date.1,2 In the literature, analytical and clinical 
approaches have been described to evaluate the quality 
of glucose measurements.

The first approach measures the analytical accuracy by 
using classical statistical techniques. Such techniques 
are analyses based on regression (or correlation), mean 
absolute or relative difference, Bland-Altman,3,4 and 
analysis of variance (ANOVA).5 Although most of these 
techniques are frequently used for comparing sensor 
readings with reference observations, they show some 
weaknesses that have been previously debated. 
Regression typically measures the strength of a relation 
between two variables but not their numerical 
agreement.4,6 Wide measurement ranges also give large 
correlation coefficients compared to narrow ranges, easily 
leading to artificial conclusions.4 Difference measures 
are often skewed7 such that their result can sometimes 
be misleading. The method proposed by Bland and 
Altman,4 in a format favored by clinical users, relies 
on equal severity of measurement errors for the entire 
blood glucose range (e.g., 20 mg/dl measurement error in  
hypo/hyperglycemic range is equally severe).8 One also 
relies on the normal distribution assumption of these 
errors. This assumption, often not satisfied in clinical 
practice, is also required when performing classical 
(parametric) ANOVA tests. In general, it is hard to 
satisfy all imposed statistical conditions as present in  
these techniques and to transform statistical results into 
clinical use.

The second approach evaluates the measurements from 
a clinical point of view but typically lacks statistical 
evidence. Most known are the error grid analysis 
(EGA)9–11 and the related continuous glucose-EGA.12 Both 
techniques are based on systematic and comprehensive 
graphical display assessments, which have been debated 
before7,13–14 (e.g., using specific regions in the grid pattern 
leads to different results for only slightly different glucose 
observations). Parkes et al. developed an alternative 

graphical analysis15 that shows similar drawbacks as 
EGA. Since then, the diabetes error test model (DETM) 
has been developed.16 In this novel concept, the impact 
of different factors that may affect postprandial glycemic 
excursions is simulated giving a clinical evaluation of 

“treatment” errors rather than “measurement” errors. 
Though the DETM in its current form is useful in 
evaluating glucose sensors, its simulations are based on 
assumptions/simplifications, and the model is restricted  
to a specific group of patients with type I diabetes. 

At present, no consensus exists about the technique or 
combination of techniques that should be applied when 
assessing glucose sensors, since both analytical and 
clinical approaches show some weaknesses; so one (or a 
selection) of the techniques described earlier are applied  
for evaluating the sensor reliability.9,10,17–21

Therefore, we present the GLYCENSIT analysis 
(GLYCemia sENSor IT), which offers a statistically sound 
assessment procedure comprising three complementary 
phases. The methodology is a first step toward combined 
statistically based and clinically supported assessment 
techniques for both blood glucose meters and GMSs. 
The proposed procedure aims to guide the user in 
appropriately evaluating a glucose sensor based on 
statistical and clinical knowledge. Instead of returning 
a simple “yes/no” answer, this methodology helps to  
interpret the information hidden in the data and gives a 
certain degree of freedom (in terms of design parameters) 
to the user.

Methods
Preprocessing and Assumptions
First, a systematic study approach to shift blood glucose 
over the whole clinically relevant range, by using 
glucose clamps,1 can solve the typical problem that few 
hypo/hyperglycemic data are available.22 However, the 
recommended use of (temporary) glucose clamps is 
not suitable for specific patient groups (e.g., critically 
ill patients) for ethical reasons.23,24 Second, the received 
data need to be preprocessed in advance. In the case 
of GMSs, calibration is required to convert the received 
(electric) signal into glucose readings (often performed 
by the supplied software). Further preprocessing is 
necessary to remove time shifts (e.g., time delay between 
measurements in venous blood and interstitial glucose,25 
possible additional physiological delays (“alternate site 
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testing” phenomenon26), and systematic analytical error27 
by appropriately reshifting the data. Next, filters can 
reduce noise.28 Third, the data are transformed into sets 
of paired glucose measurements such that test blood 
glucose meters and test GMSs can be evaluated against 
reference blood glucose meters (gold standard sensor).

We assume that the measurement errors are 
sufficiently statistically independent, meaning that no 
correlation exists between successive errors (identically/
independently distributed errors). Therefore, we advise 
researchers to concomitantly measure glycemia with a 
minimum 1 h time interval, which is sufficiently large 
to meet this assumption. The same condition is imposed 
in other well-known statistical assessment tools like 
Bland–Altman4 or ANOVA.5 However, the GLYCENSIT 
procedure could be adapted when correlation between 
successive errors would be present. Still, we chose to 
adopt the no-correlation assumption (by taking at least 
1 h for the reference sensor intervals) for clarity of this 
exposition. 

The developed GLYCENSIT procedure comprises three 
complimentary phases in which possible persistent 
measurement behavior, total number of measurement 
errors, and tolerance intervals that are valid for new 
measurements are successively studied. The full 
procedure does not directly answer the question of 
whether a sensor is reliable or not (because of the 
dependency on the clinician’s preferences regarding 
the design parameters, but rather statistically guides the 
clinician in assessing test sensor devices.

Normalization 
The problem of evaluating a glucose sensor is framed 
in a statistical setting by considering the sensor under 
study as a random variable. Starting with a sample 
of n paired glucose sensor observations yref,t and Ytest,t  
(with t=1,…,n), the gold standard or reference sensor is 
called yref,t , whereas the test sensor is denoted by Ytest,t . 
The latter can be formulated as follows:

Ytest,t = yref,t + et ,

where et denotes a stochastic error between test and 
reference value at time instant t. In this step, errors of 
the set of paired glucose measurements are normalized 
using the International Organization for Standardization 
(ISO) criterion.29 This criterion (which should be fulfilled 
for 95% of the observations and which is similar to  
Zone A of the EGA9–11) can be summarized as follows: 

• for reference values ≤75 mg/dl, test sensor values fall 
within ±15 mg/dl limits 

• for reference values >75 mg/dl, target variability is 
±20%

The errors are normalized to make the severity of 
error independent of glycemia. The used normalization 
function is formulated as

such that errors violating the ISO criterion return to 
absolute normalized errors larger than 1. We proceed 
with normalized errors in Phase 2/3 of the GLYCENSIT 
procedure. In Figures 1 and 2, yref,t and Ytest,t are 
symbolized by GR and GT, respectively.

GLYCENSIT Procedure Phase 1: Persistent 
Measurement Behavior
Measurement behavior that is persistent in the full 
glycemic range is preferable to nonpersistent behavior 
from a clinical point of view, as it allows the interchange 
between sensors with only one conversion factor (valid 
for the full glycemic range). In this first phase, the sensor 
performance is assessed by comparing the medians of 
the errors that belong to the hypo/normo/hyperglycemic 
range. Therefore, hypo/hyperglycemic cutoff values 
are chosen a priori, and the full set of paired glucose 
measurements are divided accordingly (with respect 
to reference values). The Kruskal–Wallis test,5 which 
may be used when the normality assumption is not 
met, performs a nonparametric one-way ANOVA for 
comparing the medians of two or more groups of data. 
Since distributions are often skewed, median rather than 
mean values are used.7 The null hypothesis H0 that the 
distribution functions of the errors per glycemic group 
are equal is tested resulting in a p-value.30 If p ≥ a (where 
a denotes the significance level), we cannot reject H0. 
If p < a, we can reject H0 with a probability of at least 
1 – a. Further, boxplots of measurement errors per 
glycemic range illustrate the over- and under-estimated 
measurement behavior, interquartile ranges, presence of 
outliers, and symmetry/skewness of the distribution. 

GLYCENSIT Procedure Phase 2: Number of 
Measurement Errors
The statistical test used in this phase determines 
whether or not normalized residual values violate the 
ISO criterion too often: in other words, whether or not 

 ut = f (yref,t – Ytest,t ) = 1/15 × (yref,t – Ytest,t ) if yref,t ≤ 75 mg/dl,

 ut = f (yref,t – Ytest,t ) = 5 × (yref,t – Ytest,t)/yref,t if yref,t > 75 mg/dl,

 ut = f (yref,t – Ytest,t ) = 1/15 × (yref,t – Ytest,t ) if yref,t ≤ 75 mg/dl,

 ut = f (yref,t – Ytest,t ) = 5 × (yref,t – Ytest,t)/yref,t if yref,t > 75 mg/dl,
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the sensor under study is “accurate” with respect to this 
criterion. This is expressed in the number of times that 
the absolute value of the normalized difference does 
not exceed 1. The acceptable rate of error is defined as 
the tolerance level q (between 0 and 1). As an example, 
a tolerance level of q = 0.04 indicates that the sensor is 
allowed to make, at most, 4 inaccurate (based on the 
ISO criterion) measurements out of 100. Mathematically, 
this hypothesis testing is represented in terms of a  
null hypothesis H0 and an alternative hypothesis H1:

where  if  and 0 otherwise. 

The estimated parameter is  The

test statistic is a pivot5 and is defined as , where

 is an estimate of , and  is the standard error of .  

Figure 1. GLYCENSIT analysis of the GlucoDay sensor. The top panel (Phase 1) shows persistent measurement behavior (p ≥ .05) as a function of 
blood glucose. The GR = GT dashed line crosses all generated boxplots, and both under/overestimated (extreme) errors are observed over all ranges. 
When less than 8% errors in comparison to the ISO criterion are permitted (Phase 2), the sensor does not perform accurately (middle panel, p < .05 
for tolerance levels <8% indicating the sensor is “inaccurate”). The significance level (a = 0.05) is represented by the dashed line. The # symbol 
indicates “frequency of.” Finally, the bottom panel (Phase 3) displays the observed 97.5% tolerance intervals (shaded area), meaning that 95 new 
measurements obtained from the test sensor out of 100 (a = 0.05) lie in this area with a high probability of 98.6% (related to the high number of 
uploaded measurements and indicating that the conclusions are statistically reliable). The solid and dashed line illustrate the ISO-criterion limits 
and the GT = GR axis, respectively. The dash-dotted lines denote the min/max deviation present in the data (given by points). The size of the 
tolerance intervals determines possible future sensor deviations. For example (illustrated with the arrows), when 100 mg/dl is measured with the test 
sensor (GT), the real (reference) glycemia (GR) lies between 74 and 145 mg/dl in 95% of the cases, which indicates that the intervals are too wide to 
be clinically acceptable. Moreover, these intervals are wider than the ISO limits in both under- and overestimation direction. Together with the large 
min–max deviations, this may lead to no acceptance of the sensor for use in the ICU.
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The computation of the necessary sample quantities 
is based on the bootstrap technique. This technique 
estimates the test statistic distribution by resampling the 
data with replacement.31

Based on the selected significance and tolerance level 
and the critical p-value resulting from this procedure, 
the test decides whether the sensor device under study 
passes the second GLYCENSIT phase. If p ≥ a , we cannot 
reject H0 . If p < a , we can reject H0 with a probability 
of at least 1 – a. In the last case, the test sensor does not 
suit the stated requirements. 

GLYCENSIT Procedure Phase 3: Tolerance Intervals
In the last phase, distribution-free tolerance intervals5 
for reference glucose values are computed, aiming to 
estimate the future sensor performance. The tolerance 
intervals estimate a quantile range (with quantiles r and s)  
in which values that would have been obtained with 

the reference device lie with a certain probability when 
a new test measurement is introduced. Unlike other 
techniques that only retroactively apply to hypothetical 
situations, this phase informs the user about possible 
measurement errors corresponding to new test sensor 
readings under three statistical assumptions. First, the 
new data follow an identical probability law underlying 
given observations. Second, the normalized residuals 
have a similar distribution over the three glycemic 
ranges. Third, the new test sensor readings are obtained 
under similar conditions as the current data. In contrast 
to existing (retroactive) techniques and Phases 1 and 2, 
Phase 3 provides knowledge about future behavior. 

Statistically, the computed normalized residual values, 
which have a common cumulative distribution function 
Fu , are sorted with u(1) < … < u(n) as order statistics. Let the  
amount of probability mass in the interval F(u(s)) – F(u(r)) 
be denoted by Qrs with 1 ≤ r < s ≤ n, where r and s equal 

Figure 2. Bland–Altman (top panel) and EGA (bottom panel) analysis of the GlucoDay sensor device. The mean difference (standard deviation) 
between GR and GT equals –1.0 mg/dl (13.0 mg/dl), and the relative number of points in the A and B regions are 90.9% and 9.1%, respectively. The 
large limits of agreement and the high number of measurements in the B zone may lead to disapproval of the GlucoDay sensor for use in the ICU.
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0.0125n and 0.9875n, respectively, when an A = 97.5% 
tolerance interval is considered. For a confidence 
coefficient γ = 1 – a with 0 ≤ a ≤ 1, the probability that 
more than 100γ% of the probability mass is contained 
in the range is P(Qrs > γ) = 1 – bγ(s – r, n – s + r + 1), where 
bγ(a, b) is the incomplete beta function.32 The computed 
tolerance interval can be retransformed with the inverse 
normalization function, f -1(yref,t – Ytest,t), yielding the 
desired tolerance intervals for given glucose values.

Crucial elements in Phase 3 are the size of the intervals 
and their probability. The first parameter denotes 
the clinical interpretability of the sensor under study.  
Large tolerance intervals indicate that reference 
observations may significantly deviate from test readings,  
resulting in a clinically unacceptable test sensor 
performance. The second parameter is the computed 
probability (P) that reference measurements effectively 
lie in these aforementioned tolerance intervals. This 
probability reflects the (in)sufficient number of paired 
glucose measurements that are submitted to the 
GLYCENSIT analysis. To the best of our knowledge, this 
important parameter is not considered in other published 
glucose sensor assessment techniques.

Clinical Trial Procedure
The GlucoDay® system (A. Menarini Diagnostics test 
sensor, a portable instrument provided with a micropump 
and a biosensor coupled to a microdialysis system) is 
validated against the ABL glucose analyzer (Radiometer 
Medical reference sensor) by applying the Bland–Altman, 
EGA, and GLYCENSIT approaches. The GlucoDay 
system is an amperometric sensor that consists of an 
enzymatic membrane with immobilized glucose oxidase 
and a platinum electrode used to measure glucose in 
subcutaneous interstitial fluid. The ABL glucose analyzer 
is an amperometric sensor that measures glucose in whole 
blood using the glucose dehydrogenase method. After 
informed consent from the next of kin, we implanted 
a microfiber in 20 ventilated adult patients who were 
admitted to the intensive care unit (ICU) of the University 
Hospital Katholieke Universiteit Leuven (see Table 1). 
Blood glucose could not be artificially shifted because of 
the specific type of patients.23,24 After implantation of the 
fiber in periumbilical subcutaneous tissue, we recorded 
near-continuous subcutaneous glucose levels during 
48 h. Every 3 min, the mean value of the past 3 min was 
exported. During the first 24 h, arterial blood glucose 
was measured concomitantly every hour, using the ABL 
machine; during the next 24 h, arterial blood glucose was 
measured every 4 h. A 2-point (at 12 and 20 h) retroactive 
calibration of the test sensor was performed following 

the supplied software algorithm. The study protocol 
was approved by the Institutional Ethical Review Board 
(ML2637). Due to the retroactive calibration, we restricted 
the preprocessing phase to the transformation of near-
continuous test data and time-discrete reference data 
into sets of paired glucose measurements.

We want to stress that the GlucoDay data analyzed in this 
manuscript are mainly used to illustrate the GLYCENSIT 
procedure, as conclusions may depend on the predefined 
clinical design parameters (a, q, and hypo/hyperglycemic 
cutoff value). In this work, we cannot reject H0 when 
p-values are larger than a = 0.05, q varies from 2% to 
10%, and glycemia values below 80 mg/dl are called 
hypoglycemic, and glycemia values above 110 mg/dl are 
called hyperglycemic because of the ICU origin of the 
data.23,24

Table 1.
Patient Population (Coming from a Surgical Intensive 
Care Unit)

Variable Value

Male sex—number (%) 14 (70.0)

Age—year (standard deviation) 61.3 (13.5)

Body Mass Index—kg/m2 (standard deviation) 27.4 (5.1)

Reason for Intensive Care—number (%)

Cardiac Surgery 10 (50.0)

Noncardiac Indication 10 (50.0)

Neurologic Disease, Cerebral Trauma, or Brain 
Surgery

2 (10.0)

Thoracic Surgery, Respiratory Insufficiency, or 
Both

3 (15.0)

Abdominal Surgery or Peritonitis 2 (10.0)

Vascular Surgery 1 (5.0)

Multiple Trauma or Severe Burns 1 (5.0)

Other 1 (5.0)

APACHE II Score (Day 1) (standard deviation) 17.0 (5.9)

APACHE II Score (Day 2) (standard deviation) 17.1 (5.8)

Glycemia (reference sensor device)

Mean Glycemia—mg/dl (standard deviation) 111 (23)

Minimal Glycemia—mg/dl 65

Maximal Glycemia—mg/dl 202

Glycemia (test sensor device)

Mean Glycemia—mg/dl (standard deviation) 112 (25)

Minimal Glycemia—mg/dl 56

Maximal Glycemia—mg/dl 249
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Results
The GLYCENSIT procedure (Figure 1) shows that the 
medians of the measurement errors are similar (0.74, 
0.028, and –1.3 mg/dl for the hypo/normo/hyperglycemic 
range, respectively), explaining the obtained persistent 
measurement behavior (Phase 1, p ≥ .05). A tolerance 
level of at least 8% is required for not rejecting the null 
hypothesis (thus the relative number of measurement 
errors is smaller than the tolerance level) in Phase 2  
(p = .075 for q = 0.08 and p = .45 for q = 0.10). When 
smaller tolerance levels are preferred, the null hypothesis 
can be rejected (p < .05) with a probability of at least 
95%, indicating that the test sensor does not suit the 
predefined accuracy requirements. The computed 
tolerance intervals (presented by the shaded area) inform 
the user of possible measurement errors for new test 
values. This area contains 97.5% of the data (A = 97.5%) 
and, as expected from Phase 2, is much wider than 
the ISO criterion in under- and overestimated direction 
(Phase 3). The computed probability (P) that 95 new 
measurements out of 100 (a = 0.05) lie in these (A = 97.5%) 
observed tolerance intervals equals 98.6%, indicating that 
the number of available paired glucose data is sufficient  
to rely on the obtained results. 

The Bland–Altman approach (Figure 2) results in  
–26.5 mg/dl and 24.5 mg/dl for the limits of agreement of 
GR – GT with –1.0 mg/dl as mean bias, whereas applying 
EGA (Figure 2) leads to 90.9% and 9.1% as relative 
number of points in the A and B zone, respectively.

Discussion
Existing methods used for evaluating blood glucose 
meters (time-discrete) and GMSs (near-continuous) often 
show weaknesses. Here we present the GLYCENSIT 
procedure: a new assessment tool for glucose sensors. 
The procedure comprises three analyses that each, 
independent of each other, approach the data from a 
different side: (1) testing possible persistent measurement 
behavior as a function of the glycemic range, (2) testing 
number of measurement errors with respect to the 
ISO criterion, and finally (3) computing the tolerance 
intervals for new test sensor observations and the 
probability of those intervals. In the end, the precise way 
of integrating (or “weighting”) all findings must be made 
by the expert (user). The GLYCENSIT procedure aims to 
guide and provide motivation to the evaluation process 
rather than returning a “yes/no” analysis. The method c 
an be tuned according to expert specifications regarding 
the design parameters: significance level, tolerance level, 
and glycemic range cutoff values. Moreover, the analysis 

is founded on (nonparametric) statistical techniques 
necessary to draw statistically reliable conclusions. 

Besides the application (type of patients, hospital use 
versus home use, etc.) and the clinician’s requirements 
concerning size of tolerance intervals (Phase 3), approval 
or rejection of a glucose sensor device depends on the 
selected values of the design parameters. Accordingly, 
these values must be clearly mentioned in clinical 
reports. 

The GLYCENSIT procedure applied to the GlucoDay  
data demonstrates the (relatively) high error rate in 
comparison to the ISO criterion (Phase 2), which explains 
the wide tolerance intervals (much wider than the ISO 
limits) for the full glycemic range (Phase 3). Although 
the general measurement behavior is persistent (Phase 1), 
some measurement errors are unacceptably large (Phase 1),  
leading to broad minimum and maximum deviations 
(Phase 3). In view of the preferred design parameters 
(discussed earlier), the GlucoDay sensor may not be 
sufficiently reliable for glycemia control in the ICU. 

A similar conclusion (however, with less statistical 
evidence) can be made when considering the Bland–
Altman and EGA approaches. For the Bland–Altman 
approach, the limits of agreement are too wide, but the 
average bias is negligible. The EGA approach illustrates that 
9.1% (>5%) of the measurements fall in the B zone, which 
is too much to be clinically acceptable.11 

Three points should be underscored. First, a sensor 
device should always be validated under conditions 
similar to its (future) use. Accordingly, results from the 
GlucoDay data (attained from critically ill patients) are 
only related to the performance of this sensor device in 
the critically ill. Possibly different results are obtained 
when testing the sensor in another patient setting  
(e.g., outpatients with diabetes). Second, though the same 
conclusion concerning the GlucoDay device is formulated 
here irrespective of the selected approach (GLYCENSIT 
versus Bland–Altman/EGA), this similarity cannot be 
considered as generally valid (shown with hypothetical 
examples discussed later). Indeed, statistical pitfalls 
typical of current standard evaluation techniques may 
mislead sensor assessments. The GLYCENSIT procedure 
has already shown its statistical value in practical real-life 
sensor evaluations.33 Third, the estimates of the future 
sensor performance (Phase 3) are only valid under the 
condition of meeting the three assumptions described 
earlier.
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The currently proposed GLYCENSIT procedure requires 
the upload of paired measurements independent of 
type of test signal (time-discrete or near-continuous test 
sensor). Future research is focusing on the design of 
statistical procedures, especially developed for evaluating 
near-continuous test sensors, by taking into account 
temporal dynamics of the test glucose signal. These 
specific dynamics are not incorporated into GLYCENSIT’s 
current format, as the necessary presence of a near-
continuous (or very frequently measured) gold standard 
is not yet available (or not always feasible). 

The proposed GLYCENSIT procedure is implemented 
as a web-based assessment tool, freely available at  
http://www.esat.kuleuven.be/GLYCENSIT. This website 
also illustrates some hypothetical examples that further 
clarify the presented procedure. Additionally, these 
examples show the clinical interpretation of the results, 
which is particularly of interest if any one of the three 
phases generates a different assessment(s). Further, 
the necessary number of uploaded paired glucose 
observations can be determined (before starting the 
study) based on the required probability level (Phase 3) 
and the selected significance level (see also the figures at 
the GLYCENSIT website). Furthermore, the higher the 
number of paired glucose measurements (ideally spread 
over the full glycemic range), the more powerful the 
assessment tool will be (i.e., higher statistical evidence).

In conclusion, the GLYCENSIT procedure (Phase 1: 
persistency of the measurement behavior; Phase 2: 
number of measurement errors; Phase 3: magnitude of 
new measurement errors) statistically guides the clinician 
in appropriately assessing the reliability of blood glucose 
meters and GMSs. The probability measure for the 
tolerance intervals, computed in Phase 3, is indicative 
of the statistical evidence for the data under study. 
The GLYCENSIT procedure will be indispensable as a 
supplemental tool to existing evaluation techniques to 
assess the performance of glucose sensors.
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