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Abstract

Background:
We investigated the applicability of linear quadratic Gaussian (LQG) methodology to the subcutaneous blood 
glucose regulation problem. We designed an LQG-based feedback control algorithm using linearization of a 
previously published metabolic model of type 1 diabetes. A key feature of the controller is a Kalman filter 
used to estimate metabolic states of the patient based on continuous glucose monitoring. Insulin infusion 
is computed from linear quadratic regulator feedback gains applied to these estimates, generally seeking to 
minimize squared deviations from a target glucose concentration and basal insulin rate. We evaluated in silico 
subject-specific LQG control and compared it to preexisting proportional-integral-derivative control.

J Diabetes Sci Technol 2007;1(6):834-841

SYMPOSIUM

Introduction

In health, blood glucose (BG) is tightly controlled by a 
hormonal network that includes the gut, liver, pancreas, 
and brain, ensuring stable fasting BG levels (~80–100 
mg/dl) and transient postprandial glucose fluctuations. 
Diabetes is a combination of disorders characterized 
by absent or impaired insulin action, resulting in 
hyperglycemia. Intensive insulin and oral medication 
treatment to maintain nearly normal levels of glycemia 
markedly reduces chronic complications in both 
type 1 diabetes mellitus (T1DM1) and type 2 diabetes 
mellitus,2 but may increase the risk of hypoglycemia or 
even potentially life-threatening severe hypoglycemia, 

which could result from imperfect insulin replacement 
reducing warning symptoms and hormonal defenses.3 
Consequently, hypoglycemia has been identified as the 
primary barrier to optimal diabetes management.4 Thus, 
the primary purpose of diabetes treatment is optimal 
control of postprandial hyperglycemia while avoiding 
hypoglycemia, which naturally formulates an engineering 
optimization problem.

Glucose control has been studied for more than three 
decades and widely different solutions have been 
proposed. The earliest work was based on intravenous 
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(IV) glucose measurements and both positive (glucose) 
and negative (insulin) control actuations. Studies by 
Pfeiffer and Clemens created systems such as a glucose-
controlled insulin infusion system5 or the more well-
known Biostator6 that have been used in hospital settings. 
Both of these regulators were based on a proportional 
derivative strategy, where the injected insulin is 
proportional to the difference between a fixed plasma 
glucose target and the measured plasma glucose, as well 
as to the rate of change of plasma glucose. At that time, 
different types of controllers were also designed based 
on the prediction of glucose, therefore counteracting 
the inherent inertia of exogenous insulin compared 
to the endogenous hormones. The major designs can 
be found elsewhere.7–11 More work followed, spanning 
a broader range of control theoretic approaches. All 
systems were based on IV sensing and IV action, and 
most of them relied on modeling of human physiology. 
Techniques such as pole placement,12 adaptive control,13 
time domain,14 worst-case frequency domain,15 (H∞) and 
optimization of linear quadratic (LQ) costs16–20 were 
adapted to the problem of glucose control. More recently, 
there is significant interest in applying model predictive 
techniques to the control of T1DM.21,22 For a review, see 
Bequette.23

With the advent of new technologies in glucose sensing 
and insulin infusion, it is now possible to observe and act 
upon glucose levels using real-time measurements (the 
sampling period of most continuous glucose monitors 
(CGM) is 5 minutes or less). Therefore, increasing scientific 
and industrial effort is focused on the development of 
regulation systems (e.g., artificial pancreas) to control 
insulin delivery in people with diabetes. While these new 
technologies open the way to both open- and closed-loop 
BG control, they also suffer from certain drawbacks.

CGM are vulnerable to physiologic and technical delays, 
estimated to be between 10 and 20 minutes.24–28

CGM accuracy is still lower than self-monitoring of 
blood glucose (SMBG).29–31

Subcutaneous (SC) injection of insulin imposes an 
additional actuation delay, as exogenous insulin is 
first transported from the injection site to the central 
vascular system and only then follows the pathway of 
IV-injected insulin.32,33

Advances in surgically implantable intravenous sensors 
and intraperitoneal (IP) insulin pumps have triggered 
great interest in the control community.34–36 However, 
while it is believed that implantable sensors are closer to 
intravenous sensing (via blood draws) and are therefore 

•

•

•

less vulnerable to delays and errors, studies have shown 
that these sensors suffer from delays nearly equivalent 
to subcutaneous sensors.37 Implantable pumps are also 
believed to be more efficient than SC pumps, mimicking 
the natural route of insulin delivery (peritoneal injections) 
more closely.37 However, all implantable devices require 
surgery for insertion and have a limited lifetime.36

In summary, recent efforts in regulating glucose 
homeostasis have explored three major routes. Results on 
the IV–SC route have been published by Hovorka et al.38 
and El-Khatib et al.,39 both focusing on SC insulin injection 
but accessing glucose concentration via IV measurements 
and both utilizing model-predictive control methodologies. 
Hovorka and co-workers38 focused on strictly negative 
actuation (insulin only). El-Khatib and colleagues39 
developed a double actuation scheme (insulin + glucagon). 
Renard36 (University of Montpellier, France) is developing 
a glucose control scheme based on the use of an implanted 
sensor and pump (IP–IP route). Finally, Steil and co-
workers40 are  developing a fully SC–SC-based glucose 
regulator based on proportional-integral-derivative (PID) 
methodology.

Methods
In this article we proposed a methodology for the design 
of closed-loop feedback controllers based on linear 
quadratic Gaussian (LQG) control, in which optimal 
insulin injection are computed based on CGM. The LQG 
control design methodology, developed in the 1960s, has 
been used in many application domains.41 In LQG control, 
an actuation signal is computed to minimize squared-
error deviations from a nominal operating point, which 
in the control of diabetes corresponds to tight glycemic 
regulation around a reference glucose concentration 
(e.g., 100 mg/dl). An LQG controller comprises two main 
components—a state observer and a set of feedback 
gains—both of which are derived from a linear dynamic 
model of the system being controlled. In modeling 
the system, the choice of the state vector is made via 
two antagonistic criteria: the higher the dimension of 
the model, the more precisely the model can describe 
observed dynamics and estimate the modeled quantities; 
however, a high dimension also renders the estimation 
procedure sensitive to noise in the observed signal (BG), 
lowering the precision of the state estimate, which can 
preclude the use of subject-specific regulation due to 
unobservable states and nonidentifiable parameters.

Model of Glucose–Insulin Dynamics
The Augmented Meal Model (AMM). The baseline model for 
glucose–insulin kinetics employed in this article is the 
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oral glucose “meal” model of Dalla Man et al.,42 which by 
construction represents glucose and insulin fluxes during 
a meal. The structure of the meal model42 includes a 
nonlinear gastrointestinal submodel (three states), two 
glucose compartments, and five insulin-related states and 
was validated with triple tracer data collected from more 
than 200 subjects without T1DM. In Dalla Man et al.,43 the 
model is modified to reflect the lack of pancreatic insulin 
production in T1DM. Finally, as described previously,43 
we augmented the model to take into account the 
transport of insulin from subcutaneous injection to 
blood circulation, and further to the interstitium. We 
refer to the resulting set of differential equations as the 
augmented meal model and use the AMM for in silico 
testing of controllers synthesized from the LQG design 
methodology.

The Reduced Meal Model (RMM). For control design 
purposes, we used a reduced version of the AMM, in 
which we captured the effect of oral glucose via a single 
equation. Specifically, we modeled the glucose rate of 
appearance Ra (mg/kg/min) as a first-order lag of the 
meal disturbance D (mg/kg/min):

1
τmeal

Ṙa(t) = -          (Ra(t) - D(t)),

where τmeal is the time constant associated with glucose 
absorption from the gut. The glucose rate of appearance 
term appears in the type 1 differential equation for 
plasma glucose Gp (mg/kg) as

Ġp(t) = - (k1 + kp2)G(t) + k2Gt(t) - Uii(t) - kp3Id(t) + Ra(t) + kp1,

where Gt (mg/kg) refers to tissue glucose, Uii (mg/kg/min) 
refers to insulin-independent glucose utilization, and Id 
(pmol/liter) refers to the delayed insulin signal associated 
with endogenous glucose production, where we have 
assumed there is no glucose renal excretion for the target 
range of Gp under closed-loop control. The resulting set of 
differential equations has 11 state variables.

Subject-Specific Parameters for AMM and RMM. Because 
people are widely different from one another, it is 
important to tailor both AMM and RMM to the 
physiology of a particular person. Some model parameters 
are readily available (e.g., body weight), but most are 
highly model specific and require data collection before 
the controller can be activated. For a complete person-
specific model we need to estimate most of the model 
parameters, which will allow the estimator not only to 
be bias free at steady state, but also capture the complete 
dynamics of the system. In practice, parameter estimation 
is cumbersome and must be based on the analysis of 

glucose, insulin, and BG data collected during standard 
clinical glucose tolerance tests. The simulation results of 
this article present the ideal case where, for individual 
subjects, we assumed complete knowledge of all AMM 
parameters.

Linear Quadratic Gaussian Control Design
The LQG controller developed consists of two main 
parts: (i) a state observer (Kalman filter) based on the 
RMM with subject-specific parameters, linearized around 
the desired BG operating point, and (ii) a set of linear 
quadratic regulator (LQR) feedback gains computed from 
the linearized RMM to minimize a least-squares criterion. 
Both aspects of the controller are outlined.

Physiological State Estimation. The continuous-time 
dynamics of the linearized RMM can be expressed in 
succinct form, as follows:

{Ẋ(t) = AX(t) + Bu(t) + Gw(t)
Y(t) = CX(t) + Du(t) + Hv(t)

where
X is the vector of states of the RMM (deviation from 
reference point), including plasma glucose, tissue 
glucose, and various insulin states; u represents 
injected insulin (deviation from reference insulin uop); 
and w is the glucose disturbance [D(t) in the AMM 
and RMM]

Y is a vector representing measurable quantities (offset 
again by the reference measurement), comprising BG 
(plus noise) and injected insulin u

A, B, C, D, G, and H are state space matrices that 
reflect coefficients of the linearized RMM.

Estimates of the state vector X can be computed 
dynamically from the observer equation:

X(t) = AX(t) + Bu(t) - L[Y(t) - CX(t) - Du(t)],
.
^ ^ ^

where L represents the innovation gain that causes the 
state estimate to deviate from the open-loop prediction 

^AX(t) + Bu(t)  based on the difference between what 
is actually measured and what was predicted to 
be measured, ^Y(t) - CX(t) - Du(t) . The choice of the 
innovation gain matrix L is critical to the method. In 
LQG control, we computed L as the optimal Kalman filter 
gain, assuming (for control synthesis only) that both w 
and v are white noise processes with covariance matrices 
chosen to reflect the magnitude of the disturbances 
and sensor noise. Computationally, this amounts to the 
solution of an algebraic Riccati equation. 

•

•

•
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LQ Regulator. The second component of the LQG controller 
is the set of LQR feedback gains, which transform our 
estimate of the physiological state of the system into 
insulin dosing recommendations, as follows

u(t) = - KaX(t).^

Note that since u(t) represents the deviation from the 
reference insulin injection, the actual command to the 
insulin pump is [uop - KaX(t)]+^ , where [x]+ refers to the 
nonnegative part of x [i.e., [x]+ = max(0,x)], accounting for 
the constraint that negative boluses cannot be injected. 
The choice of Ka is critical. Following LQG methodology, 
we computed Ka through the solution of another Riccati 
equation so that ~ũ(t) = -KaX(t) minimizes the deterministic 
objective function:

J(X(0)) =  ∫[XT(t)QX(t) + ũ2(t)]dt,
t=0

∞ ~ ~~

where (i) the state ~X(t) is constrained according to the 
dynamical equations X(t) = AX(t) + Bũ(t)~~  and (ii) Q is 
a positive semidefinite matrix of weights that penalize 
state deviations away from the reference operating point 
of the controller. In general, matrix Q allows the control 
designer to specify the states that are of interest (glucose 
vs insulin, plasma concentration vs other compartment) 
and the aggressiveness of the regulator (how fast it 
will try to reach equilibrium, possibly undershooting 
the target value). For the experimental results of this 
article, we have chosen Q to be a diagonal matrix, with 
a common weight q applied to all glucose states, and a 
weight of one applied to all insulin states. The best value 
of q depends on the reliability of the sensor and on 
subject characteristics.

Discretization. Our discussion so far has focused on LQG 
control as a continuous-time process; however, in practice, 
the LQG controller must be implemented as a sampled 
data format because CGM measurements are only available 
at discrete intervals and because existing insulin pumps 
only allow discrete changes to basal patterns or discrete 
bolus injections. Envisioning scenarios in which sampling 
intervals change over time, our approach was to design 
a continuous time LGQ controller, as outlined above, which 
we then discretized for final implementation. (We did not 
synthesize a discrete time LQG controller based on a 
discrete representation of the RMM.) To discretize the 
state observer, we zero order held the samples and used 
a piecewise constant measurement signal as input to the 
continuous time Kalman filter. Next, in computing the bolus 
associated with each CGM sample, we used a predictive 
technique in which the bolus amount is computed as an 
estimate of the amount of insulin that the LQG controller 
would inject over the subsequent sampling interval.

Results
We evaluated, in silico, subject-specific LQG control and 
compared it to a previously reported PID controller.40 
The purpose of this study was to evaluate the ideal 
limits of performance associated with LQG control, 
assuming complete knowledge of all AMM parameters 
for an in silico population of type 1 diabetic individuals. 
The evaluation of LQG and comparison to PID was 
performed in a simulation environment based on the 
AMM and is similar to the GIM simulator of Dalla Man 
and colleagues.43 Our simulation environment included 
a random CGM sensor noise model developed at the 
University of Virginia. Our simulation experiments 
followed the in vivo protocol described by Steil et al.,40 
with both CGM sampling and closed-loop control boluses 
every minute.

Typical Scenario
Figure 1 illustrates a typical scenario in which both 
the PID controller and the LQG controller are designed 
around a target glucose concentration of 100 mg/dl. The 
in silico subject is described by a set of parameters for 
the AMM, including a basal plasma glucose mass of 
250.1 (mg/kg) and a basal plasma insulin mass of 3.539 
(pmol/kg). The insulin clearance of this subject is 1.240 
(min-1) and, while not a parameter of the AMM, the 
insulin sensitivity is approximately 0.0003 (ml/min/μU). 
Gains of the PID controller, along with computation of 
the proportional, integral, and derivative signals, are 
implemented as closely to the methodology of Steil 
et al.40 as possible using the AMM to assess subject-
specific metabolic parameters, as needed. The LQG 
controller for this subject was synthesized with q = 1 (so 
that deviations in glucose and insulin states are weighted 
equally) and r = 1, assuming a process noise covariance 
of 1 and a sensor noise covariance of 0.001. For both 
controllers, the subject is assumed to be at target BG, in 
steady state, at hour zero of the protocol. Then, as shown 
in the third subplot, the subject experiences a glucose 
load at breakfast (hour 2, 55 grams carbohydrate), lunch 
(hour 7, 88 grams), dinner (hour 12, 69 grams), and a 
snack (hour 16, 45 grams). While the simulated meal 
disturbance is deterministic, neither the LQG nor the 
PID controllers have prior knowledge of meals (i.e., no 

“meal announcement”). More specifically, for the LQG 
controller, the meal disturbance signal is not an input to 
the Kalman filter. The first subplot in Figure 1 shows the 
BG concentration resulting from each controller, with PID 
shown in blue and LQG shown in red. Both controllers 
are subject to the same sensor noise signal, shown in 
the second subplot (Figure 1). Note that whereas both 
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controllers experience similar postprandial excursions, 
the LQG controller, by virtue of its ability to estimate 
insulin states, generally manages to avoid hypoglycemic 
dips after meals. (An exception to this occurs in the 
recovery period after the snack, where the subject 
experiences a nadir of 90 mg/dl.) The fourth subplot of 
Figure 1 shows commanded insulin as a pump rate for 
both the LQG controller (in red) and the PID controller (in 
blue). Note that the LQG controller tends to stop insulin 
injections sooner than the PID controller in the recovery 
period after each meal. Finally, note that both controllers 
start injecting insulin in hour 22 of the protocol, when the 
subject is already below the target glucose concentration 
of 100 (mg/dl); this is a consequence of degradation of 
the sensor signal at hour 22.

Group Results
To understand the relative performance of LQG versus 
PID, we designed a simulation experiment involving 10 
independent trials (as described earlier) for each of 100 
simulated subjects. For each subject, a PID controller 
was designed according to the specif icat ions of 
Steil et al.40 using the AMM to estimate subject-specific 
metabolic parameters for determining PID coefficients. 
After running all 1000 trials of the PID controller, we 
computed the average closed-loop glucose concentration 
(across all subjects, for the duration of the protocol). 
Next, for each of the 100 subjects, again assuming full 
knowledge of each subject’s AMM parameters, we 
designed an LQG controller. We used a common target 
glucose concentration for all subjects, identified through 

Figure 1. LQG control versus PID, with one minute CGM samples and bolus updates.
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an iterative process, so that the LQG approach would 
achieve the same average glucose concentration achieved 
by the PID approach. Results from this study are 
presented for four traditional indices of glucose control:

Percent-time BG > 180 mg/dl (PERCH)

Percent-time BG < 70 mg/dl (PERCVL)

Low BG index44 (LBGI)  

Minimum glucose concentration (Min_BG)

Results from the 100 subjects (1000 total trials) are shown 
in Table 1. Note that the subjects spent less time in 
hyperglycemia on average (p < 0.001) under PID control 
compared to LQG. However, the LQG controller achieved 
much lower hypoglycemic excursions, with a smaller 
average PERCVL (p < 0.001), smaller average LBGI 
(p < 0.001), and higher Min_BG on average (p < 0.001). 
Average glycemia for the PID controller was 128.2 (mg/dl), 
whereas average glycemia for the LQG controller was 
128.7, not significantly different (p = 0.65). [Note that 
while the average Min_BG for the LQG controller was 
81 (mg/dl), a small number of in silico subjects under 
LQG control experienced hypoglycemic excursions below 
70 (mg/dl), resulting in an average PERCVL of 0.3%.]

•

•

•

•

amount of insulin needed by a person to compensate 
for the carbohydrate content of an incoming meal is 
computed. This is done by estimating the amount of 
carbohydrates to be ingested and multiplying by each 
person’s insulin/carbohydrate ratio. Second, based on 
the difference between measured BG concentration and 
the target level, the amount of insulin needed to reach 
the target is computed by multiplying the (BG - target) 
difference by the individual’s insulin correction factor.

With the advent of CGM technology, these well-
established empirical calculations are now being 
enhanced and reformulated for automatic insulin 
delivery. The most recent control efforts are focusing on 
the subcutaneous (SC–SC) route, which relies on available 
technologies. In addition, advances in implantable 
sensors and insulin pumps have triggered great interest 
in the glucose control community.34–36 Both subcutaneous 
and implantable monitoring and insulin delivery devices 
have the advantage of frequent BG measurements and 
nearly continuous insulin adjustment. As the timescale of 
observation changes from three to four BG readings per 
day to a BG reading every few minutes, new mathematical 
methods are employed, generally based on a description 
of system behavior via a set of differential equations. 
The most straightforward feedback algorithm is PID 
control, in which SC insulin injections are computed as 
a proportional, integral, and differential response to the 
difference between SC glucose measurements and the 
target glucose concentration.

This article presented a different control approach 
based on LQG methodology applied to the T1DM meal 
model42,43,45 of glucose–insulin kinetics. The rationale for 
this model-based approach is that it may provide a means 
to avoid hypoglycemic excursions after meals through 
the estimation of important metabolic states, particularly 
insulin states. From our simulation experiments, we 
observed that, at least with complete knowledge of all 
AMM parameters, LQG control achieves tight glycemic 
regulation with minimum hypoglycemic events. In this 
ideal setting, LQG compares favorably to PID: equal 
average BG comparable maximum, and significantly 
lower risks for hypoglycemia. Postprandial excursions 
were comparable in both methods, hinting at limitations 
of purely reactive control algorithms.

Further study is required to evaluate LQG control in a 
nonideal case where AMM parameters for individual 
subjects must be estimated from clinically available 
data. In ongoing research, we are developing methods 
for estimating AMM parameters from clinical data using 

Table 1.
Average Results from 100 in Silico Subjects
(1000 Total Trials)

PERCH (%) PERCVL (%) LBGI Min_BG (mg/dl)

PID 14.2 8.73 2.25 54

LQG 17.8 0.3 0.33 81

Discussion
The current management of diabetes typically uses SMBG 
to adjust the dosing of insulin delivered via injections 
or an insulin pump. Glucose is measured at infrequent 
(<5/day) and irregular times, and insulin is injected 
subcutaneously according to these measures and the 
estimated amount of ingested carbohydrates. Depending 
on the treatment strategy, insulin is administered either 
via an insulin pump (as basal rate and premeal boluses) 
or via injections typically containing fast-acting and long-
acting insulin. In both cases, the relationship between the 
amount of insulin injected and measured plasma glucose 
is determined by both the health care practitioner and 
the patient, based on past experience and an initial rule 
of thumb (e.g., 1800 rule and 450 rule). Insulin boluses 
are traditionally calculated in two phases. First, the 
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a combination of population average values for some 
parameters, along with adjusted parameters values that 
reflect the subject’s steady-state glucose and insulin 
characteristics, insulin clearance, and correction factors.
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