
813

Analysis of Algorithms for Intensive Care Unit Blood Glucose Control

B. Wayne Bequette, Ph.D.

Author Affiliation: Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York

Abbreviations: (CID) columnar insulin dosing, (GRIP) glucose regulation for intensive care patients, (ICU) intensive care unit, (IV) intravenous, 
(MPC) model predictive control, (PID) proportional-integral-derivative

Keywords: closed-loop glucose control, hyperglycemia, in silico model

Corresponding Author: B. Wayne Bequette, Ph.D., Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, 
NY 12180-3590; email address bequette@rpi.edu

 Journal of Diabetes Science and Technology
 Volume 1, Issue 6, November 2007 
 © Diabetes Technology Society

Motivation and Background

Individuals who are critically ill may suffer from 
hyperglycemia and insulin resistance, even if they do not 
have diabetes. A healthy individual has a basal glucose 
concentration of approximately 80 mg/dl, but patients 
suffering from stress hyperglycemia can have blood 
glucose values greater than 200 mg/dl. A landmark study 
by Van den Berghe et al.1 showed that maintaining blood 
glucose below 110 mg/dl reduced overall in-hospital 
mortality by 34%, bloodstream infections by 46%, and 
acute renal failure by 41%. In addition, patients receiving 
intensive insulin therapy were less likely to require 
prolonged mechanical ventilation.

It is thus becoming standard to monitor blood glucose 
in the intensive care unit (ICU) by taking blood samples 
every hour or two, depending on the variability of the 
blood glucose values. Many hospitals and clinics use 
table lookup or paper-based protocols to enable nurses 
to change intravenous insulin infusion rates based on 
current and previous glucose measurements. Computer-
based methods have been developed to enable more 
complex protocols for insulin adjustment to be used. 
Indeed, the implementation of simple protocols within 
an automated computer-based environment can reduce 
the error rate of paper-based protocols. 

SYMPOSIUM

Abstract
Intensive care unit (ICU) blood glucose control algorithms were reviewed and analyzed in the context of 
linear systems theory and classical feedback control algorithms. Closed-loop performance was illustrated by 
applying the algorithms in simulation studies using an in silico model of an ICU patient. Steady-state and 
dynamic input–output analysis was used to provide insight about controller design and potential closed- 
loop performance. The proportional-integral-derivative, columnar insulin dosing (CID, Glucommander-like), 
and glucose regulation for intensive care patients (GRIP) algorithms were shown to have similar features and 
performance. The CID strategy is a time-varying proportional-only controller (no integral action), whereas the 
GRIP algorithm is a nonlinear controller with integral action. A minor modification to the GRIP algorithm was 
suggested to improve the closed-loop performance. Recommendations were made to guide control theorists on 
important ICU control topics worthy of further study.
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The primary goal of this article was to review recently 
published ICU glucose–insulin protocols in the context 
of feedback control systems design and analysis. The 
objective was not to provide a detailed literature review 
of ICU blood glucose control algorithms, as these are 
readily available in Chase et al.2 Also, we did not study 
advanced model-based algorithms, such as those 
proposed by Hovorka and co-workers,3 Chase and co-
workers,4 and Van den Berghe and co-workers.5 Instead, 
we chose to assess characteristics of several selected 
low-order algorithms based on principles of control 
theory. A tutorial approach was taken so that clinicians 
can appreciate how control theory could better be used 
to understand and improve current control algorithms. 
Another goal was to point out limitations of widely 
used control analysis techniques and encourage control 
engineers to further study these relevant problems. For a  
broader historical perspective of control theory and 
applications, with a focus on algorithms for a closed-loop 
artificial pancreas, readers are referred elsewhere.6 

While there is a clear motivation to use continuous 
glucose sensors, with frequent glucose measurements 
and insulin infusion adjustments,7,8 the focus of this 
article was on the current state of ICU glucose control, 
where glucose measurements are available at roughly 
1‑hour intervals. The characteristics of control strategies 
were analyzed with respect to nonlinearity, integral 
action, tuning, and stability characteristics. This article 
first presents characteristic steady-state and dynamic 
physiological input–output (insulin-glucose) behavior, 
followed by a review of the classical proportional-integral-
derivative (PID) control algorithm. The characteristics of 
recent ICU computer-based protocols are then discussed 
in the context of linear analysis and PID control. These 
protocols and algorithms are then compared in a study 
involving a simulation (in silico) model of an ICU subject. 

Steady-State and Dynamic Behavior of an 
in Silico Patient
To be able to design control strategies it is important 
for control engineers to understand the steady-state 
and dynamic behavior of the system/process/subject 
to be controlled. In this article, we used the in silico 
patient model presented by Chase and co-workers4; for 
convenience, the modeling equations and parameter 
values are shown in the Appendix. This model is a 
modified version of the Bergman minimal model,9,10 

which is often used to identify insulin sensitivity using 
intravenous (IV) glucose tolerance tests. The model by 
Chase and co-workers4 includes saturation terms for 

plasma insulin disappearance and insulin-dependent 
glucose clearance.

Figure 1 shows the steady-state behavior for three 
hypothetical subjects with different equilibrium glucose 
values (before insulin infusion is initiated), but with all 
other parameters constant as given in the Appendix.  
The slope (derivative of the output with respect to the 
input) of the input–output curve is known as the process 
gain. In this case, the process is nonlinear, as the slope is 
not constant. There is a high gain at low insulin infusion 
rates (high glucose values) and a low gain at high 
insulin infusion rates (low glucose values). This indicates 
that it is relatively easy to reduce glucose values when 
they are high, but it takes proportionally more insulin 
when the glucose is lower; this is a consequence of 
insulin saturation effects. For equivalent closed-loop 
performance, because the controller gain is generally 
inversely related to the process gain, it would be expected 
that the controller gain should be low at high glucose 
concentrations (low insulin infusion rates) and high at 
low glucose concentrations (high insulin infusion rates).

Example dynamic behavior is shown in Figure 2 for 
the intermediate subject from Figure 1 (GE = 200 mg/dl). 
Here, two different step changes in insulin infusion rate 
are made (0.4024 and 1.3346 U/h), resulting in relatively 
slow decreases in the glucose concentration; note that, 
for 1.3346 U/h, it takes over 3 hours to bring the glucose 
concentration below 110 mg/dl. While the long-term 

Figure 1. Steady-state input–output (insulin delivery rate – glucose 
concentration) curves for three hypothetical subjects with identical 
parameters except for equilibrium glucose concentration (concentration 
when no exogenous insulin is delivered).
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glucose response is consistent with the steady-state 
curve shown in Figure 1, it is clear that, to achieve the 
desired final glucose concentration in a shorter period 
of time, either a bolus of insulin must be given or the 
insulin infusion must be substantially increased above 
the long-term value for a brief period of time. Also, note 
that the overall process gain (change in output/change 
in input) is larger for the small step input change  
[–124 (mg/dl)/(U/h)] than for the large step input change 
[–75 (mg/dl)/(U/h)].

(2)

The manipulated input is proportional to the error, the 
integral of the error, and the derivative of the error, and 
there are three adjustable tuning parameters: proportional 
gain (kc), integral time (τI), and derivative time (τD). 
Typical control textbooks present a number of techniques 
to select or adjust the values of these tuning parameters. 
The main limitation to the use of integral action is that so-
called integral windup can occur when the manipulated 
inputs hit a constraint. In artificial pancreas applications, 
the integral term sometimes leads to hypoglycemia, 
thus many artificial pancreas algorithms do not have 
integral action. For example, Shimoda et al.13 used a 
proportional-derivative controller in a wearable artificial 
pancreas-based subcutaneous glucose measurement and 
several insulin infusion methods (IV regular insulin, 
subcutaneous regular insulin, and subcutaneous insulin 
lispro). Also, the algorithm used in the Biostator14 does 
not have integral action.

Equation (1) is based on continuous-time, or analog, 
systems where measurements are available and 
manipulated inputs are adjusted continuously. In practice, 
measurements are taken, and control actions are made, 
at discrete intervals of time. A simple (finite differences) 
discretization of the continuous PID algorithm yields

(3)

for the control action (insulin infusion) at the current 
time step (k), where Δt is the sample time, assumed 
to be constant. More generally, the PID algorithm is 
implemented in “velocity form,” which is obtained by 
subtracting Equation (3) evaluated at time step k – 1 
from Equation (3) evaluated at time step k to find

(4)

and the current control action, u(k), is based on the 
previous control action, u(k – 1), and the current and 
previous two error values. The formulation also helps 
alleviate problems associated with reset windup because 
of manipulated input saturation. 

The PID algorithm is considered a “nonmodel-based” 
algorithm, but it should be noted that many model-based 
control algorithms can be put into PID form, with the 
tuning parameters directly related to model parameters 
and a desired closed-loop response time.11,15 

Proportional-Integral-Derivative Algorithm
The PID controller is the “workhorse” algorithm of 
the process industries. PID controllers are intuitive 
and presented in almost all undergraduate control 
textbooks.11,12 The continuous-time representation of the 
PID algorithm finds the manipulated input (insulin 
delivery rate) as a function of the deviation of a 
measured output (glucose) from its desired setpoint, in 
the following fashion

(1)

where, for the ICU application, u(t) is the manipulated 
insulin infusion rate (U/h), u0 is the initial or basal 
insulin infusion rate, and e is the error, which is the 
difference between the setpoint (r, desired glucose) and 
measured output (y, measured glucose)

Figure 2. Dynamic behavior of a simulated subject (GE = 200 mg/dl) for 
two different magnitude changes in insulin infusion rate at t = 0 hour. 
A change of 0.4024 U/h results in a decrease of 50 mg/dl, whereas a 
change of 1.3346 U/h results in a decrease of 100 mg/dl. Initial and 
final glucose concentrations are consistent with the steady-state input–
output curve (Figure 1).
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Wintergerst and colleagues16 applied a version of discrete 
PID feedback control to six subjects in a pediatric ICU. 
Their implementation clearly showed contributions of 
each term (P,I,D) and, in particular, placed constraints on 
the integral contribution. For all individuals, the integral 
time was 150 minutes and the derivative time was 30 
minutes. The proportional gain was adjusted by a factor 
of roughly two for each individual, depending on their 
initial response to feedback control (during the first  
2 hours). Initial hourly infusion rates were typically 0.05–
0.1 U/kg/h, with proportional gains roughly 0.5, with a 
range of 0.3–1.6 mU/kg/h per mg/dl. Wintegerst et al.16 
also developed an algorithm, based on glucose values 
and their rates of change, to choose sample intervals of 
20, 40, or 60 minutes. 

Now that the PID algorithm has been reviewed, we 
are able to discuss columnar insulin dosing (CID) 
(Glucommander-like) and glucose regulation for intensive 
care patients (GRIP) algorithms in the context of PID 
control. The focus of this article was on analysis of a 
constant sample time system, where blood glucose is 
sampled and insulin infusion adjustments are made at 
1-hour intervals. While there are several algorithms for 
changing sample time values, we feel that it is important 
that underlying control algorithms implemented at a 
fixed sample interval exhibit desirable characteristics. 

The Glucommander and Related 
Algorithms
Davidson and co-workers17 provided a detailed analysis 
of 5080 studies using the Glucommander computer-
based algorithm for advising on the delivery of 
intravenous insulin by nurses working in many different 
areas of a general hospital. The basic idea behind the 
Glucommander algorithm is shown in Figure 3. In this 
example, the subject has an initial blood glucose value 
of 295 mg/dl. Starting on the bold curve with a 0.02 
slope, the first infusion rate is 4.7 U/h. Because the next 
glucose value has only decreased to 259 mg/dl (<15%), 
the multiplier (slope) is increased to 0.025, resulting in an 
insulin infusion rate of 4.9 U/h. The next few infusions 
are based on the 0.025 slope.

One of the goals of this article was to study an algorithm 
similar to the Glucommander, known as the CID 
algorithm,18 primarily because the procedure for selecting 
changes in the multiplier factor (slope) is defined more 
clearly. The Glucommander and CID algorithms are based 
on the following formula presented by White et al.19

Insulin dose (U/h) = 0.02 (glucose – 60),          (5)

where the glucose measurement has units of mg/dl. 
Here we show that this is a proportional-only control 
algorithm by removing the integral and derivative terms 
from Equation (3) to find

(6)

The White et al.19 algorithm can be rewritten as

(7)

or
(8)

where, for convenience, a setpoint glucose value of 
100 mg/dl is assumed. Note then that the White et al.19 
algorithm is a proportional-only controller, with a basal 
infusion rate of 0.8 U/h and a proportional gain of –0.02 
(U/h)/(mg/dl).

The CID algorithm18 can be written

(9)

which is clearly a proportional-only control law

(10)

where the basal (or nominal) infusion rate and controller 
proportional gain are no longer constant, but can vary 
from time step to time step. Also, the glucose value used 

Figure 3. Basic operation of the Glucommander algorithm (from 
Davidson et al.17). In this example, the individual has an initial blood 
glucose value of 295 mg/dl. Starting on the curve with a 0.02 slope, 
the first infusion rate is 4.7 U/h. Because the next glucose value has 
only decreased to 259 mg/dl (<15%), the multiplier (slope) is increased 
by 25% (to 0.025), resulting in an insulin infusion rate of 4.9 U/h. The 
next few infusions are based on the 0.025 slope.
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is an average over the past two samples (also known as 
a two-point moving average filter):

(11)

The algorithm for adjusting the multiplying factor 
(proportional gain) is shown in the Appendix. The initial 
controller gain in this strategy is kc = –0.02 (U/h)/(mg/dl).

The display of a control algorithm in the form of Figure 3  
motivated us to reconstruct the steady-state input–
output curves shown in Figure 1 by simply switching 
the dependent and independent axes. In Figure 4 we 
superimposed a proportional-only controller curve [with 
a bias of 1 U/h and gain of –0.04 (U/h)/(mg/dl)] on the 
physiological output–input (glucose–insulin) diagram. 
The resulting steady-state operating point can be found 
as the intersection of the controller curve and the 
physiological system curve. Note that, in general, the 
final steady state does not occur at the desired setpoint 
of 100 mg/dl. The steady-state glucose concentrations are 
approximately 90, 110, and 130 mg/dl for the GE = 150, 
200, and 300 curves, respectively; in each case there is 
an “offset” in the glucose concentration from its desired 
setpoint value of 100 mg/dl.

Glucose Regulation for Intensive Care 
Patients Algorithm 
Vogelzang and colleagues20 presented a computerized 
control system for a surgical intensive care unit. In the 
GRIP algorithm, the change in insulin infusion rate from 
step k – 1 to step k is computed from

(12)

where the -4h subscript is used to indicate either averages 
over the past 4 hours or a change in the past 4 hours 
[for convenience, we assume a sample time of 1 hour 
and use glucose units of mg/dl rather than mmol, hence 
the factor of 18 appearing in Equation (12)]. For insulin 
infusion, a four-point moving average filter results in the 
following term

(13)

the change in glucose over a 4-hour period is used

(14)

It is likely that the 4-hour interval is used to reduce 
the effect of measurement noise. The GRIP algorithm is 
essentially a “gain scheduled” PID controller, where the 

proportional gain is a function of the average insulin 
infusion rate over the previous 4 hours. Gain scheduling 
is often used in flight control systems, for example, where 
controller tuning parameters are varied depending on the 
flight condition. For blood glucose control, increasing the 
controller gain as a function of average insulin infusion 
rate makes physiological sense. Because of saturation 
effects, each increase in insulin infusion tends to have 
less of an effect; this is shown clearly in the curves 
in Figure 1; an increasing controller gain is needed to 
compensate for this effect. It should be noted that equal-
percentage valves are often used in chemical process 
manufacturing to compensate for a similar problem with 
pressure drop as a function of flow rate. 

The GRIP algorithm also imposes a maximum constraint 
of 10 U/h and limits the increase to 1.5 U/h at any 
time step. We found that the closed-loop algorithm, as 
published, is actually unstable, as shown in the analysis 
in the Appendix. The primary difficulty arises from the 
term (a derivative component in the algorithm) for the 
change in glucose over a 4-hour period. Following the 
spirit of the GRIP algorithm, we suggest the following 
minor substitution to assure a stable closed-loop 
algorithm. Rather than considering the change in glucose 
over a 4-hour period, we suggest that the change in 
glucose over the 1-hour sample time be used

(15)

Figure 4. A proportional control operating curve is superimposed on 
the steady-state output–input curve for three hypothetical subjects 
(independent and dependent axes are switched from Figure 1 to be 
consistent with Figure 3). The steady-state solution is the intersection of the 
controller and physiological system operating curves. For this example, 
the proportional controller parameters are kc = -0.04 (U/h)/(mg/dl)  
and u0 = 1 U/h, with a set point of 100 mg/dl.
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If the rate of change of glucose is roughly constant over 
the 4-hour period, then the following approximation

(16)

results in the algorithm

(17)

Further, because the controller gain associated with the 
derivative (y(k) – y(k – 1)) term is too high, we recommend 
using the value of 0.3. Thus, our recommended revision 
to the GRIP algorithm is

(18)

As shown in the simulation studies that follow, 
Equation (18) results in a stable feedback system, whereas 
Equation (12) results in an unstable closed-loop system. 
It should be noted that the GRIP system is much more 
than an algorithm, as it includes an integrated database 
management system that interfaces with the nursing staff 
and the hospital information system. Another important 
component is an algorithm that chooses the time for the 
next blood sample (over a range of 30 minutes to 6 hours) 
depending on recent glucose measurements and their 
rate of change. Also, the insulin infusion rate calculated 
is a recommendation that can be modified easily by a 
nurse or physician. The variable sample time strategy, 
and nurse overrides, may help stabilize the feedback 
system, and we have not included these effects in the 
simulation study. Philosophically, however, we feel than 
an underlying control algorithm should satisfy stability 
characteristics in the limit of a fixed sample time. 

Comparison of Control Algorithms on 
Simulated Subjects
Here, each of the control strategies was compared on 
a simulated subject, using the Chase et al.4 model and 
parameters shown in the Appendix. Each simulation 
started at the equilibrium glucose concentration with no 
insulin infusion, followed by a single setpoint change 
to 100 mg/dl, with a sample time of 1 hour. The first 
simulation study, shown in Figure 5, compared the 
performance of the published GRIP algorithm with 
my suggested revision. Clearly, the published version 
is unstable (as proved in the Appendix), while my 
suggested revision has satisfactory performance.

The PID simulations used the Wintergerst et al.16 
recommendations of 150 and 30 minutes for the integral 

and derivative times, respectively; we have found similar 
values for integral and derivative times using the internal 
model control-based PID design procedure.11 A value of 
–0.035 (U/h)/(mg/dl) was selected for the proportional 
gain to give response times and insulin infusion rates 
similar to the GRIP and CID algorithms. A comparison 
of PID, GRIP (revised), and CID is shown in Figure 6 for 
a GE value of 200 mg/dl. All of the algorithms exhibited 
similar performance, with the GRIP being the most 
conservative; the offset exhibited by the CID algorithm 
was quite small in this case. The GE value was increased 

Figure 5. Comparison of closed-loop responses of the published GRIP 
[Equation (12)] with our suggested revision [Equation (18)]. (Top) 
Glucose response. (Bottom) Insulin infusion rate.
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Figure 6. Comparison of closed-loop responses for CID, GRIP (revised), 
and PID for a simulated subject. (Top) Blood glucose values. (Bottom) 
Insulin infusion rates.
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to 300 mg/dl in the studies presented in Figure 7, where 
the offset exhibited by the CID algorithm was more 
transparent. It should be noted that this offset may 
not be important when sensor noise or uncertainty is 
considered.

The goal of this study was not to explore all of the 
possible sets of parameters or dynamic behaviors that 
could be observed in subjects, but to delineate the 
relevant features of the various control algorithms. 
Clearly, it is also important to incorporate realistic 
measurement noise and, for more frequently sampled 
systems, the effect of sample collection and analysis 
delays. Because these mathematical models take fractions 
of a second to simulate, it is easy to conduct Monte 
Carlo-type simulations where parameters are varied over 
physiologically relevant ranges to test the robustness of 
proposed algorithms. The approach developed by Lin 
and co-workers21 created a virtual cohort of 200 patients 
tested in simulated clinical trials. This procedure was 
validated by statistical comparison of simulation results 
with actual clinical trials, providing confidence in new 
control strategies that are tested using simulated trials. 

Remarks on Important Topics for Further 
Analysis
There is a need for critical analysis of blood glucose 
sample time selection and updating based on current and 
recent glucose values. It is likely that industrial statistical 
process control techniques, which are often used in 
discrete manufacturing systems, can play an important 

role in glucose measurement time modification. In discrete 
parts production there is a desire to not make frequent 
adjustments to manufacturing equipment, as this often 
involves manual shutdown and mechanical adjustments. 
Note that this is a problem related to “input” changes. 
In the ICU there is a desire to minimize the frequency 
of glucose measurements performed, as this involves 
substantial effort from the nursing staff to collect a blood 
sample and analyze the glucose concentration. This is a 
problem related to “output” collection. Even when there 
is automated collection and measurement of a blood 
sample, there may be a desire to limit the frequency of 
collection because of blood loss and/or analyzer “wear 
and tear.”

Standard discrete control theory techniques are based on 
a constant sample time. Also, parameters and variables 
are assumed to vary continuously rather than having 
discrete values. Algorithms such as CID have calculated 
gains that take on discrete values and thus need to be 
analyzed in a hybrid analysis framework using integer 
and continuous variables. 

We are a proponent of model-based techniques, such as 
model predictive control (MPC), that calculate control 
actions (insulin infusion rates) based on a mathematical 
model relating insulin and glucose dynamics. For high-
performance systems it is important to have a model that 
adapts to match current input–output behavior. For ICU  
blood glucose control with samples available at 1-hour 
intervals, data may not be “rich” enough to update 
model parameters enough to have a significant impact 
on control system performance. When more frequent 
glucose samples are taken (perhaps using a continuous 
subcutaneous sensor), and more frequent insulin infusion 
adjustments are made, model adaptation is more likely 
to be successful.

Plank and co-workers3 presented results of a trial of  
60 patients undergoing cardiac surgery at three different 
ICU using MPC to manipulate insulin infusion rates to 
regulate blood glucose. The MPC strategy resulted in 
a significantly higher percentage of time spent in the 
targeted glycemic range compared to the use of routine 
protocols. Van Herpe et al.5 also developed a MPC 
strategy for ICU blood glucose control. While not tested 
in a clinical study, MPC-recommended infusions were 
compared with those actually administered by nurses to 
confirm the viability of the algorithm. 

In this article we have not discussed enteral or 
IV glucose feeding strategies, although it is clearly 

time, hr

Figure 7. Comparison of closed-loop responses for CID, GRIP (revised), 
and PID for a simulated subject (GE = 300 mg/dl). (Top) Blood glucose 
values. (Bottom) Insulin infusion rates.
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important to consider this in control system design and 
implementation. Hovorka and Cordingley22 studied the 
effect of parenteral glucose feeding on glucose control in 
critically ill patients using the insulin infusion protocol 
proposed by Kanji et al.23 Hovorka and Cordingley22 
showed that the dynamic response of glucose 
concentration to insulin infusion is much faster when 
parenteral glucose feeding is used compared to the case 
of no glucose feeding. Wong et al.4 and Lonergan et al.24 
discussed simultaneous manipulation of nutrition 
(using enteral glucose feeding) and insulin infusion 
rate to regulate blood glucose based on the three-state 
physiological model presented in the Appendix. 

An advantage to model-based algorithms is that they can 
change glucose feeding on a short interval to improve 
glucose concentration control, while assuring that a 
desired daily nutrition requirement is maintained. A major  
advantage to model predictive control is that it is easy 
to implement two manipulated inputs (insulin infusion 
and glucose feed) with one desired output (glucose 
concentration) and to incorporate constraints such as 
meeting daily average glucose feed requirements. 

Conclusions
The PID, CID, and GRIP algorithms for ICU blood 
glucose control were analyzed based on systems theory 
and classical feedback control principles. The basis for 
the CID algorithm was shown to be a proportional-only 
controller, without an integral term, resulting in offset 
(steady-state glucose differing from the desired setpoint), 
although the varying gain factor did act to reduce offset 
somewhat. The GRIP algorithm has a controller gain 
that varies as a function of the average insulin infusion 
rate and includes integral and derivative terms. A minor 
modification to the GRIP algorithm was proposed to 
substantially improve its closed-loop performance. In an  
in silico simulation study, the three algorithms were 
shown to have similar closed-loop performance. It was 
suggested that statistical process control techniques may 
be useful for recommending changes in the glucose 
sample time and that hybrid analysis (combined integer 
and continuous variables) techniques are appropriate for 
further study of these algorithms.
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Appendix. Simulation Model and Algorithm Details

A1. Simulation Model
The physiological model used in our simulation studies is presented elsewhere.4 

The equations are

where the parameters and variables are defined as (example values are shown in parentheses)

G is the glucose concentration, as a perturbation from GE

GE is the equilibrium glucose concentration, with no external glucose feeding or insulin infusion
Q is the insulin concentration that affects glucose directly
I is the insulin concentration in the insulin compartment
pG is the glucose clearance rate (0.02 min-1)
SI is the insulin sensitivity [0.002 liters/(min·mU)]
αG is a parameter that accounts for saturation of the insulin effect on glucose (1/65 liters/mU)
Gf is the glucose feed rate directly into the glucose compartment
VG is the glucose distribution volume (15 liters)
k is the rate constant for insulin transfer into the effective compartment (0.0099 min-1)
n is a parameter (0.16 min-1)
αI is a saturation parameter (0.0017 liters/mU)
VI is the insulin distribution volume (12 liters)
uex is the exogenous insulin infusion rate

Hann and colleagues25 presented a novel integral-based technique to estimate the time-varying values of pG and SI. For 
the simple examples in this article, we assumed that these parameters were constant for each simulation. In practice, it 
is important to account for the time-varying nature of insulin sensitivity, in particular. 

A2. Discrete PID Algorithms
Wintergerst et al.16 used the following form

	 u(k) = P(k) + I(k) + D(k),

where the P, I, D terms are
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and the integral term is “clipped” depending on the glucose level. The sample time can vary from 20 to 120 minutes, 
as selected by the following algorithm

	

Their studies used τI = 150 minutes and τD = 30 minutes, with kc varied from –0.3 to –1.6 (mU/kg/h)/(mg/dl).

In our simulation studies, Equation (4) is used with kc = –0.035 (U/h)/(mg/dl), τI = 150 minutes, and τD = 30 minutes.

A3. Columnar Insulin Dosing 
The CID algorithm includes a method to modify the “multiplying factor,” which is really the proportional gain in a 
proportional-only control strategy. First, an average of the current and previous glucose measurements is made

	
The multiplying factor is calculated in the following fashion

	

The multiplying factor is initiated with f(1) = 0.02, and a constraint of f(k) ≥ 0.01 is imposed.

Also, the insulin infusion rate at time step k is found from the average glucose value (previous and current time steps) 
and the multiplying factor at the current time step 

	



824

Analysis of Algorithms for Intensive Care Unit Blood Glucose Control Bequette

www.journalofdst.orgJ Diabetes Sci Technol Vol 1, Issue 6, November 2007

A4. Stability Analysis of the GRIP Algorithm
Using standard techniques,11 we linearized the subject model for GE = 200 mg/dl (Appendix A1) at a steady-state 
glucose value of 100 mg/dl to find

	

and discretized the linear model with a sample time of 60 minutes. Taking the Z transform of the model, we 
obtained

	

Similarly, we linearized the discrete GRIP algorithm, as published, at the steady-state glucose value of 100 mg/dl and 
used Z transforms to obtain

	

The stability test is then performed by finding the poles of 1 + gc(z)gp(z), which are

1.0920 + 0.2767i
1.0920 – 0.2767i
0.1382 + 0.6599i
0.1382 – 0.6599i

–0.3740 + 0.2104i
–0.3740 – 0.2104i
–0.0081 

Poles with a magnitude greater than 1 indicate that the closed-loop system is unstable. However, our modification to 
the control law yields

	

Analysis of 1 + gc(z)gp(z) yields poles with values of 

 0.8832 + 0.4122i
 0.8832 – 0.4122i

 –0.0382
 –0.0238 

which all have a magnitude less than 1, indicating that the closed-loop system is stable.


