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SYMPOSIUM

Abstract
Background:
The development of artificial pancreas has received a new impulse from recent technological advancements 
in subcutaneous continuous glucose monitoring and subcutaneous insulin pump delivery systems. However, 
the availability of innovative sensors and actuators, although essential, does not guarantee optimal glycemic 
regulation. Closed-loop control of blood glucose levels still poses technological challenges to the automatic 
control expert, most notable of which are the inevitable time delays between glucose sensing and insulin 
actuation.

Methods:
A new in silico model is exploited for both design and validation of a linear model predictive control (MPC) 
glucose control system. The starting point is a recently developed meal glucose–insulin model in health, which 
is modified to describe the metabolic dynamics of a person with type 1 diabetes mellitus. The population 
distribution of the model parameters originally obtained in healthy 204 patients is modified to describe 
diabetic patients. Individual models of virtual patients are extracted from this distribution. A discrete-time 
MPC is designed for all the virtual patients from a unique input–output-linearized approximation of the full 
model based on the average population values of the parameters. The in silico trial simulates 4 consecutive 
days, during which the patient receives breakfast, lunch, and dinner each day.

Results:
Provided that the regulator undergoes some individual tuning, satisfactory results are obtained even if the 
control design relies solely on the average patient model. Only the weight on the glucose concentration error 
needs to be tuned in a quite straightforward and intuitive way. The ability of the MPC to take advantage of meal 
announcement information is demonstrated. Imperfect knowledge of the amount of ingested glucose causes 
only marginal deterioration of performance. In general, MPC results in better regulation than proportional 
integral derivative, limiting significantly the oscillation of glucose levels.

continued  
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Introduction

The development of artificial pancreas, e.g., a closed-
loop control system for maintaining normoglycemia in 
type 1 diabetes mellitus (T1DM), has been envisaged and 
discussed since the 1970s.1,2 However, devices requiring 
intravenous blood glucose sampling and intravenous 
glucose and insulin delivery, such as the Biostator™, 
were not suitable for outpatient use. Recent technological 
advancements in subcutaneous continuous glucose 
monitoring and subcutaneous insulin delivery systems 
have paved the way to the development of minimally 
invasive glucose control systems.2,3 

However, the availability of innovative sensors and 
actuators, although essential, does not guarantee the 
achievement of optimal glycemic regulation under all 
conditions. Closed-loop control of blood glucose levels 
still poses technological challenges to the automatic 
control expert. 

The principal obstacle to satisfactory closed-loop control 
is the presence of significant disturbances (i.e., meals 
and physical activity) and delays in the effect of meals 
and subcutaneous insulin on glycemia and furthermore 
from glycemia to measured subcutaneous glucose. 
Moreover, the control system must satisfy constraints 
on both plasma glucose levels and insulin delivery rates. 
These features explain the difficulties encountered when 
standard proportional integral derivative (PID) controllers 
are employed. Model predictive control (MPC) is likely to 
be the most suitable approach to design control systems 
in the presence of delays and constraints.4,5 Compensation 
for delays by means of feed-forward action, as well as 
constraint handling, is naturally incorporated in the 
design process. For the possible application of MPC 
strategies to glucose control in T1DM, the reader is 
referred elsewhere.2,6,7

The comparison of different control algorithms is 
facilitated greatly by the availability of reliable large-
scale simulation models. In fact, in silico trials are 
perhaps the best way to address the robustness of the 
artificial pancreas against interindividual variability prior 
to conducting in vivo clinical trials. Until recently, the 
drawback of large-scale computer simulation models was 
the difficulty of identifying all relevant parameters from 
plasma concentration measurements. Recently, a new 
generation in silico model of the glucose–insulin system 
has been developed from the analysis of 204 nondiabetic 
individuals with various degrees of glucose tolerance 
who underwent a triple tracer meal protocol.8 This way, 
it was possible to obtain glucose and insulin fluxes 
during a meal independently of the model. Exploiting 
the knowledge of glucose production, utilization, rate of 
appearance in plasma, and pancreatic insulin secretion, 
it is possible to identify the various unit processes of the 
system through a subsystem forcing function strategy.

In this article, the new in silico model is exploited for 
both design and validation of a linear MPC system. First, 
the model is modified to provide a good description 
of the metabolism in T1DM. Then, a linearization of 
the model around basal values is used to design a 
linear MPC scheme. A major problem for the artificial 
pancreas is guaranteeing satisfactory performance under 
conditions of metabolic disturbance and interindividual 
variability. In order to validate this aspect, the population 
distribution of the model parameters of the healthy 
204 individuals was modified to obtain the parameter 
distribution of diabetic patients. Individual models of 
virtual patients are then extracted from this distribution. 
The availability of realistic individual models is the basis 
for conducting an in silico trial: the closed-loop control 
can be tuned individually and then tested on each virtual 

Abstract cont.

Conclusions:
The proposed in silico trial shows the potential of MPC for artificial pancreas design. The main features are 
a capability to consider meal announcement information, delay compensation, and simplicity of tuning and 
implementation.
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patient, possibly injecting disturbances and uncertainties 
in order to assess robustness of control. The protocol 
simulates 4 days during which the patient receives 
breakfast, lunch, and dinner each day. The performance 
of the MPC system is compared to the performance of a 
standard PID controller.

Methods
In order to synthesize and test the controller, we used 
the meal glucose–insulin model.8 Some modifications 
have been introduced in order to simulate the metabolic 
specifics of T1DM.

Model of Glucose–Insulin Dynamics
Glucose Intestinal Absorption. Glucose intestinal absorption 
was modeled by a recently developed three-compartment 
model9

(1)

where Qsto (mg) is the amount of glucose in the stomach 
(solid, Qsto1 , and liquid phase, Qsto2 ), Qgut (mg) is the glucose 
mass in the intestine, kgri is the rate of grinding, kabs is 
the rate constant of intestinal absorption, ƒ is the fraction 
of intestinal absorption that actually appears in plasma, 
d (mg/min) is the rate of ingested glucose, BW (kg) is body 
weight, Ra (mg/kg/min) is the glucose rate of appearance 
in plasma, and kgut is the rate constant of gastric emptying, 
which is a time-varying nonlinear function of Qsto

where  and  are the initial and final times of the last 
ingestion, while a, b, kmax , and kmin are model parameters.

Glucose Subsystem. A two-compartment model is used to 
describe glucose kinetics10 

(2)

where Gp (mg/kg) and Gt (mg/kg) are glucose masses in 
plasma and rapidly equilibrating tissues and in slowly 
equilibrating tissues, respectively, EGP is endogenous 
glucose production (mg/kg/min), E (mg/kg/min) is 
renal excretion, Uii and Uid are insulin-independent and 
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-dependent glucose utilizations, respectively (mg/kg/min), 
and k1 and k2 are rate parameters.

Glucose Renal Excretion. Renal excretion, which occurs if 
plasma glucose exceeds a certain threshold, is modeled 
as follows11

(3)

where ke1 is the glomerular filtration rate and ke2 is the 
renal threshold of glucose.

Endogenous Glucose Production. EGP comprises a direct 
glucose signal and a delayed insulin signal12

(4)

where the delayed insulin signal Id (pmol/liter) is given 
by

(5)

where I (pmol/liter) is the plasma insulin concentration, 
kp1 is the extrapolated EGP at zero glucose and insulin, kp2 
is liver glucose effectiveness, kp3 is a parameter governing 
the amplitude of insulin action on the liver, and ki is the 
rate parameter accounting for the delay between insulin 
signal and insulin action.

Glucose Utilization. Glucose utilization consists of two 
components: an insulin-independent glucose utilization 
Uii, which represents the glucose uptake by the brain 
and erythrocytes, and an insulin-dependent component 
Uid, which depends nonlinearly on glucose concentration 
in the tissues13: 

(6)

where Km , Vm0 , and Vmx and are model parameters,  
X (pmol/liter) is the remote insulin signal, Ib (pmol/liter) 
is the basal insulin level, and p2U is a rate constant of 
insulin action on peripheral glucose utilization.

Subcutaneous Insulin Kinetics. This article adopts a 
variation of a model described in Verdonk et al.13:

(7)

where u(t) (pmol/kg/min) represents the administration 
(bolus and infusion) of insulin. The first compartment 
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represents the amount of nonmonomeric insulin in the 
subcutaneous space, which is partly transformed into 
monomeric insulin (second compartment) and partly 
enters the circulation with rate constants of insulin 
absorption ka1 and kd , respectively; the monomeric insulin 
is finally absorbed with rate constant ka2 .

Insulin Subsystem. The model equations are 

(8)

where Ip(t) = VII(t) (pmol/kg) and Il (pmol/kg) are insulin 
masses in plasma and in liver, respectively, VI (liter/kg) 
is the body weight-normalized insulin volume, and mi , 
i = 1,...,4 are model parameters.

Subcutaneous Glucose Kinetics. Subcutaneous glucose 
concentration GM (mg/dl) is obtained as

(9)

where VG (dl/kg) is the body weight-normalized glucose 
volume and ksc is a rate constant.

Virtual Patient Generation. In order to obtain parameter 
joint distributions in T1DM, the parameters identified 
in 204 healthy subjects were used as a starting point.8 
Some modification was needed to realistically describe 
the metabolism of a person with T1DM. The basal 
glucose concentration was assumed to be on average 
50 mg/dl higher than in nondiabetic individuals, the 
insulin concentration (due to an external insulin pump) 
was assumed to be on average four times higher than in 
nondiabetic individuals, endogenous glucose production 
was assumed to be 35% higher than in nondiabetic 
individuals, and insulin clearance was assumed to be one-
third lower than in nondiabetic individuals. Parameters 
relating to insulin action on both glucose production 
and utilization were assumed to one-third lower than in 
nondiabetic individuals. For all parameters and variables, 
the same intersubject variability of nondiabetic subjects 
was maintained. The parameters were assumed to be log-
normal distributed to guarantee that they were always 
positive. A covariance matrix (26 × 26) was calculated 
using the log-transformed parameters. One hundred 
subjects were generated using the joint distribution, 
i.e., 100 realizations of the log-transformed parameter 
vector were extracted randomly from the multivariate 
normal distribution with a mean equal to the mean of 
the log-transformed parameters and a 26 × 26 covariance 
matrix. Finally, the parameters in the 100 virtual subjects 
were obtained by antitransformation.

.

.
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Performance Assessment
Virtual Protocol. The performance of closed-loop glucose 
control was tested on a 4-day virtual protocol:

• simulation starts at basal value and the first meal is 
dinner at 7:30 pm of day 1; the patient has breakfast 
at 9:30 am with 45 grams of glucose, lunch at 1:30 pm 
with 75 grams of glucose, and dinner at 7:30 pm with 
85 grams of glucose 

• in the first part of the simulation, the virtual “patient” 
receives a subcutaneous bolus based on an open-loop 
strategy, while at 9:30 pm of day 2 the controller is 
plugged in. Thereafter, the piecewise constant insulin 
delivery is governed by the closed-loop controller and 
no further bolus is administrated.

The virtual protocol has been designed so as to 
reproduce a likely clinical trial conducted on real 
patients. In particular, the first open-loop phase serves 
as an observation window during which individual 
patient information may be collected. Insulin delivery 
during closed-loop control is piecewise constant and is 
updated every 30 minutes. Shorter sampling intervals 
are technologically possible but are not compatible with 
medical supervision likely to be required in the first 
clinical trials on real patients.

Performance Indices. Some established indices of glucose 
control are considered.

• Low blood glucose index (LBGI)14: given n samples of 
plasma glucose concentration Gp(i)

where rl(·) = 10(g((ln(·))a – b))2 if g((ln(·))a – b) <0 and zero 
otherwise. The positive parameters g, a, and b are such 
that rl(70) = rl(280) = 25 and rl(50) = r(400). This index 
captures the propensity of the algorithm to overshoot 
the target and possibly trigger hypoglycemia.

• High blood glucose index (HBGI)14 : directly linked to 
LBGI, it captures the propensity of the algorithm to 
stay above the target range

where rh(·) = 10(g((ln(·))a – b))2 if g((ln(·))a – b) >0 and zero 
otherwise.

Coefficients of LBGI and HBGI have been modified 
with respect to literature values to better suit control 
performance results.
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• Minimum of blood glucose concentration Gp /VG  
(Min_Glycemia).

• Maximum of blood glucose concentration Gp /VG 
(Max_Glycemia). 

In order to allow for the transition from open-loop to 
closed-loop regulation, all indices are computed for two 
different periods: commutation from 9:30 pm of day 2 to 
8:00 am of day 3 and regulation after 8:00 am of day 3. 

Model Predictive Control
The glucose metabolism model can be rewritten in the 
following compact way:

(10)

where x = [Qsto1 , Qsto2 , Qgut , Gp , Gt , Ip , X, I1, Id, Il, S1, S2, GM ], 
and ƒ is derived from the model equations reported in 
the previous section. In the following, it is assumed that 
meal announcement is available, i.e., the disturbance 
signal d (the meal) is known in advance.

The MPC control law is based on the solution of a finite 
horizon optimal control problem (FHOCP), where a cost 
function  is minimized with respect to the input u 
subject to the state dynamics of a model of the system. 
Letting u° be the solution of the FHOCP, according to 
the receding horizon paradigm, the feedback control law 
u = kMPC(x) is obtained by applying only the first element 
of the optimal solution to the system. This way, a closed-
loop control strategy is obtained solving an open-loop 
optimization problem.

Model predictive control laws can be formulated for both 
discrete- and continuous-time systems. In this article, a 
discrete-time MPC is derived from a unique input–output-
linearized approximation of the full model based on the 
average population values of the parameters.

Given the average basal values of Gp , Gt , and Ip in the 
population, the associated equilibrium point with d = 0 
is indicated by . Around this equilibrium 
point, assuming kgut (t, Qsto) = (kmax – kmin)/2, the system 
is linearized and discretized with sample time Ts = 30 
minutes, yielding 

(11)

w h e r e  ,  ,  a n d 
. After some passages, including a model 

reduction step derived through a balanced realization of 

.

.

.

.

the linearized system and a truncation of the state vector 
(the MATLAB Control Systems Toolbox instruction modred 
was used), the system is rewritten in the following state-
space (nonminimal) representation 

(12)

where xIO(k + 1) = [δy(k + 1), δy(k), δy(k–1), δu(k), δu(k–1), d(k), 
d(k–1)]’, and the matrices AIO, BIO, MIO, and CIO are defined 
accordingly.

In order to derive the MPC control law, the following 
quadratic discrete-time cost function is considered 

(13)

where q is a positive constant.

The solution of the optimization problem has the 
following structure: 

(14)

where y0 is the future (constant) value of the set point, 
D(k) = [d(k), d(k + 1),…, d(k + 7), d(k + 8)] is the disturbance 
signal (meal), and Gy0 

, GxIO 
, GD are suitable matrices.

If the calculated insulin rate u(t) is negative, a zero value 
will be applied to the system. The fulfilment of the state 
constraints, however, cannot be guaranteed; it is only 
possible to tune the parameter q so as to improve the 
regulation performance. The major advantages of this 
input–output MPC scheme are that an observer is not 
required (xIO is made of past input and output values) 
and that it is easily implementable because real-time 
optimization is avoided.

Model predictive control, in general, has several 
independent tuning parameters: control and prediction 
horizon, output and input weights, and terminal penalty. 
However, as better illustrated in the Results section, the 
main advantage of the adopted choice is the possibility 
to achieve satisfactory results tuning only one parameter 
(the output weight q, which is also equal to the weight 
in the terminal penalty) in a quite straightforward and 
intuitive way. 

With a relatively small increase of the computational 
burden it is possible to consider both input and state 
constraints explicitly by solving a constrained linear 
quadratic optimization problem. In this article, results 
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obtained with constrained linear MPC are not reported 
because they did not show any significant improvement 
in our experiments. In fact, the explicit consideration of 
only input constraints does not improve the performance 
of the unconstrained saturated control law, whereas 
the fully constrained problem, i.e., also with state 
constraints, introduces nontrivial feasibility problems 
as a consequence of the approximation error caused 
by linearization and model reduction. Further work is 
required to explore this issue.

At the cost of a significant increase of the computational 
burden, a nonlinear MPC approach could be pursued. 
The main advantages would be the possibility to take 
into account nonlinear dynamics and a more robust 
fulfilment of state constraints. Of course, this calls for a 
well-identified patient model. Some preliminary results 
are presented in Magni and colleagues.15 

Proportional Integral Derivative Control
In order to assess the performance of the proposed 
control methodology, comparison with a classical 
PID control law is considered. The control law in the 
different experiments has been tuned on either the 
average patient or individually. In the latter case, only 
the proportional gain Kp has been modified. Moreover, 
the PID controller incorporates a feed-forward action 
in order to take advantage of the knowledge of meal  
amount. The parameters of the PID are Ti = 210 and 
Td = 40, where Ti and Td are integral and derivative times, 
respectively. The feed-forward action from the meal 
signal to insulin rate is given by a transfer function with 
gain 0.0022. Both the PID and the feed-forward action 
have been implemented in discrete time with sampling 
period Ts = 30 minutes. In order to obtain discrete-time 
implementation, an FOH approximation method was 
used together with an antiwindup scheme.

Results
Experiment 1: The ingested amount of glucose is exactly 
as considered in the protocol. One hundred subjects are 
simulated using an MPC control law synthesized with 
q = 0.003 for all subjects and the set point is 112 mg/dl. 
Experiment 2: The same as experiment 1, but this time q 
has been tuned for each subject.
Experiment 3: The same as experiment 2, but without 
meal announcement.
Experiment 4: The ingested amount of glucose is varied 
randomly within ±40% of the nominal value for all 100 
patients. The MPC control law has the same parameters 

as those used for experiment 2 and relies on the nominal 
glucose dose to decide the feed-forward action.
Experiment 5: The same as experiment 1, but using a PID 
control law with Kp = -7.09 × 10-4 for all subjects.
Experiment 6: The same as experiment 5, but the gain of 
the PID is tuned individually. 
Experiment 7: The same as experiment 6, but without 
meal information.
Experiment 8: The same as experiment 4, using a PID 
control law with meal information.

Experiment Evaluation 
Figure 1 shows the scatter plots of Min_Glycemia vs 
Max_Glycemia during regulation for experiments 1–8.  
In particular, the six panels in Figure 1 contain the following 
comparisons: (A) experiments 1 and 2, (B) experiments 5 
and 6, (C) experiments 2 and 3, (D) experiments 6 and 7,  
(E) experiments 2 and 4, and (F) experiments 6 and 8. 
Note that the panels in the left column (A, C, and E) 
refer to MPC, whereas the results of PID control are 
reported in the right column (B, D, and F). Note that in 
the scatter plot well-regulated patients should stay close 
to the lower left corner. 

Figure 2 shows the effect of a change of the MPC 
parameter q on the scatter plot (Min_Glycemia,  
Max_Glycemia) for experiment 2. More precisely, the 
individually tuned values of q were all scaled by the 
constant factor 0.8. The corresponding points, before 
(full dots) and after (star-circle) scaling, are connected 
to each other.

In Figure 3, the box plots for LBGI and HBGI are 
reported for experiments 1–8 during both commutation 
(“c”) and regulation (“r”) periods.

In Figure 4, the MPC and PID control schemes are 
compared in subject 36 showing plasma glucose and 
external insulin evolution. In order to have a global 
comparison of the relative performance of the two 
control strategies for all subjects, the scatter plots of  
Min_Glycemia vs Max_Glycemia in Figure 5 are reported 
for experiments 2 and 6.

In reference to the regulation period, it is apparent from 
Figure 1 that both MPC and PID control achieve good 
regulation performance even if their design is based 
only on the average patient model. However, in view of 
significant interindividual variability, their performance 
is enhanced considerably if the control parameters 
(MPC parameter q and PID gain, respectively) are tuned 



810

Model Predictive Control of Type 1 Diabetes: An in Silico Trial Magni

www.journalofdst.orgJ Diabetes Sci Technol Vol 1, Issue 6, November 2007

Figure 1. Experiments 1–8: scatter plots of Min_Glycemia vs Max_Glycemia. Each plot compares the results of two experiments. A, C, and E refer to 
MPC (°, experiment 1; ®, experiment 2; +, experiment 3; ×, experiment 4), whereas B, D, and F refer to PID control (°, experiment 5; ®, experiment 6; 
+, experiment 7; ×, experiment 8). Well-regulated patients should stay close to the lower left corner.
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individually (see Figures 1A and 1B). The tuning of 
parameter q is straightforward and intuitive: a reduction 
of q makes the control action less aggressive, thus using less 
insulin. This implies an increase of both Min_Glycemia 
and Max_Glycemia, as shown in Figure 2. The ability 
of MPC to take advantage of meal announcement is 
shown in Figure 1C. As seen in Figure 1D, there is 
performance deterioration when meal information is not 
considered also with PID control. Imperfect knowledge 
of the amount of ingested glucose (experiments 4 and 8) 

Figure 4. Subject 36: experiment 2 (MPC, continuous line) and 
experiment 6 (PID, dashed line).

Figure 5. Scatter plots of Min_Glycemia vs Max_Glycemia for 
experiments 2 (•) and 6 (°).

Figure 3. Box plots for LBGI and HBGI for experiments 1–8 during both 
commutation (“c”) and regulation (“r”) periods.

Figure 2. Min_Glycemia vs Max_Glycemia during regulation for 
experiment 2 with the individually tuned values of q (full dot) and with 
same values of q scaled by the constant factor 0.8 (star-circle).
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causes only a marginal deterioration of performance of 
the regulator for MPC, whereas a greater deterioration 
is observed for PID control (Figures 1E and 1F). This 
difference is also highlighted by the LBGI and HBGI 
box plots reported in Figure 3. Robustness in the face 
of meal announcement information is essential because 
the feed-forward action relies on presumed knowledge 
of meals that are 4 hours ahead. It is remarkable that 
MPC achieves satisfactory results even with a 40% meal 
uncertainty.

As evident from Figure 4, the MPC controller normalizes 
glycemia very quickly, even if starting from unfavorable 
initial conditions. The transient of external insulin shows 
that the insulin flux increase anticipates the meals. This 
is because of the predictive ability of MPC that computes 
the current value of the insulin infusion also based on 
the future values of the meals (see the vector D(k) in the 
control law14).

Final ly,  Fig ure 5 shows that,  using the best 
implementations (e.g., individual tuning), MPC produces 
a better regulation than PID, limiting glucose oscillation 
significantly.

Conclusions
The in silico trial has demonstrated that linear output 
feedback MPC achieves satisfactory glycemic regulation 
in a population of simulated “type 1 diabetic patients.” 
The proposed scheme is robust with respect to uncertainty 
in the meal announcement information. Robustness 
with respect to sensor errors could be investigated by 
complementing the simulator with a probabilistic model 
of sensor noise. Another future research direction 
concerns the development of nonlinear MPC that could 
take advantage of the knowledge of the nonlinear 
dynamics described by the large-scale in silico model.
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