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Abstract
Obesity is the most common nutritional disorder of cats and is a risk factor for diabetes. Similar to developments  
in obese people, obese cats show peripheral tissue insulin resistance and may demonstrate glucose intolerance 
when challenged with pharmacological amounts of glucose. However, they compensate well for the insulin 
resistance and do not show elevated glucose concentrations when monitored during their regular daily routine, 
including postprandial periods. This is possible because obese cats in the fasted and postprandial state are able  
to maintain hepatic insulin sensitivity and decrease endogenous glucose production, which allows them to maintain 
normoglycemia. Also dissimilar to what is seen in many obese humans, cats do not develop atherosclerosis and 
clinical hypertension. The time course for progression to overt diabetes of obese cats is unknown. One might 
speculate that diabetes develops when the liver finally becomes insulin resistant and/or insulin secretion becomes 
too low to overcome increased glucose production. In addition, amyloid, demonstrated to be deposited in islet 
of chronically obese cats, may contribute to a reduction in insulin secretion by reducing functional β-cell mass.
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SYMPOSIUM

Introduction

Obesity is a risk factor for diabetes in both humans 
and cats.1,2 Obesity is well defined in people. In cats, 
obesity can be assessed subjectively using the body 
scoring system developed by Laflamme.3 Objective ways 
to judge obesity in cats also exist but are not usually 
perfomed in clinical practice. Body mass index (BMI) 
is well known from human medicine, where it is used 
ubiquitously to assess adiposity. It can be calculated in 
cats according to the following formula:4

BMI = body weight (kg) / [body length (m) × height (m)],

where height is the distance from the point of the 
shoulder through the point of the elbow to the proximal 
boundary of the metacarpal pad and length is the distance 
from the point of the shoulder to the tuber ischium.  
The feline body mass index is calculated according to the 
following formula:

Percentage body fat = [(rib cage / 0.7062) – LIM / 0.9156] 
– LIM,

where rib cage is the rib cage circumference in centimeters 
and LIM is the length of the lower leg from the middle 
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of the patella to the dorsal tip of the calcaneal process in 
centimeters.5 Obesity also can be assessed by measuring 
the girth circumference immediately caudal to the last 
rib.6 Both girth and BMI measurements do not need any 
specialized equipment. Highly sophisticated evaluations 
of adiposity include dual energy X-ray absorptiometry 
(DEXA) and magnetic resonance imaging.7,8 The latter 
allows the exact localization of fat depots in the body, 
which is not possible with DEXA. We have found that 
BMI and girth correlate well with DEXA results and 
are excellent objective markers of adiposity that could 
be used by clinicians. When cats become obese, both 
abdominal subcutaneous and visceral fat mass increase 
to the same extent,7 which contrasts with human subjects, 
where obesity is usually associated with a larger increase 
in abdominal visceral than abdominal subcutaneous 
obesity.9 There are no published data on veterinary 
standards for lean, overweight, or obese cats for any of 
the objective measurements to date. However, results of 
objective obesity measurements have been described in 
lean and obese cats, which have been used in research 
projects (e.g., Reference 7); they were mostly domestic 
shorthair cats.

The prevalence of feline obesity seems to be increasing 
and so is the prevalence of diabetes. Obesity is now seen 
in approximately 35% to 50% of cats.2,10 Feline diabetes 
has increased from 0.08% to 1.2 % in three decades in 
the United States.11 A prevalence of 0.4% was recorded 
in the United Kingdom.12 Diabetes is usually seen in 
older cats implying that pathophysiological mechanisms 
involved in the progression from obesity to diabetes may 
require years to develop. Obviously, not all obese cats 
become diabetic and, similar to other species, genetic, 
environmental, and metabolic factors may significantly 
influence the response to long-term obesity.

Glucose homeostasis depends on β-cell function, 
endogenous glucose production (EGP) by the liver, and 
glucose utilization in peripheral tissues, primarily muscle. 
The hallmark of diabetes in people is hyperglycemia,  
which develops when peripheral tissues and the liver 
become resistant to the effect of insulin, when EGP 
increases, and when insulin secretion becomes 
abnormal.13 It would be advantageous to find markers 
that forebode impending diabetes before overt 
hyperglycemia is obvious. Pursuant to this goal, the 
obese cat has been used in several studies as a model to 
elucidate factors contributing to progression from obesity 
to diabetes.

Insulin Sensitivity/Resistance Is  
Tissue Specific

Peripheral insulin resistance usually describes the loss of 
insulin action in muscle and adipose tissue. Obese cats 
have increased amounts of intramyocellular and extra-
myocellular fat,7 which has been associated in people with 
a loss of insulin sensitivity.14 The higher amount of fat 
in muscle is due to a shift in the expression and activity 
of lipoprotein lipase. This enzyme responsible for uptake 
of fatty acids into tissues is lower in adipose tissue but 
higher in muscle tissue, leading to a partitioning of fatty 
acids to muscle.15 It has also been shown that tumor 
necrosis factor-α expression is higher in adipose tissue 
in obese cats,15 and this cytokine has been purported to 
downregulate lipoprotein lipase.16,17 The loss of insulin 
sensitivity in muscle tissue is not always accompanied 
by a loss of insulin sensitivity in fat tissue. During the 
euglycemic hyperinsulinemic clamp (EHC), nonesterified 
fatty acids were suppressed to a significantly higher 
degree in cats on a high-carbohydrate diet but not in 
those on a high-protein diet, indicating that insulin 
sensitivity is regulated in a tissue-specific way and can 
be influenced by diet.7 The greater insulin sensitivity of 
adipose tissue in that study, however, did not lead to a 
greater fat deposition, likely because the high insulin 
concentrations achieved during the clamp exceed the 
physiological insulin response after regular food intake. 
It is also possible that diet influenced nonesterified fatty 
acid metabolism independently of the action of insulin. 
A similar suppression of nonesterified fatty acids has 
also been seen during the intravenous glucose tolerance 
test (IVGTT).18

As stated earlier, glucose homeostasis not only depends  
on peripheral glucose uptake, but also on the EGP by 
the liver. In order to evaluate glucose output by the liver, 
a noninvasive approach employing nuclear magnetic 
resonance spectroscopy was used. This method has been 
used in humans,19 rats,20 and mice21 to investigate 
metabolic pathways in glucose production using a triple 
tracer method. Applying this method, it is possible to 
detect key steps in glucose metabolism (glucose turnover 
and gluconeogenic fluxes) with a single blood sample 
using stable, nonradioactive isotopes [2H2O, (U-13C3) 
propionate, and (3,4-13C2) glucose]. We utilized this 
methodology to study the metabolic pathways involved 
in glucose metabolism in lean and obese neutered male 
and female cats. We hypothesized that the insulin 
resistance of obese cats will be reflected in the activity 
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of different metabolic pathways leading to hepatic 
glucose production. However, we found that obese cats 
compensate well for the peripheral insulin resistance 
by maintaining insulin sensitivity in the liver, allowing 
them to decrease EGP and to maintain normal blood 
glucose concentrations not only in the fasted, but also in 
the postprandial state.22,23 This was partially accomplished 
through pyruvate cycling. This futile cycle was higher in 
obese cats. Gluconeogenesis was the main contributor 
to EGP in fasted and postprandial cats. This was expected.  
It was, however, interesting that glycogenolysis accounted 
for approximately 35% of fluxes contributing to EGP in 
fasted cats and approximately 40% in postprandial cats. 
With the exception of one study,24 it has always been 
thought that cats do not produce much glycogen,25,26 
however, this is clearly not the case. The hepatic glycogen 
content of 24 h fasted cats is similar to those found in  
people after a similar fast.27 Therefore, both gluconeogenic 
and glycogenolytic contributions to glucose production 
in the liver of cats (lean and obese) are similar to 
what has been documented in people. Histologically, 
glycogen seems to be abundant in the liver, and 
biochemical measurements show that, in 24 h fasted cats, 
approximately 5% of liver weight is from glycogen.23

Changes in Insulin Secretion during the 
Development of Insulin Resistance and 
Diabetes
Only one study has followed the insulin secretory pattern 
in response to an intravenous glucose load during the 
development of diabetes in cats. It shows that there is a 
distinct change in the secretory pattern of insulin, and 
one can distinguish different phases in the progression 
toward diabetes.28 Healthy lean cats have a biphasic 
insulin secretion pattern when stimulated with 1 g  
of glucose per kilogram body weight during an IVGTT.  
The glucose and insulin concentrations return to baseline 
at 120 min with the high dose of glucose (Figure 1). 
With the development of insulin resistance, there are 
changes in insulin secretion. Plasma insulin concentra-
tions increase to a level that is high enough to allow 
the maintenance of normal glucose tolerance. With 
continued insulin resistance, the second phase of insulin 
secretion becomes even more prominent, and there is 
approximately 50% more insulin secreted during that phase 
compared with when the cats were insulin sensitive. 
Glucose clearance is delayed in those cats; however, 
baseline glucose is still normal (Figure 2). As insulin 
resistance continues and progresses, glucose clearance 
becomes abnormal, even in the fasted basal state, and 
insulin secretion becomes erratic and much lower than 

Figure 1. Plasma glucose and insulin concentrations in eight cats after 
intravenous administration of glucose before partial pancreatectomy 
and treatment with growth hormone and dexamethasone (mean ± 
standard deviation). Reprinted with permission from American Journal 
of Pathology.28

Figure 2. Representative example of changes in glucose and insulin 
release in one cat during the diabetes induction with growth hormone 
and dexamethasone. After 2 months, delayed glucose clearance is 
seen, but baseline glucose concentrations are still normal. Reprinted 
with permission from American Journal of Pathology.28

in normal or insulin-resistant cats. These cats are now 
diabetic (Figure 3). What leads to the deterioration of 
insulin secretion is clearly not glucose toxicity, because 
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insulin secretion is abnormal long before glucose levels 
rise in the fasted state and long before glucose clearance 
becomes abnormal. In addition, one needs to consider 
that glucose concentrations in cats during their daily 
routine, including food intake, do not reach the blood 
glucose levels that are seen with the pharmacological 
amounts of glucose that are administered in an IVGTT, 
as described earlier.

It is known that hypersecretion of insulin leads to 
hypersecretion of the hormone islet amyloid polypeptide, 
also called amylin (for review, see Reference 29).  
Many obese cats are hyperinsulinemic for many years 
and also show hyperamylinemia.30,31 In one study, we 
found that long-term obese old cats had fewer, but 
larger, pancreatic islets, often with pronounced amyloid 
deposition within the pancreatic islets.32 Fasting glucose 
concentrations were still normal in these cats. It has 
previously been shown that cats with impaired glucose 
tolerance have higher amyloid depositions;33,34 however, 
no change was seen in the insulin content of β cells 
in those cats as determined by immunohistochemistry. 
Therefore, with time, long-term hypersecretion of insulin 
and amylin resulting from insulin resistance leads 

to amyloid deposition and β-cell loss, likely through 
apoptosis. It is not known what amount of amyloid must 
be present before insulin secretion becomes low and erratic. 
It is also known that not all cats with diabetes have 
pancreatic amyloid and that diabetes can be transient 
despite the presence of amyloid. Nelson and colleagues34 
have shown that 3 of 5 cats with transient diabetes had 
islet amyloid, whereas 2 of 5 age-matched control cats 
also had islet amyloid, although to a much lesser degree.

One might therefore speculate that progression from 
the obese to the diabetic state is due to the following: 
(1) a decrease in insulin secretion either because of 
islet amyloid leading to islet destruction or some other 
pathophysiological mechanism leading to β-cell failure, 
the hypoinsulinemia then would lead to increased EGP 
production by the liver because the suppressive effect 
of insulin is no longer present, or (2) EGP increases 
because of hepatic insulin resistance overwhelming 
the β-cell secretory machinery and leading to β-cell 
exhaustion. A combination of both events could also 
occur simultaneously. The higher blood glucose leads 
to toxic changes of the β cells, which already have been 
described over 60 years ago by Dohan and Lukens.35

Evaluating Insulin Sensitivity and  
Glucose Tolerance
Several studies have reported that obese cats show insulin 
resistance of peripheral tissues, although only one group 
of investigators has used the EHC in obese cats, which 
is considered the gold standard method for assessing 
insulin resistance in people.12,36,37 The EHC is a method 
that measures the amount of glucose necessary to 
compensate for a constant level of hyperinsulinemia without 
causing hypoglycemia. This experimental procedure 
was first introduced to feline research by Petrus and 
coworkers.38 This test does not rely on a feline-specific 
insulin assay, because it is regular recombinant human 
insulin, which is infused in high amounts during the 
test. An insulin-sensitive cat needs more glucose than 
an insulin-resistant cat to maintain euglycemia. Using 
this method, it was documented that obese cats had 
insulin resistance and lower glucose effectiveness, i.e., 
glucose uptake that is insulin independent.7,37 It had 
also previously been demonstrated that the development 
of feline obesity is associated with a decrease in the 
insulin-dependent glucose transporter expression, glucose 
transporter-4, in muscle and subcutaneous fat, whereas 
the insulin-independent glucose transporter, glucose 
transporter-1, expression is not altered.39 

Figure 3. Representative example of changes in glucose and insulin 
release in one cat during the diabetes induction with growth hormone 
and dexamethasone. As insulin resistance continues and progresses, 
glucose clearance becomes abnormal, even in the fasted basal state. 
Insulin secretion becomes erratic and is much lower than in normal 
or insulin-resistant cats. These cats are now diabetic. Reprinted with 
permission from American Journal of Pathology.28
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Other tests have been used in cats to evaluate insulin 
sensitivity. The response to a fixed and small amount of 
insulin (0.1 U/kg) has been examined.40,41 Unfortunately, 
this amount of insulin leads to hypoglycemia. It has been 
cautioned by Brehm and associates42 that hypoglycemia 
and the subsequent release of insulin-antagonistic hormones 
will lead to overestimation of insulin resistance. 

The frequently sampled IVGTT combined with an insulin 
injection at 20 min (called modified frequently sampled 
IVGTT) has been compared with the EHC in cats36,40 
and was found to overestimate insulin resistance, and 
results were highly variable.36 Results from this test are 
analyzed with minimal model analysis. In people, the 
analysis is often performed using a computer program, 
the MinMod Millennium.43 The utility of this program 
for the accurate analysis of insulin sensitivity in cats has 
not been critically evaluated. One of the protocols, which 
has been described in cats,44 may lead to hypoglycemia 
in non-diabetic cats. Hypoglycemia, however, as stated 
earlier, needs to be avoided because it has been shown 
that the counterregulatory reflex associated with hypo-
glycemia leads to an incorrect estimation of insulin 
sensitivity.42,45 The IVGTT without insulin administration 
has been frequently performed in cats to assess primarily 
glucose disposal and occasionally to assess insulin 
sensitivity.40,41,46–49 This is a dynamic test where glucose 
is injected intravenously as a bolus and blood samples 
are taken at various intervals usually for 120 min or longer. 
Depending on the dose of glucose that is administered, 
glucose and insulin concentrations return to baseline 
levels between 60 and 90 min (0.5 g/kg body weight) 
or 90 and 120 min (1 g/kg body weight) in lean cats, 
whereas insulin concentrations remain higher in obese  
cats throughout the test, but glucose clearance is usually 
still normal.41,47 Because it is a dynamic test, it is better 
suited to examine the insulin secretory capacity of the 
β cells, especially during the earlier time points, rather 
than as a measure of insulin sensitivity, and it is difficult 
to distinguish secretion from action with this testing 
method unless specific mathematical methods are 
employed for the analysis.

Other simpler and less work-intensive methods to assess 
insulin sensitivity are available in human medicine.  
The first was the homeostatic model assessment (HOMA),50 
and a later method is the quantitative insulin sensitivity 
check.51 Both methods employ fasting glucose and insulin 
concentrations to calculate insulin sensitivity, and in people, 
both correlate reasonably with the results of clamping 
studies. These tests are based on the assumption that 
higher insulin concentrations are needed to maintain 

basal glucose concentrations in the normal range in a 
person with insulin resistance. However, it has been 
pointed out that fasting insulin concentrations not only 
indicate insulin sensitivity, but also reflect insulin secretion 
as well as metabolic clearance of the hormone. Therefore, 
they do not accurately reflect insulin sensitivity in 
patients with β-cell dysfunction.52 The HOMA has not 
been validated for use in cats or other animals, and 
according to Wallace and associates,53 “such use violates 
the assumptions of the model.” It has also been shown in 
the dog that HOMA of insulin resistance is inadequate 
to reflect changes in insulin sensitivity, and the authors 
concluded that it was necessary to use other, accurate 
indices to measure changes in insulin sensitivity.54

Lastly, the hyperglycemic clamp has been used to evaluate 
insulin sensitivity in cats.55 This method is usually 
employed to examine the β-cell secretory response to 
glucose in people (β-cell sensitivity). There, it has also 
been shown to correlate well with other indices of 
insulin sensitivity.56 A comparison of this method with 
the EHC has not been conducted in cats. 

It is obvious that much more work is needed to validate 
many of the tests that are employed in human medicine  
for use in cats, and any conclusions based on results 
from tests that have not been validated for cats need to 
be examined with caution. A confounding problem for 
assessment of insulin sensitivity is the lack of a specific  
and sensitive feline insulin assay to measure endogenous 
insulin concentrations.

A variety of questions arise from our current state of 
knowledge about assessment of the progression toward 
diabetes in cats: What do we learn from any of these tests? 
Can they be used to predict progression from obesity 
to diabetes in cats? Does peripheral insulin resistance 
predict the timeline for the development of overt 
diabetes? Would progression in cats not be indicated 
by an increase in fasting blood glucose concentrations 
and/or an increase in postprandial glucose concentrations 
similar to the diagnostic threshold for type 2 diabetes 
in people? Why are veterinarians not using fasting 
glucose concentrations or oral glucose tolerance tests as 
indicators for progression in cats?

In human medicine, fasting blood glucose concentrations 
repeatedly higher than 126 mg/dl are diagnostic for 
diabetes mellitus. In addition, the oral glucose tolerance 
test is one of the most frequently used tests to evaluate 
a person’s ability to dispose of a glucose load in a 
timely fashion. Interpretation of this test is based on 
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the assumption that a healthy adult person should be 
able to metabolize a standard amount of glucose taken 
orally within a defined period of time. This is a more 
physiological assessment than, for example, the IVGTT, 
because glucose is normally presented to the body by 
ingestion, and the same mechanisms, including the incretin 
response, are initiated, which are responsible for the 
maintenance of glucose concentrations after consumption  
of a meal.57 Diabetes is diagnosed if a person has a blood 
glucose over 200 mg/dl 2 h after the ingestion of glucose.

Evaluating fasting glucose concentrations in cats is 
problematic. Many client-owned cats have a high incidence 
of stress hyperglycemia58 regardless of body condition. 
This is likely different in colony cats that have been 
well adjusted to blood sampling. It is known from those 
research populations that cats do not show an increase 
in fasting blood glucose concentrations even with long-
term obesity or drug-induced insulin resistance22,28 and 
do not show a change in fasting blood glucose until 
insulin secretion becomes low and erratic.28 Results from 
the oral glucose tolerance test have been reported in 
experimental cats.59 Unfortunately, the response to glucose 
was variable, and a clear distinction between individual  
lean and obese cats was not possible. High variability of 
the results has also been described in dogs.60 This test, 
therefore, cannot be recommended as a routine test to 
examine the risk of developing diabetes in individual 
cats as it is used in people.

A different approach has been recently taken to see if obese 
cats with documented peripheral insulin resistance 
based on EHC and IVGTT showed a difference in glucose 
concentrations when monitored over several days, including 
the postprandial periods. Measurement of blood glucose 
concentrations using a laboratory reference method and 
a handheld glucometer and evaluation of interstitial 
glucose concentrations using a continuous glucose 
monitoring system were performed for 7 days during 
the normal daily routine of six lean and eight long-term 
obese old cats who had documented peripheral insulin 
resistance for many years. It was found that there was 
no difference in glucose concentrations between lean 
and 7 of 8 long-term obese and insulin-resistant cats over 
this 7-day recording period. Only 1 of 8 cats could be 
identified as prediabetic (blood glucose values were 
approximately 25% higher than in the lean and 7 of 8 
obese cats).61 This indicates that tests used to assess 
peripheral insulin resistance or IVGTTs are of little value 
in the prediction of daily glucose homeostasis in cats, 
even in cats that have been severely obese and insulin-
resistant for several years.

Do Obese Cats Develop the Metabolic 
Syndrome?
Metabolic syndrome is the name for a cluster of risk 
factors for atherosclerosis, coronary artery disease, stroke, 
and diabetes mellitus.13 Increased weight and insulin 
resistance are probably the most important risk factors in 
people.62 They are associated with alterations in several 
hormones and lipoproteins, including elevated cholesterol, 
triglycerides, and apolipoprotein B concentrations, as 
well as higher very-low-density lipoprotein (VLDL), higher 
low-density lipoprotein (LDL), and lower high-density 
lipoprotein (HDL) cholesterol levels.62 It has been shown 
that the number of lipoprotein particles and their size 
that determine risk for disease.63–65 In people, large 
VLDL and small LDL and HDL particles are associated 
with insulin resistance and associated cardiovascular 
problems. In cats, increased weight and insulin resistance 
are also associated with lipid changes similar to what 
has been reported in humans. Obese cats showed an 
increase in nonesterified fatty acids, VLDL, and plasma 
triglycerides, primarily originating from VLDL. In fact, 
the increase in triglycerides in the VLDL fraction was, on 
average, 500% higher in obese cats than in lean controls. 
Overproduction of VLDL has been associated with 
decreased expression of peroxisome proliferator-activated 
receptor α. Peroxisome proliferator-activated receptor α is 
involved in adipocyte mitochondrial biogenesis and the 
upregulation of genes involved in fatty acid oxidation66 
and is low in obese cats.67

Despite high VLDL concentrations, obese cats had no 
change in baseline LDL concentrations, suggesting that  
VLDL was metabolized rapidly to LDL, and LDL clearance 
was increased to maintain normal levels. The over-
production of VLDL in cats was associated with an 
increase in the VLDL particle number. The particles were 
of large and medium size, which, in people, has been 
associated with cardiovascular disease.63 Especially large 
triglyceride-enriched VLDL can bind to LDL receptors 
and lead to the formation of cholesterol-rich foam cells  
in people;68,69 however, this has not been documented in 
cats. Large VLDL particles are linked with small LDL  
and HDL particles, and it has been suggested that 
the high triglyceride contents of large VLDL is the 
major predictor of LDL size in type 2 diabetes patients. 
Increased levels of small, dense LDL have been shown 
to be strongly associated with coronary artery disease 
risk in people.70,71 Very small and medium small LDL 
particles were almost three-fold increased in obese cats, 
whereas only large particles were detected in lean cats.72 
Small HDL particles have also been associated with 
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cardiovascular disease.73 As in obese people, small 
particle concentrations were significantly higher in 
obese cats.72 Despite all these changes in lipoprotein 
concentrations, particle number and size, atherosclerosis, 
coronary artery disease, and stroke or clinical hypertension 
have not been described in obese or diabetic cats.

Hormonal Changes Associated with 
Obesity in Cats
The changes in metabolism that are seen in obese cats may, 
in part, be caused by alterations of hormones involved 
in metabolic regulation. Adiponectin7,74 and leptin7,75,76 
have been studied in cats in more detail. Adiponectin is 
a hormone that is secreted by adipocytes. This hormone 
has beneficial effects on glucose and lipid metabolism.77 
It stimulates fatty acid oxidation and suppresses hepatic 
gluconeogenesis. It inhibits inflammatory responses that,  
in people, have been associated with insulin resistance 
and the metabolic syndrome. In obese cats, adiponectin 
levels are inversely related to the degree of adiposity, 
and weight loss leads to an increase in adiponectin7 to 
levels that are not different from those seen in lean cats. 

Leptin is also secreted from fat cells. It acts by binding 
to specific receptors in the hypothalamus, where it alters 
the expression of several neuropeptides involved in the 
regulation of neuroendocrine function, energy intake, and 
expenditure.78 Obese cats are leptin-resistant, indicated 
by the fact that leptin concentrations are several-fold 
higher in obese compared with lean cats without causing 
the appropriate physiological response.7 Fortunately, with 
weight loss, leptin levels in obese cats normalize, and 
leptin is therefore a good indicator of fat mass.7,75 
We have recently shown that both leptin and insulin are 
higher in old lean cats compared with young lean cats, 
despite similar body fat mass, suggesting development 
of both insulin and leptin resistance with aging. 
Thyroid hormone resistance has been postulated by the 
observation of an increase in free79 and, sometimes, total 
thyroxine22 in obese cats.

Conclusions
Obese cats have many similarities and dissimilarities to 
obese people. The major dissimilarity is the fact that cats 
do not develop atherosclerosis and clinical hypertension. 
The main similarity is insulin resistance. However, cats 
seem to compensate well for the insulin resistance by 
lowering their glucose output from the liver and are 
able to maintain normal glucose concentrations, even 
postprandial, for many years, despite peripheral insulin 

resistance. Measurement of insulin resistance alone, 
therefore, will not allow us to predict progression to 
diabetes, neither will glucose tolerance testing with 
pharmacological amounts of glucose. Only an increase 
in glucose concentrations during their daily routine will 
indicate progression. Measures of long-term glucose control 
might, therefore, be better indicators if it can be shown 
that the progression from the insulin resistant/glucose 
tolerant state to overtly diabetic state develops slowly but 
may also not be useful if it develops rapidly. The time 
course is not known and needs to be investigated in a 
large-scale prospective study, which ideally should span 
over many years.
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