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Abstract

Introduction:
Control algorithms for closed-loop insulin delivery in type 1 diabetes have been mainly based on control 
engineering or artificial intelligence techniques. These, however, are not based on the physiology of the pancreas 
but seek to implement engineering solutions to biology. Developments in mathematical models of the β-cell 
physiology of the pancreas have described the glucose-induced insulin release from pancreatic β cells at a 
molecular level. This has facilitated development of a new class of bio-inspired glucose control algorithms 
that replicate the functionality of the biological pancreas. However, technologies for sensing glucose levels 
and delivering insulin use the subcutaneous route, which is nonphysiological and introduces some challenges.  
In this article, a novel glucose controller is presented as part of a bio-inspired artificial pancreas.

Methods:
A mathematical model of β-cell physiology was used as the core of the proposed controller. In order to deal 
with delays and lack of accuracy introduced by the subcutaneous route, insulin feedback and a gain scheduling 
strategy were employed. A United States Food and Drug Administration-accepted type 1 diabetes mellitus 
virtual population was used to validate the presented controller.

Results:
Premeal and postmeal mean ± standard deviation blood glucose levels for the adult and adolescent populations 
were well within the target range set for the controller [(70, 180) mg/dl], with a percent time in range of 92.8 ± 7.3% 
for the adults and 83.5 ± 14% for the adolescents.

Conclusions:
This article shows for the first time very good glucose control in a virtual population with type 1 diabetes mellitus 
using a controller based on a subcellular β-cell model.
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Introduction
Automatic Blood Glucose Control

In type 1 diabetes mellitus (T1DM) management, an 
automatic closed-loop system1 provides the potential to 
improve hemoglobin A1c while avoiding hypoglycemia.  
It requires continuous glucose measurement,2 a control 
device,3 and a pump for insulin delivery.4 Closed-loop 
control algorithms used in the context of an artificial 
pancreas have been mainly based on classical control 
engineering techniques and dominated by proportional-
integral-derivative (PID) control5 and model predictive 
control (MPC).6,7 Other approaches, based on empirical 
knowledge, have also been proposed through the use of 
artificial intelligence techniques.8,9

Bio-Inspired Approach to Blood Glucose Control
Bio-inspired approaches for solving medical problems 
have been motivated by the belief that evolved physiology 
is capable of conducting specific function in biology 
efficiently using nonoptimal resources.10 Replicating the 
functionality of the human body can lead to a system 
with greater physiological function, which may be able 
to deliver a superior therapeutic approach. Bio-inspired 
technologies for artificial organs have already been 
successfully implemented in different medical areas 
including cochlear implants,11 which model the way the 
basilar membrane of the cochlea behaves and therefore 
can restore hearing; retinal implants,12 which model the 
local processing that occurs in the neuronal circuits of 
the retina to derive extremely fast and low-power image 
restoration; and vestibular implants,13 which replicate the 
inertial measurements of the human body to restore balance. 
Therefore, there may be some benefit to considering a 
control strategy for controlling blood glucose (BG) that is 
based on the biological function of the pancreas.

The idea of using a bio-inspired approach for BG control 
is motivated by the biphasic nature of insulin secretion 
from the β cells in the pancreas, which depends on 
the type and magnitude of the glucose stimulus.14,15 
Both animal and human studies indicate that the first-
phase insulin response to intravenous glucose has 
beneficial effects on the regulation of glucose metabolism.  
In particular, the first-phase has a profound and long-term 
inhibitory effect on hepatic glucose production. Likewise, 
the early insulin response to ingested glucose is an 
important determinant of prandial glucose tolerance. 
Figure 1 shows an example of a simulated biphasic 
insulin release in response to a step in glucose levels. 

The presence of the sharp first phase due to rapidly 
changing glucose concentration (i.e., derivative effect) 
followed by a second phase represented by sustained 
insulin release is demonstrated.

Therefore, replicating β-cell behavior in response to a glucose 
stimulus is postulated to be an appropriate approach to 
controlling BG concentration in T1DM subjects. However, 
available technologies for continuous glucose monitoring 
(CGM) and continuous subcutaneous insulin infusion 
(CSII) use the subcutaneous (SC) route, which, despite 
the clear advantage of being minimally invasive, are far 
from being physiological and consequently, nonoptimal. 
The SC route introduces some extra difficulties to glucose 
control in the form of time delays in the glucose sensing 
and insulin action, measurement errors, and higher 
variability.16,17 Nevertheless, these technologies are 
continuously improving, creating an optimistic future 
for the closed-loop insulin delivery system.

The idea of using a bio-inspired approach for BG control 
was first postulated by Steil and colleagues.18 In this work, 
a minimal model of insulin secretion, proposed earlier 
by Breda and colleagues,19 was used for BG control. 
This simple model represents the insulin secretion by 
decomposing it into a static rate of secretion, which 

Figure 1. Simulated biphasic insulin release in response to a step in 
glucose levels at t = 5 min from G = 0 mg/dl to 150 mg/dl (red curve), 
G = 200 mg/dl (blue curve), G = 300 mg/dl (green curve), and G = 400 
mg/dl (cyan curve).
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basically depends on the plasma glucose concentration, 
and a dynamic secretion rate (second phase), which depends 
on the rate of change of plasma glucose concentration 
(first phase). Steil and colleagues18 compared the minimal 
model of insulin secretion with a PID controller, the 
behavior of which also exhibits biphasic response, and 
concluded that both were able to fit experimental data. 
However, the insulin secretion model was less stable 
than the PID controller under closed-loop conditions due 
to the simplification of the bio-inspired model. Work by 
our group20 proposed the use of a model of the electrical 
activity of β cells for closed-loop glucose control, showing 
for the first time how this could be implemented using 
a semiconductor application-specific integrated circuit 
(ASIC) to form a silicon β cell. This was a first attempt 
at a true bionic pancreas but it still lacked detail in the 
model of insulin release.

Development of mathematical models of β-cell physio-
logy,21‒24 which are able to describe the glucose-induced 
insulin release at a molecular level, have opened the door 
to a new class of bio-inspired glucose control algorithms.  
In this article, a novel glucose controller based on a more  
complete model of the β cell is presented and validated 
using the adult and adolescent T1DM virtual populations 
accepted by the United States Food and Drug 
Administration (FDA) as a substitute for animal trials.25

Methods
After a detailed study of existing glucose-stimulated 
pancreatic insulin secretion models, the model proposed 
by Pedersen and colleagues24 was selected. Minimal models 
such as the ones proposed in Hovorka and colleagues,26 
Toffolo and colleagues,27 Cretti and colleagues,28 Mari and 
colleagues,29 and Breda and colleagues19 are not able to 
represent some of the experimental data, probably 
because of their excessively simplistic structure. On the  
other hand, more sophisticated models such as the ones  
proposed by Pederson and colleagues,21 Bertuzzi and 
colleagues,22 and Chen and colleagues23 can be difficult to 
implement because of their high number of parameters 
and equations. The selected model is able to represent 
most of the experimental data, including the biphasic 
response of insulin secretion, the staircase modulation of 
insulin secretion, the potentiation effect of glucose, and 
the kiss-and-run effect of insulin secretion granules.30 
Furthermore, its relative simplicity makes it convenient 
for practical implementation. Despite this, the Pedersen 
model is still an incomplete description. Other known 
characteristics of the β cell not included in this model are 
as follows:15 the β cell tends to oscillate or release insulin 

in discrete pulses; the β-cell’s sensitivity to glucose may 
be altered depending on free fatty-acid levels; prior to 
meals, the β cell is stimulated to secrete insulin by neural 
signals, and during the meal, it is stimulated by gut 
hormones; and finally, β-cell secretion may be inhibited 
by the prevailing concentration of insulin in plasma.

Subcellular Model of Insulin Secretion
The selected model includes mobilization of secretory 
granules from a reserve pool to the cell periphery, where 
they attach to the plasma membrane (i.e., docking).  
The granules can mature further (i.e., priming), thus 
entering the readily releasable pool (RRP). Calcium influx 
triggers membrane fusion and subsequent insulin release.  
The possibility of so-called kiss-and-run exocytosis is 
included, where the fusion pore reseals before the granule 
cargo is released. The glucose-dependent increase 
in the number of cells showing a calcium signal31 is 
included by distinguishing between readily releasable 
granules in silent and active cells. Therefore, the RRP is 
heterogeneous in the sense that only granules residing 
in cells with a threshold for calcium activity below 
the ambient glucose concentration are allowed to fuse.  
An overview of the model is given in Figure 2.

The insulin secretion rate is expressed as

(t) = mF(t) + SRb,                     (1)

where SRb is the basal insulin secretion (not shown in 
Figure 2), m is the rate constant of insulin release, and 
F is the size of the fused pool. More details about the 

Figure 2. Schematic representation of the mechanistic model of insulin 
secretion from pancreatic β cells.24 The readily releasable pool (RRP) 
has been divided into readily releasable granules located in silent 
cells with no calcium influx, exocytosis, or release (circles) and readily 
releasable granules located in triggered cells (dots).
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employed model of insulin secretion can be found in 
Appendix 1 and in the original publication24 from which 
the parameter values used in the simulations were taken.

Intravenous Control
As an initial proof-of-concept for the proposed bio-inspired 
approach, the selected glucose-stimulated pancreatic 
insulin secretion model was used to control the 10-adult 
population of the commercial version of the T1DM 
simulator25 using the intravenous (IV) route for glucose 
sensing and insulin delivery.

In order to deal with interpatient insulin sensitivity 
variability in the simulator, a tunable gain (K) was added to 
the dynamic term of Equation 1, replacing the constant 
gain m. Furthermore, as the model does not include 
the inhibition of the insulin secretion below basal 
glucose levels as well as the contraregulatory effect of 
the hormone glucagon, a variable gain (Kb) was added, 
multiplying the basal insulin secretion term in order to 
simulate such effect. Hence, the IV controller output (Uiv) 
is described as

Uiv(t) = K · F(t) + Kb · SRb,                (2)

where Kb is a variable gain that is calculated as

Kb = min
⎛
⎜
⎝
1,

G – Glim

Gsp – Glim

⎛
⎜
⎝
                  (3)

where Gsp is the glucose setpoint (e.g., 90 mg/dl) and 
Glim is the threshold to start the inhibition (e.g., 80 mg/dl).

To test the validity of the IV controller, a meal containing 
75 g of carbohydrates was used. First, the basal insulin 
infusion rate was manually adjusted for each subject to 
keep the basal glucose levels close to 90 mg/dl. Then,  
the gain K was individually tuned to keep the 10 subjects 
inside the range [70, 200] mg/dl. Figure 3 shows an 
example of IV control corresponding to adult #001. 

Despite IV control being optimal from a control perspective, 
it is not a viable solution for an ambulatory artificial 
pancreas. The presented IV controller was thus tested  
in silico using the SC route for glucose sensing and 
insulin delivery but performance was not satisfactory. 
The main reason for this lack of performance was insulin 
overdosing caused by time delays and noise introduced 
by the SC route. For this reason, additional strategies 
were required.

Subcutaneous Control
Available technologies for continuous glucose sensing 
and insulin delivery mainly use the SC route, the main 
problem of which is the time delays introduced on glucose 
sensing (up to 15 min) and insulin action (15–20 min). 
Furthermore, the variability of these delays can be high 
and the accuracy of available SC continuous glucose 
sensors is far from being optimal, with mean absolute 
differences of up to 20%,2 especially in hypoglycemia, 
the critical state to avoid.

The aim of this work is to develop an SC closed-loop 
glucose controller based on the selected model of glucose-
stimulated pancreatic insulin secretion, which is able to 
cope with the drawbacks introduced by the SC route.

Insulin Feedback
The main problem with delays in glucose sensing and  
insulin delivery is excess insulin overdosing and the con-
sequent risk of hypoglycemia, in particular postprandially.

One solution to this problem is to incorporate an insulin 
feedback term as proposed by Steil and colleagues.5 
From a physiological point of view, this term can be seen 
as the inhibition of insulin secretion induced by the 
prevailing concentration of elevated plasma insulin 
levels. Mathematically speaking, this term reduces the 
β-cell model insulin delivery by an amount proportional 
to an estimate of the plasma insulin level (i.e., insulin-on-

Figure 3. Example of IV control corresponding to adult #001. (A)
Plasma glucose concentration corresponding to a meal containing 75 g 
of carbohydrates. Horizontal red line corresponds to the hypoglycemic 
threshold. (B) Insulin delivery proposed by the controller.
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board). Hence, the SC controller output (Usc) is described 
as

Usc(t) = K · F(t) + SRb – KyI(t)              (4)

where I(t) is an estimate of the plasma insulin concentration 
(relative to the basal conditions) and Ky is a tuning gain. 
In order to simulate the insulin absorption pharmaco-
dynamics and estimate the plasma insulin concentration, 
the insulin absorption model proposed by Hovorka and 
colleagues6 was employed. The parameters of this model 
were fixed to mean population values proposed by the 
same author. Note that the variable gain (Kb) multiplying 
the basal insulin secretion term is not included anymore  
in the SC controller equation.

Gain Scheduling
One of the main challenges when controlling glucose 
levels in T1DM subjects is the glucose excursion after 
the ingestion of a meal. Due to the delays mentioned 
earlier, the controller needs to be more aggressive at the 
beginning of the glucose excursion in order to minimize 
postprandial hyperglycemia. On the other hand, during 
late postprandial or fasting conditions, the controller 
needs to be less aggressive to minimize the risk of 
insulin stacking. Furthermore, the effect of the sensor 
noise at low glucose levels is more critical than at high 
levels (>180 mg/dl); hence, the controller has to be more, 
or less, conservative depending on the operation region. 

For this reason, instead of a single gain (K), three 
different gains (Kp, Kh, and Kf) were considered: Kp 
is used just for a certain period of time (Tp) after the 
ingestion of a meal; Kh is used at all other times when 
the glucose concentration is above a threshold (180 mg/dl); 
and Kf is used otherwise. Note that snacks (i.e., <20 g of 
carbohydrates) are not considered as proper meals and 
the gains Kf or Kh are used.

if t > Tmeal and t < Tmeal + Tp K = Kp

else if G(t) > 180 mg/dl K = Kh             (5)

else K = Kf

Note that in order to apply the gain scheduling strategy 
described earlier, meal announcement or meal detection32 
is required.

Hypoglycemia Prevention
In order to prevent and minimize hypoglycemia, a safety 
mechanism is used on top of the glucose controller that 
suppresses or reduces insulin delivery when low glucose 
values are predicted.33 This mechanism consists of 
forecasting the glucose concentration (e.g., 20 minutes  
ahead) and stopping or reducing insulin delivery [Usc(t)] 
if glucose levels fall below a predefined threshold. 
Although more sophisticated algorithms for glucose 
forecasting exist,33 a simple in-house linear one has been 
proposed for the current version of the safety mechanism 
and for short-term prediction horizons (e.g., 20 minutes). 
The safety mechanism is defined as

if G(t) + S · H < 70 mg/dl ⇒ Usc(t) = 0,       (6)

else if G(t) + S · H < 90 mg/dl ⇒ Usc(t) = 0.5Usc(t),

where G(t) is the current glucose value, H is the 
forecasting horizon, and S is the glucose rate-of-change 
calculated as the slope of a linear regression using 
previous n samples.

Figure 4 shows the block diagram of the presented 
bio-inspired glucose controller and Figure 5 show an 
example of insulin delivery by the bio-inspired glucose 
controller. Notice that a partial bolus calculator block  
is included to account for whether a partial insulin bolus 
is administered manually or automatically.34

Control Tuning
In order to achieve optimal control for each one of the 
T1DM subjects, the controller needs to be individually 
tuned. First of all, basal insulin requirements for the 
studied subject are required to optimize glycemia. However, 
the controller is able to tackle possible mismatches on 
the basal insulin profile as well as possible perturbations 
such as exercise.

The controller parameters to be tuned are: gains Kf, Kh, 
and Kp; period Tp for which post-prandial gain (Kp) is 
valid; insulin feedback gain (Ky); number of samples 
used for linear regression (n); and forecasting horizon 
(H). Also tunable is glucose setpoint (Gsp). After several 
in silico tests with the T1DM simulator, it was observed 
that most of these parameters have small intersubject 
variability and can be fixed without significantly affecting 
the performance. The only parameter that needs to be 
individually tuned is the gain Kp, since the gains Kf and 
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Figure 4. Block diagram of the presented bio-inspired glucose controller.

Figure 5. Example of insulin delivery by the SC bio-inspired glucose 
controller. (A) Subcutaneous glucose measurements (dashed blue line); 
hyper- and hypoglycemia thresholds (red horizontal lines) and meal 
(bars). (B) premeal partial bolus (PB, blue bar); β-cell model insulin 
secretion (SR, solid green line); basal insulin (SRb, solid cyan line); 
insulin feedback (Ky∗I, crossed red line), and delivered insulin (U, blue 
dashed line).

Kh can be set to be proportional to Kp. Table 1 shows the 
employed fixed values used for the control of the T1DM 
simulator population.

For evident safety reasons, it is not possible to tune 
parameter Kp during an in vivo study; hence, an off-
line autotuning methodology was implemented for this 
purpose. This methodology requires open-loop historical 

Table 1. 
Tuning Parameters Used for the Simulations

Parameter Value

Ky 15

Tp 60 min

Kh 0.5Kp

Kf 0.2Kp
n 30 min

H 20 min

Gsp 100 mg/dl
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In Silico Validation
The commercial version of the T1DM simulator (30 subjects) 
was initially used to design and tune the presented  
bio-inspired controller. Then, the controller was tested 
by the Epsilon Group (University of Virginia, VA) using 
the 100 adults and 100 adolescents of the FDA-accepted 
population for the same simulator. The controller was 
tested according to a scenario published earlier.36 
Simulation testing was performed for each population  
with the prescribed meal/snack profiles given over 43 h  
(including a 7 h warm-up period) with simulation 
beginning at 5:00 p.m. and continuing until 12:00 p.m. 
on the second day. The Abbott Navigator® CGM sensor 
(Abbott Park, Illinois) and the Smiths Medical Deltec 
Cozmo® insulin pump (St. Paul, MN) were selected to 
carry out the simulations. The BG target range used for 
analysis was 70–180 mg/dl.

The safety and efficacy measures were as follows37 
[presented as mean ± standard deviations (SD)]: the 
primary outcome was mean BG (mg/dl); secondary 
outcomes were percentage of time in extreme hypoglycemia 
(BG < 50 mg/dl); percentage of time and incidence below 
range (any BG < 70 mg/dl); percentage of time within 
the 70–180 mg/dl target range; percentage of time above 
range in hyperglycemia (BG > 180 mg/dl); percentage 
of time in extreme hyperglycemia (BG > 300 mg/dl); 
postprandial area under the curve (AUC) per grams of 
carbohydrates (CHO); low blood glucose risk index (LBGI); 
high blood glucose risk index (HBGI); blood glucose risk 
index (BGRI). Finally, the control-variability grid analysis 
(CVGA) graphs38 were used.

Results
Table 2 shows a summary of the corresponding safety and 
efficacy measures. Figure 6 and Figure 7 show the CVGA 
graphs for both the adult and adolescent FDA-accepted 
simulation populations.

The overall, premeal and postmeal mean ± SD BG levels 
for the adult and adolescent populations were well 
within the target range set for the controller, with a 
percentage of time in range of 92.8 ± 7.3% for the adults 
and 83.5 ± 14% for the adolescents.

Adult subjects did not experience a single episode of 
extreme hypoglycemia, with 6% experiencing BG < 70 mg/dl  
for a mean of 0.4%. The adolescent population also 
experienced minimal extreme hypoglycemia (2.0% of 
subjects for 0.1% of time) but slightly more hypoglycemia 
<70 mg/dl (21% of subjects for 1.7% of time). The CVGA 

data from the studied subject (i.e., meal information, 
continuous glucose monitor, and insulin pump data) 
corresponding to a good glucose control scenario and 
similar conditions with respect to the planned closed-
loop test (i.e., similar meals, time of the day, exercise, etc). 
The autotuning methodology consists of an optimization 
algorithm that adjusts the Kp gain such that for the 
given glucose profile, the controller delivers the same 
amount of insulin that was administered during the 
open-loop scenario.

To obtain the required open-loop data for tuning the 
controller, the metabolic test function from the T1DM 
simulator was employed. The employed scenario consisted 
of a 24-h scenario with a single meal of 60 g of carbo-
hydrates ingested 3 h after the beginning of the scenario. 
The basal insulin rate (SRb) was adjusted to achieve a basal 
glucose concentration close to the glucose setpoint (i.e., 
100 mg/dl). This was achieved by using the metabolic 
test function provided by the T1DM simulator under 
fasting conditions. Note that in a real scenario, this basal 
insulin rate could correspond to the basal insulin profile 
that is programmed in an insulin pump, which could 
be fine-tuned, using existing CGM data and pump data, 
to the correct basal rates at initiation and this will be 
within tolerance.

Furthermore, the proposed controller, although not a 
classic closed-loop control algorithm, behaves in a similar 
way to others (i.e., PID controller)35 and consequently 
can manage changes in basal insulin requirement.  
This ability is partially due to the so-called potentiation 
effect,30 i.e., the fact that after a prolonged glucose stimulus, 
the pancreas is hypersensitive to further stimulation (see 
Figure 1), which could be seen as the integral component 
of a PID controller.35

Finally, the insulin-to-carbohydrate ratio was adjusted 
in order to achieve a postprandial inverse response  
(i.e., undershoot) close to 80 mg/dl. The resulting glucose 
profile was then used to tune the controller. The fmincon 
function from the MATLAB Optimization Toolbox™ 
(2010b, The MathWorks, Natick, MA) was used to find the 
gain (Kp) that minimizes the following cost function:

J = ∫
0

T
 Usc(t)dt – 

⎛
⎜
⎝
SRbT + CHO

ICR

⎛
⎜
⎝
,            (7)

where T is the duration of the scenario (i.e., 24 h), CHO 
is the amount of ingested carbohydrates (i.e., 60 g), and 
ICR is the calculated insulin-to-carbohydrate ration.
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graphs showed 67.0 ± 17% of time in zones A + B, which 
is good for the adolescent population, with 1.3 ± 3.1% in 
failure zones D + E.

Adult population data documenting hyperglycemia  
(BG > 180 mg/dl and BG > 300 mg/dl) showed a low rate 
of hyperglycemia with 6.7 ± 7.0% for BG > 180 mg/dl 
and < 0.1 ± 0.5% of extreme hyperglycemia, resulting in 
an HBGI risk of 1.8 ±1.6. Adolescent subjects had a mean 

Table 2. 
Safety and Efficacy Measures for the FDA-Accepted Simulation Population with the Bio-Inspired Controller

BG analysis target range 
70–180 mg/dl

FDA-accepted adults FDA-accepted adolescents

Mean SD Median Mean SD Median

Mean BG 125 12 121 133 17 131

Mean premeal BG 111 11 109 113 12 111

Mean postmeal BG 155 22 152 174 29 169

% Time <50 0.00 0.00 0.00 0.09 0.74 0.00

% Time <70 0.44 2.25 0.00 1.74 4.93 0.00

% Time in range 92.82 7.32 94.2 83.53 13.98 86.4

% Time >180 6.74 6.95 5.25 14.73 11.95 11.74

% Time >300 0.09 0.52 0.00 0.87 2.32 0.00

Postprandial AUC / g CHO 0.64 0.07 0.63 0.70 0.10 0.68

LBGI 0.46 0.41 0.38 0.77 0.81 0.58

HBGI 1.77 1.37 1.34 3.32 2.53 2.55

BGRI 2.23 1.32 1.82 4.08 2.77 3.57

SD of BG rate of change 0.75 0.25 0.70 1.05 0.39 1.03

Figure 6. CVGA graph for the FDA-accepted adult population. Figure 7. CVGA graph for the FDA-accepted adolescent population.

14.73 ± 12% of time in hyperglycemia >180 mg/dl, with 
3.3 ± 2.5 HBGI risk.

The total risk index was found to be low at 2.2 ± 1.3 for 
the adults, and while higher for the adolescents (4.1 ± 2.8), 
was also low overall. These data demonstrate that the 
bio-inspired controller was able to avoid hypoglycemia 
in most subjects with minimal hyperglycemia risk with 
meal announcement alone.
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Discussion
The presented bio-inspired glucose controller has been 
shown to be a valid approach for an ambulatory artificial 
pancreas using the available technologies for glucose 
sensing and insulin delivery.

The presented bio-inspired controller only requires the 
meal to be announced by the user, something that can 
be done easily by just pressing a button. In the case of 
a meal not being announced, the controller will react 
less aggressively, something that will translate into less 
optimal control (i.e., hyperglycemia) but will not expose 
the user to a higher risk of hypoglycemia. Note that for 
a fully automated system, a meal-detection algorithm30 
could be employed. However, the utilization of such an 
algorithm would introduce an additional time delay and 
the consequent risk of false positives.

While the obtained results are good from a clinical point 
of view, they are still suboptimal in some cases, in part, 
due to the limitations of the available technologies (i.e., 
CGM and CSII). Nevertheless, the constant improvement 
of continuous glucose sensors as well as the development  
of faster insulin analogs provide hope for improvement.

The employed T1DM simulator covers a wide range of 
scenarios in a T1DM population. However, it still has 
some limitations. For instance, it is not able to represent 
the insulin sensitivity variations during the day and 
does not incorporate the effect of exercise on insulin 
requirements. For this reason, clinical trials are planned 
to validate the controller in a real population of T1DM 
subjects under different environmental conditions.

Conclusion
In this article, a novel bio-inspired glucose controller 
based on a model of the β-cell physiology is presented. 
Technologies for sensing glucose levels and delivering 
insulin use the subcutaneous route, which make the use 
of β-cell physiology models not straightforward, requiring 
additional strategies to make the approach viable.

The developed controller performed very well in the 
simulations with very good glucose control, with limited 
hypoglycemia and minimum hyperglycemia.

The presented controller has already been embedded 
in a portable prototype of an artificial pancreas, which 
includes the electronic instrumentation to interface with 
a continuous glucose sensor. Furthermore, the prototype 

has been successfully tested in a hardware-in-the-loop 
platform including the T1DM simulator. Finally, clinical 
trials with T1DM subjects are planned to validate the 
bio-inspired glucose controller together with the whole 
artificial pancreas architecture.
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Appendix 1

Mobilization is assumed to depend on glucose concentration (G) but with a delay t, as proposed by Grodsky:31

dM(t)
dt

 = M∞(G) – M(t)
t

                                                         (8)

The docked pool develops according to the mass-balance equation

dD(t)
dt

 = M(G,t) – rD(t) – p+D(t) + p– 
⌠
⎮
⌡0

∞
h(g,t)dg                                            (9)

where M is the mobilization flux and r is the rate of reinternalization. The last two terms describe priming and 
depriming of granules, respectively.

The RRP is described by a time-varying density function h(g,t), indicating the amount of insulin in the RRP in β cells 
with a threshold between g and g + dg. Granules are primed with rate p+ and are assumed to lose the capacity of 
rapid exocytosis with rate p-. Moreover, if the granule is in a triggered β cell, i.e., a cell with a threshold below the 
glucose concentration, it will fuse with rate f+. This leads to the equation

∂h(g,t)
∂t  = p+D(t) – p–h(g,t) – f +h(g,t)q(G – g)                                             (10)

Here, q(G – g) is the Heaviside unit step function, which is 1 for G > g and zero otherwise, indicating that fusion 
occurs only when the threshold is reached. The priming flux p+D distributes among cells according to the fraction of 
cells with threshold g described by the time-independent function j(g). Thus, priming is assumed to occur with the 
same rate in all cells but the fraction of cells with the corresponding threshold is taken into account.

The secretion rate can be expressed as

SR(t) = m · F(t) + SRb                                                         (11)

where SRb is basal insulin secretion, m is the rate constant of release, and F is the size of the fused pool, which follows

dF(t)
dt

 = f + · 
⌠
⎮
⌡0

∞
h(g,t) · dg – [k + m] · F(t)                                             (12)

where f + is the rate constant of fusion and k is the kiss-and-run rate. The integral represents the amount of insulin in 
the RRP in cells with a threshold below G.


