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Abstract

Background:
Accurate prediction of future glucose concentration for type 1 diabetes mellitus (T1DM) is needed to improve 
glycemic control and to facilitate proactive management before glucose concentrations reach undesirable 
concentrations. The availability of frequent glucose measurements, insulin infusion rates, and meal carbohydrate 
estimates can be used to good advantage to capture important information concerning glucose dynamics.

Methods:
This article evaluates the feasibility of using a latent variable (LV)-based statistical method to model glucose 
dynamics and to forecast future glucose concentrations for T1DM applications. The prediction models are 
developed using a proposed LV-based approach and are evaluated for retrospective clinical data from seven 
individuals with T1DM and for In silico simulations using the Food and Drug Administration-accepted 
University of Virginia/University of Padova metabolic simulator. This article provides comparisons of the 
prediction accuracy of the LV-based method with that of a standard modeling alternative. The influence of key 
design parameters on the performance of the LV-based method is also illustrated.

Results:
In general, the LV-based method provided improved prediction accuracy in comparison with conventional 
autoregressive (AR) models and autoregressive with exogenous input (ARX) models. For larger prediction 
horizons (≥30 min), the LV-based model with exogenous inputs achieved the best prediction performance based 
on a paired t-test (α = 0.05).

Conclusions:
The LV-based method resulted in models whose glucose prediction accuracy was as least as good as the 
accuracies of standard AR/ARX models and a simple model-free approach. Furthermore, the new approach is 
less sensitive to changing conditions and the effect of key design parameters.
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Introduction

Type 1 diabetes mellitus (T1DM) is a disease 
characterized by the inability of the body to regulate 
blood glucose concentration. Type 1 diabetes mellitus 
results from autoimmune destruction of pancreatic β cells, 
which produce the hormone insulin. Without appropriate 
treatment with exogenous insulin, people with T1DM have 
difficulty maintaining their blood glucose concentration 
within a normal range (e.g., 70–150 mg/dl). Consequently, 
they can suffer from large glycemic excursions, including 
episodes with very low glucose levels (hypoglycemia) and 
very high glucose levels (hyperglycemia); both situations  
are detrimental to the quality of life.1

Insulin boluses are commonly taken simultaneously with 
meals and in a specified ratio to the meal carbohydrates 
(CHOs).2 From a modeling perspective, insulin boluses 
and meal CHOs are two input variables that affect the 
output variable, blood glucose concentration. A careful 
balance is required between a person’s daily activities, 
diet, and insulin administration in order to sustain the 
blood glucose concentration in the near-normal range. 
This balancing is not an easy task, because large glycemic 
variations often go undetected, including asymptomatic 
hypoglycemia or hypoglycemia unawareness.2

Developments in continuous glucose monitoring (CGM) 
devices have created new opportunities for improved 
glycemia management of T1DM. For commercial CGM 
devices, frequent glucose measurements (e.g., every 
1–5 min) are displayed in real time, which provide 
important information about a person’s current glycemic 
state and its trend. If the recent glucose history follows 
previous known patterns, future blood glucose values 
can be anticipated from past experience.3 In particular, 
an empirical model of glucose dynamics can facilitate 
glucose management.

A model-based controller for an artificial pancreas has 
the potential to automatically regulate blood glucose 
levels based on available glucose measurements, insulin 
infusion and meal information, and model predictions of 
future glucose trends. Thus the identification of simple, 
accurate glucose prediction models is a key step in 
the development of an effective artificial pancreas.  
Many empirical (or “data-driven”) modeling techniques 
have been evaluated in both in silico and clinical studies.4–14

The existing dynamic empirical models for T1DM include 
linear input–output models and nonlinear models 
such as neural networks, as summarized by Finan 
and colleagues.4 Bremer and Gough3 first suggested 
that glucose time-series data had an inherent structure 
that could be described by a simple linear dynamic 
model. The linear models that have received the most 
attention for T1DM applications are autoregressive (AR) 
models and autoregressive with exogenous inputs (ARX) 
models. Only CGM data are required to develop an AR 
model and to predict future glucose concentrations as 
a linear combination of recent measurements. Cobelli 
and associates5,6 have proposed low-order AR models 
and polynomial models with time-varying parameters 
determined by weighted least squares. Reifman and 
colleagues7 have clinically evaluated subject-specific AR 
models with high model orders in order to improve 
management of glucose concentrations. Eren-Oruklu and 
coworkers8,9 have reported subject-specific recursive AR 
models wherein the model parameters were recursively 
updated to reflect the recent glucose history.

The ARX models are an extension of AR models to 
include two exogenous inputs: insulin delivery and 
meal CHOs. Finan and collaborators4,10,11 have developed 
ARX models for in silico and human subjects. They also 
analyzed the effect of design parameters such as input 
excitation on glucose prediction performance. Both AR 
and ARX model parameters can be easily estimated using 
standard least squares analysis. Other modeling techniques 
such as radial basis function, neural network models,13–15 
and Kalman filters12,16,17 have also been reported.

Multivariate statistical methods18,19 based on the funda-
mental concept of latent variables (LVs), such as partial 
least squares (PLS) and principal component analysis, 
have proven to be powerful tools for data analysis, 
modeling, and prediction. Although there have been 
many successful applications in the process industries, 
few applications20 have been reported for T1DM.

In this paper, a LV-based technique21 is employed to 
develop an empirical glucose prediction model from 
T1DM subject data. The LV-based modeling technique 

consists of two steps. First, a PLS model is developed to  
predict future glucose concentrations (the model output) 
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from available time series data for the predictor variables: 
glucose measurements, insulin boluses, and meal CHO 
estimates (the model inputs). The PLS model is based 
on a small number of uncorrelated LVs. In the second 
step, the PLS model is improved by postprocessing 
using canonical correlation analysis (CCA).21 In general, 
the T1DM data are highly correlated due to the small 
sampling period for glucose measurement and because 
the insulin bolus is calculated to be a constant ratio 
of the estimated meal CHOs. By contrast, LVs are a 
small number of uncorrelated variables that are linear 
combinations of the predictor variables.

In this article the LV-based prediction method is evaluated 
using both retrospective clinical data and in silico 
prospective simulations. The clinical data for seven 
subjects were collected at the Sansum Diabetes Research 
Institute in Santa Barbara, CA. In silico evaluation was 
performed for 10 adult subjects who were simulated 
using the Food and Drug Administration (FDA)-accepted 
University of Virginia/University of Padova (UVa/Padova) 
metabolic simulator.22 This article provides comparisons 
of the prediction accuracy of the LV-based method with  
the accuracy of a standard modeling alternative, the ARX 
method. The performance of the LV-based method to  
the choice of key design parameters is also illustrated.

Methodology

Latent-Variable-Based Statistical Analysis
The LV-based models for this paper are empirical, linear 
dynamic models that predict an output variable, future 
glucose concentration from past glucose measurements, 
insulin boluses, and meal CHO estimates (the predictor 
variables). Because these predictor data tend to be highly 
correlated, multivariable statistical methods are a natural 
choice since they have the ability to analyze large amounts 
of highly correlated data. The underlying assumption 
is that the predictor data can be described by a small 
number of orthogonal LVs that can be directly linked to 
the output variable via regression analysis.

A variety of LV-based regression methods have been 
developed, with the chief difference being how the LVs are  
calculated. A general comparison of LV-based methods has 
been reported by Burnham and associates.23 The LV-based 
methods used in this paper are briefly described here.

Partial least squares18,23–25 is a common LV-based regression 
method. The LVs are linear combinations of the predictor 
variables that result in maximal covariance with the 

output variable. Thus the first LV (or score) t1 can be 
expressed as

t1 = Xw1                           (1)

where X(N × Jx) is the predictor data matrix wherein N is 
the number of samples and Jx is the number of predictor 
variables. The first weight vector w1 is a value of w that 
maximizes the objective function:

arg max (wTXTyyTXw)

subject to wTw = 1

w                   (2)

where vector y(N × 1) denotes the output variable data. 
Thus w1 is the eigenvector that corresponds to the largest 
eigenvalue of matrix XTyyTX.

The second weight w2 is calculated in a similar manner 
after X and y have been deflated by t1:

p1
T = (t1

Tt1)–1 t1
TX                      (3)

E1 = X – t1p1
T                       (4)

q1 = (t1
Tt1)–1 t1

Ty                      (5)

f1 = y – t1q1                        (6)

where p1 and q1 are the PLS loadings for the predictor 
variables and the output variable, respectively. In order to 
calculate w2, the calculation in Equation (2) is repeated 
with E1 and f1 replacing X and y, respectively. The remaining 
weight vectors are also calculated using this iterative 
procedure. The number of LVs in the PLS model, NLV, 
is an important design parameter that can be as large  
as the rank of X. In this paper, an appropriate value of 
NLV was determined by cross validation.

Next, the weight vectors w1, w2,… are collected in a 
weight matrix W while the loadings for the predictor 
variables and the output variable are collected in matrix P 
and vector q, respectively. Finally, the score vectors t1, 
t2,… are arranged as the columns of matrix T. Then the 
output variable prediction is given by 

ŷ = XRq = Tq                       (7)

where

R = W(PTW)–1                       (8)
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A classical PLS calculation procedure is described by 
Lindgren and colleagues.25

One problem associated with the PLS method requires 
special attention. The PLS objective is to model the 
variations in X and maximize their covariance with y, 
but large covariance does not necessarily mean strong 
correlation. When the predictor matrix X contains a 
considerable amount of process variations that are 
uncorrelated with y, it is possible that the PLS LVs may 
capture the major systematic variations in the predictors 
X but only have relatively weak correlation with y. 
This situation leads to a complex model structure and an 
overfitting problem.

Unlike PLS, CCA26–28 inherently ignores the variations in 
X that are uncorrelated with y and directly maximizes 
the variations that are correlated with y. The CCA 
objective function is to determine the weight vectors w 
so that

arg max (wTXTy)

subject to wTXTXw = 1

w                   (9)

The first weight vector w1 is the eigenvector 
corresponding to the largest eigenvalue of matrix  
(XTX)–1 XTy(yTy)–1yTX. The maximum number of CCA LVs 
can be up to Lcca = min (Jx,Jy), where Jx and Jy are the 
numbers of predictor and output variables, respectively. 
In this paper, a single output variable is considered,  
thus Lcca = 1. A comparison of Equations (2) and (9) 
indicates that the CCA objective is to maximize correlation, 
while the PLS objective is to maximize covariance.

For CCA, the single LV and loading for the output 
variable are calculated as

t = Xw                           (10)

q = (tTt)–1 tTy = tTy                   (11)

Finally, the output prediction is given by

ŷ = Xwq = Tq                      (12)

Unfortunately, directly applying CCA to the {X, y} data 
can lead to ill-conditioned problems resulting from the  
(XTX)–1 term in the calculations. To avoid this problem, 
Yu and MacGregor21 have suggested a two-step LV-based 
modeling algorithm (PLS-CCA), where CCA is used as 
a postprocessing technique to further improve the PLS 

LVs. In this way, a parsimonious regression model with 
the same prediction ability as the standard PLS model 
can be obtained. Based on these considerations, their 
PLS-CCA algorithm is employed in this paper to develop 
the empirical model for glucose concentration prediction. 
Compared with the conventional AR and ARX modeling 
methods, the y-related variability in the predictor data is 
modeled by only a few LVs, which are calculated in order 
based on their relationship with future glucose values.

Latent Variable/Latent Variable with Exogenous 
Input Prediction Model
In order to apply the LV-based modeling technique, the 
predictor and output data sets must be organized in 
an appropriate manner. For both the simulation and 
the clinical studies, the predictor data were available 
for multiple days using a 5 min sampling period. 
Previous publications from our research group10,11,29 have 
demonstrated that model accuracy improves when the 
exogenous input data are preprocessed prior to model 
identification. The preprocessing consists of passing each 
input impulse (i.e., the insulin boluses and CHO estimates) 
through a simple transfer function model, thus producing 
time-smoothed inputs. In this paper, the second-order 
transfer function models reported by Grosman and 
coworkers29 are used. The data arrangement procedure is 
described in Appendix A.

The training data {X, y} are normalized to zero mean and 
unit variance, respectively, which reduces the data 
nonlinearity to some extent. After applying the PLS-CCA 
approach to the normalized data, the final LV-based 
regression model can be readily calculated:

tc = Xwc                           (13)

qc = (tc
Ttc)–1 tc

Ty                      (14)

ŷc = tc qc                          (15)

where wc(Jx × 1) is the single PLS-CCA weight vector. 
Latent variable tc is a linear combination of the predictor 
variables and weight vector wc(Jx × 1), indicating the 
systematic variations in predictor variables that are closely 
related to the output variable. The vector of prediction 
errors f is defined

f = y – ŷc                         (16)

The two-step modeling method can be summarized as 
follows. First, the PLS LVs are calculated, and then CCA 
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is used to further process them and to calculate the final 
predictions in Equation (15). In this paper, only one 
PLS-CCA LV can be used because of the single output 
variable, regardless of the number of PLS LVs. Thus, only 
the underlying systematic glycemic variability that is 
closely related to the output variable (predicted glucose 
concentration) is captured by the single PLS-CCA LV. 
The loading coefficient for the output variable, scalar qc, 
is obtained by regressing y on tc, which indicates 
how much tc contributes to y. Then the future glucose 
prediction ŷc and the prediction error f(N × 1) can be 
calculated.

A flowchart for the proposed modeling strategy is 
given in Figure 1. The key MATLAB m-files for model 
development are shown in Appendices B and C. 
The developed latent variable with exogenous input 
(LVX)/LV model is then used for online application to new 
data. During the online application, the newly available 
predictor vector xnew

T(1 × Jx) at each sampling instant can be 
expressed as [gnew

T(1 × LG), uI,new
T(1 × LI), uM,new

T(1 × LM)], 
where LG is the number of current and past glucose 
measurements and LI and LM are the corresponding 
values for the insulin boluses and meal CHO estimates, 
respectively. The data normalization of xnew

T is based 
on information obtained from training data; then the 
normalized xnew

T is projected onto the LVX/LV model 
in order to make the PH-step-ahead prediction, ŷnew. 
The prediction error fnew can be calculated after PH samples 
when the new measurement ynew becomes available:

tnew = xnew
T wc                       (17)

ŷnew = tnew
 qc                        (18)

fnew = ynew – ŷnew                      (19)

For LV-based prediction models, the important design 
parameters are

1. Δt, the data sampling period;

2. Jx, the predictor length, i.e., the number of samples 
in each row of predictor matrix X;

3. PH, the prediction horizon (expressed as the 
number of samples into the future); and

4. NLV, the number of LVs that are used in the 
PLS model.

Figure 1. A schematic representation of the modeling method (L*: for 
LVX modeling, it includes the values of LG, LI, and LM as well as the 
input time delay DI and DM, while for LV modeling, it only includes 
the value of LG). 1The detailed PLS-CCA modeling procedure is shown 
by MATLAB code in Appendix B. 2The detailed prediction procedure 
is shown by MATLAB code in Appendix C.

For clarity, the resulting LV-based glucose prediction 
model will be denoted as an LVX model when the 
exogenous inputs (bolus insulin and meal CHOs) are 
included in the predictor matrix X and as an LV model 
when they are not. For comparison, the conventional 
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AR and ARX models are described in Appendix D. 
For online applications, the future input measurements 
for the LVX and ARX models are assumed to be zero. 
However, the smoothed future meal and insulin-related 
signals generated using data available at the current 
time are used for prediction.

Results and Discussion

In Silico Study
The simulated subject data were generated for a 5 min 
sampling period using the FDA-accepted UVa/Padova 
metabolic simulator.22 The simulations included a three-
meal scenario for breakfast, lunch, and dinner taken at 
approximately 7:00 am, 12:00 pm, and 6:00 pm with 40, 85, 
and 60 g of CHO, respectively. An optimal bolus insulin 
was given immediately based on the ideal insulin-to-
carbohydrate ratio (I:C). This situation is used as the 
nominal case for model identification. Three additional 
cases were considered to assess the performance of the 
identified models to nonideal situations:

Case I: The meal timing and CHO meal content were 
varied to represent variations in daily life. Thus a 1 h 
shift (forward or backward) in meal timing and ±75% 
variation in CHO amount were implemented.

Case II: In addition to the meal variations of case I, a 30% 
increase in I:C was considered, which resulted in lower 
peak glucose measurements.

Case III: It is the same as case I except that a 30% 
decrease in the I:C was considered, which resulted in 
higher peak glucose measurements.

Cases II and III were used to test whether the identified 
prediction model for the nominal case is valid due to 
inaccurate CHO estimates.

Training data for model identification consisted of 2 days  
of simulated data (midnight to midnight) for the nominal 
case. The impulse inputs were transformed by second-
order transfer functions29 into continuous impulse 
outputs. One day of training data was used for model 
identification, while the second day of training data was 
used for cross-validation to choose design parameters, 
PH, and the numbers of past measurements that were 
included in the predictor matrix. The latter are referred 
to as predictor lengths and denoted as LG, LI, and LM 
for glucose, insulin bolus, and meal CHO estimate, 
respectively. (See Appendix A.)

Glucose predictor length LG was evaluated to assess its 
effects on prediction performance. On one hand, a larger 
LG value will increase the predictor information for 
the glucose prediction, which may improve prediction 
accuracy. On the other hand, if LG is too large, the oldest 
information may not be useful for prediction and thus 
actually reduce prediction accuracy.

The prediction accuracy of the identified models can 
be evaluated and compared using several standard 
metrics.4,8,10 In this paper, two metrics are used. One 
metric is the root mean-square error (RMSE), which is 
defined as

RMSE =    1
N

 S(yi – ŷi)2

i∈N
               (20)

where ŷi is the predicted value, yi is the CGM 
measurement, and N is the number of samples.

The other metric is the continuous glucose (CG) error-
grid analysis (EGA),30,31 which is specific to diabetes 
applications. Here CGM data are used as the reference 
for analyzing how accurate the glucose predictions are 
according to the CG-EGA metric. In the following results, 
the EGA label refers to the percentage of the model 
predictions that lie in the “clinically accurate” region A.

The optimal value of LG was either 7 or 8 for both the 
LV and the AR models and for all subjects. For the ARX 
and LVX models, the optimal numbers of LI and LM 
were more subject dependent, as were the input time 
delays, kins and kmeal, in Appendix D. An additional 5 
days of simulated testing data were used to evaluate  
model accuracy.

Figure 2 shows the influence of glucose predictor length 
LG on model accuracy for the four identification 
methods, three cases, and a prediction horizon of 30 min  
(i.e., PH = 6). The RMSE values in Figure 2 for cases 
I–III are averages for the 10 in silico subjects and five 
days of testing data. For case I, the RMSE index for all 
four models is insensitive to changes in LG for LG > 7. 
For nonideal cases II and III, the ARX model performance 
is rather erratic and becomes worse as LG increases. For a 
specific value of LG, the LVX model is the most accurate 
model based on the RMSE metric and a paired t-test 
for individual subjects (α = 0.05). These LV and AR models 
exhibit similar prediction accuracy, and their differences 
are not statistically significant based on a paired t-test 
(α = 0.05).
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The choice of prediction horizon PH involves a trade-off. 
It should be large enough to ensure adequate time for 
a necessary intervention or corrective action in order to 
avoid abnormal glycemia. On the other hand, a larger 
PH value may result in less accurate glucose predictions. 
Figure 3 shows the prediction accuracy for different 
identification methods and PH values up to 12 when the 
optimal values of LG were used for different methods 
and subjects. The RMSE values were averaged for  
10 adults and five days of testing data. As expected, the 
prediction accuracy decreases as PH increases. For PH ≥ 6, 
the differences in prediction accuracy for the four types 

Figure 2. Comparison of the average RMSE values for 10 in silico 
subjects and different models with respect to effects of glucose 
predictor length LG on 30 min glucose prediction. (A) case I, 
(B) case II, (C) case III.

Figure 3. The effect of prediction horizon PH on model prediction 
accuray for 10 in silico subjects and different modeling techniques. 
Average RMSE values for (A) case I, (B) case II, (C) case III.

of models become more significant. The LVX model 
is statistically more accurate based on a paired t-test 
(α = 0.05) for cases II and III; for case I, its accuracy 
is similar to that of the ARX model. The LV and AR 
models achieve similar accuracy and the differences are 
not statistically significant based on a paired t-test (α = 0.05). 
Figures 2 and 3 demonstrate that an ARX model developed 
for the nominal case conditions is less accurate for cases 
II and III, in comparison with the other methods.

The number of LVs for the PLS calculations, NLV, 
determines how much predictor information is retained 
in the PLS model. In general, using a small value of NLV 
indicates that much of the information in the predictor 
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data X is considered to be uninformative for prediction 
purposes and thus is excluded from the PLS model. 
Preliminary simulations indicated that a value of NLV = 4 
or 5 gave good results.

Figure 4 compares model accuracy for subject #1, 
30 min predictions, cases I–III, and a representative day 
of testing data. For case I, both the ARX and LVX models 
capture the general glucose trend with similar accuracy. 
For cases II and III, the ARX model provides less 
accurate predictions at the peaks of the glucose profiles. 
Similar conclusions occur for subject #7 in Figure 5, 
where a representative day of test data is considered for 
the three cases.

Tables 1 and 2 summarize model prediction accuracy for 
the 10 in silico adults based on two metrics, RMSE (mg/dl)
and EGA (%) in region A. Both the mean absolute deviation 
(MAD) and median average deviation values are shown. 
The shaded values in a column indicate models that 
are statistically superior compared with the unshaded 
models in the column, based on a paired t-test (α = 0.05). 
Tables 1 and 2 also include results for a simple model-

Figure 4. Comparison of measured values and 30 min predictions for 
LVX and ARX models and in silico subject #1 over a one-day period: 
(A) case I, (B) case II, and (C) case III. A green left triangle indicates 
the time of a meal and an insulin bolus injection, which are taken at 
the same time.

Figure 5. Comparison of measured values and 30 min predictions for 
LVX and ARX models and in silico subject #7 over a one-day period: 
(A) case I, (B) case II, and (C) case III. A green left triangle indicates 
the time of a meal and an insulin bolus injection, which are taken at 
the same time.

free method, constant value prediction (CVP). In this 
approach, the prediction PH samples ahead is simply the 
current value.

In general, the LVX model in Table 1 gives the lowest 
RMSE values and thus is the most accurate. For case I, 
all four modeling methods are superior to the CVP 
approach. But for cases II and III, the ARX model usually 
gives worse results than the CVP approach. For the  
EGA (%) results in Table 2, all models except ARX give 
better results for case III than for cases I and II, even 
though this trend is not present for the RMSE values in 
Table 1. This anomaly occurs because the glucose values 
are higher for case III due to insulin underdelivery. 
Region A of the EGA becomes larger when the glucose 
values are higher. From this viewpoint, the EGA index is  
a less sensitive metric than the RMSE index.
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Retrospective Clinical Data
In the retrospective clinical evaluation, several days 
of data for each of the seven ambulatory subjects were 
available. The subjects had given their voluntary and 
written informed consent to participate in the study.  
The key characteristics for the seven subjects (four males 
and three females) are

• Age: 48 ± 15 years

• Weight: 87 ± 25 kg

• Height: 174 ± 11 cm

•	 Correction factor: 35 ± 14 mg/dl/U 

•	 I:C: 1:9 ± 1:2 U/g

The CGM glucose data were collected using a DexCom 7  
PlusTM device (DexCom, San Diego) with a 5 min sampling 
period. The estimated meal CHO values and recorded 
insulin boluses were used as the exogenous inputs.  
The data were divided into 24 h time segments from 
4:00 am to 4:00 am. One day of data was used for model 
identification.

The two impulse inputs were transformed into time-
smoothed inputs using the second-order transfer functions 
of a previous study.29 The estimated model predictor 
lengths and input time delays were selected based on 
cross validation. The optimal predictor length LG for 
glucose was 7 or 8 for all empirical models and subjects. 
For ARX and LVX models, the optimal model parameters 
for two exogenous inputs are more subject dependent, 
including the predictor lengths and input time delays. 
The identified prediction models were then tested using 
other segments of data for each subject.

The weak influence of LG on model accuracy is illustrated 
in Figure 6 for 30 min predictions and test data. The mean 
RMSE value and MAD from median value are shown 
for the seven clinical subjects. Based on a paired t-test 
(α = 0.05) for individual subjects, the LVX model is 
statistically superior to the other models.

The effect of prediction horizon PH on average prediction 
performance is shown in Figure 7. The optimal predictor 
length LG for glucose was used for different empirical 
models and subjects. As expected, as PH increases, the 
average RMSE value increases and the MAD of the RMSE 
index also increases. The four types of models produce 

Table 1.
Root Mean-Square Error Results (mg/dl; Mean ± Mean Absolute Deviation) for Glucose Prediction and  
10 in Silico Subjects

PH = 6 (30 min) PH = 12 (60 min)

Case I Case II Case III Case I Case II Case III

LVX 8.9 ± 0.7 8.5 ± 0.6 8.4 ± 0.6 14.6 ± 1.2 13.5 ± 1.7 13.9 ± 1.9

ARX 9.8 ± 0.5 14.7 ± 3.7 13.6 ± 3.4 14.9 ± 1.1 27.7 ± 9.7 24.8 ± 8.8

LV 11.2 ± 1.1 11.5 ± 1.1 11.3 ± 1.2 18.8 ± 3.1 19.8 ± 2.9 19.1 ± 3.5

AR 11.6 ± 1.1 11.6 ± 1.2 11.6 ± 1.1 20.0 ± 2.6 20.0 ± 2.6 20.1 ± 2.5

CVP 13.9 ± 1.8 13.9 ± 1.8 13.9 ± 1.7 22.2 ± 3.2 22.3 ± 3.3 22.3 ± 3.1

Table 2.
Error-Grid Analysis Results (% in Region A; Mean ± Mean Absolute Deviation) for Glucose Prediction and  
10 in Silico Subjects

PH = 6 (30 min) PH = 12 (60 min)

Case I Case II Case III Case I Case II Case III

LVX 97.9 ± 0.7 95.2 ± 0.5 99.1 ± 0.8 89.7 ± 2.3 78.8 ± 4.1 92.8 ± 3.7

ARX 97.8 ± 0.8 91.1 ± 3.2 96.9 ± 2.4 89.7 ± 2.6 74.0 ± 4.2 88.7 ± 6.5

LV 96.4 ± 1.5 93.5 ± 1.4 98.2 ± 1.0 83.5 ± 5.3 76.1 ± 4.9 89.9 ± 4.2

AR 97.1 ± 1.0 94.9 ± 1.0 98.6 ± 0.6 83.7 ± 3.6 78.2 ± 3.9 89.6 ± 2.4

CVP 94.3 ± 1.9 90.6 ± 2.2 97.0 ± 1.3 82.0 ± 4.5 76.2 ± 4.3 87.4 ± 3.9
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Figure 6. The effect of glucose predictor length LG on model prediction 
accuracy for seven clinical subjects, PH = 6, and different modeling 
techniques. (A) mean RMSE (mg/dl); (B) MAD of RMSE (mg/dl).

Figure 7. The effect of prediction horizon PH on model prediction 
accuracy for seven clinical subjects and different modeling techniques. 
(A) mean RMSE (mg/dl); (B) MAD of RMSE (mg/dl).

essentially the same prediction accuracy for small values 
of PH. However, when PH ≥ 6, the LVX model is the 
most accurate, while the AR model is the least accurate. 
For PH ≥ 6, a paired t-test (α = 0.05) indicates that 
the LVX model is usually statistically superior to the 
other methods.

The measured and predicted glucose profiles for the 
LVX and ARX models are shown in Figure 8 for two 
representative subjects and one day of test data. The ARX 
and LVX models give similar results for the two subjects. 
Similar results are shown in Figure 9 for AR and LV 
models for the same two subjects.

Tables 3 and 4 summarize model prediction accuracy 
for the seven clinical subjects based on RMSE (mg/dl)  
and EGA (% in region A), respectively. The shaded 
values in a column indicate models that are statistically 
superior compared with the unshaded models in the 
column, based on a paired t-test (α = 0.05). All four 
modeling techniques were much more accurate than the 
CVP model-free method. For PH = 3, the four modeling 

Table 3.
Root Mean-Square Error Results (mg/dl;  
Mean ± Mean Absolute Deviation) for Glucose 
Prediction and Seven Clinical Subjects

Methods PH = 3
(15 min)

PH = 6
(30 min)

PH = 9
(45 min)

PH = 12
(60 min)

LVX 11.1 ± 2.4 18.7 ± 3.7 24.4 ± 4.7 29.2 ± 5.5

ARX 11.3 ± 2.5 19.5 ± 3.8 25.5 ± 4.6 30.3 ± 5.3

LV 11.3 ± 2.4 19.7 ± 3.3 26.0 ± 3.8 31.2 ± 4.0

AR 11.6 ± 2.4 20.8 ± 3.5 28.3 ± 4.2 34.9 ± 4.5

CVP 21.7 ± 3.8 26.9 ± 3.2 31.0 ± 2.9 37.5 ± 2.5

Table 4.
Error-Grid Analysis Results (% in Region A;  
Mean ± Mean Absolute Deviation) for Glucose 
Prediction and Seven Clinical Subjects

Methods PH = 3
(15 min)

PH = 6
(30 min)

PH = 9
(45 min)

PH = 12
(60 min)

LVX 96.8 ± 1.8 86.1 ± 7.5 78.8 ± 9.9 72.1 ± 10.6

ARX 96.5 ± 2.1 84.9 ± 7.9 77.5 ± 8.8 70.1 ± 10.3

LV 96.4 ± 2.0 84.9 ± 7.6 76.3 ± 10.2 68.4 ± 9.6

AR 96.2 ± 2.3 84.4 ± 7.5 74.8 ± 8.8 66.5 ± 9.8

CVP 84.0 ± 5.8 76.9 ± 6.1 71.1 ± 6.6 63.0 ± 6.2
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methods exhibit similar prediction performance. But as PH 
increases, the differences become significant. For PH ≥ 6, 
the LVX models in Table 3 are statistically superior, as 
indicated by a paired t-test (α = 0.05) for the RMSE index.

Conclusions
Glucose prediction models based on a LV-based approach 
have been evaluated for both an in silico study and a 
retrospective analysis of clinical data. The new LV and 
LVX models were compared with standard AR and ARX 
models and a simple model-free approach (CVP), where 
the future prediction is merely set equal to the current 
value. For both investigations, the empirical models were 
more accurate than the model-free method.

For the in silico study, the LV-based modeling method 
gave more accurate predictions than the AR/ARX 
alternative for changing conditions such as meal timing, 
meal amounts, and I:C. For large prediction horizons 
(≥30 min), the LVX model was statistically superior to LV 
and AR models based on a paired t-test (α = 0.05) for all 
cases and superior to the ARX models for cases II and III.

For retrospective clinical data, the LV and LVX models 
provided modest improvements in prediction accuracy 
compared with the corresponding standard models  
(AR and ARX). For PH ≥ 6, the inclusion of exogenous 
inputs in the models (LVX and ARX) resulted in more 
accurate models compared with the models without 
exogenous inputs (LV and AR), respectively.

These promising modeling results should encourage 
extensions of this research methodology. For example, a 
critical problem concerns the generation of hypoglycemic 
event alerts based on an online statistical analysis of 
current and past data.
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Figure 8. Comparison of glucose data and 30 min predictions for 
the LVX and ARX models and one day of test data. (A) subject #1; 
(B) subject #5. A green left triangle indicates the time of a meal and a 
red right triangle indicates the time of an insulin bolus.

Figure 9. Comparison of glucose data and 30 min predictions for 
the LV and AR models and one day of test data. (A) subject #1; 
(B) subject #5. A green left triangle indicates the time of a meal and a 
red right triangle indicates the time of an insulin bolus.
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Appendix A. Data Arrangement

The CGM glucose data can be represented as a data vector g(K × 1) , where K is the number of samples. Recorded insulin 
boluses and estimated meal CHOs are denoted by uI(K × 1) and uM(K × 1), respectively. It is desired to predict 
the glucose concentration PH time steps ahead, where PH is the prediction horizon. These predictions are based on 
recent values of the predictor variables. A key question is how many past values of glucose and the two exogenous 
inputs should be included in the model. Let LG, LI, and LM denote the numbers of past samples for glucose, insulin, 
and meal CHOs, respectively, that are used to make the predictions. These parameters will be referred to as the 
predictor lengths, PLs.

For the model development, the training data are organized as follows. The predictor matrix is defined as

X(N × Jx) = [G(N × LG), UI(N × LI), UM(N × LM)]                                       (A1)

where N is the number of glucose measurements to be predicted, N = K – L – PH + 1, L = max(LG, LI + D – 1, 
LM + D – 1), and D is the input time delay for both the insulin bolus and the meal CHOs. Note that N < K due to the 
initialization period required to acquire the past data for the first glucose prediction. Model parameter Jx = LG + LI + LM 
is the number of variables in the arranged data matrix. The insulin bolus predictor data are arranged as

UI(N × LI) = 

uI,1
T(1 × LI)

uI,2
T(1 × LI)

⋮

uI, K–L–PH+1
T(1 × LI)

                                                 (A2)

Each row vector uI,i
T(1 × LI)(i = 1,2,...,N) contains the bolus insulin information from time i + L – LI to i + L – 1. 

Similarly, the analogous predictor matrices for the other two predictor variables are denoted by UM(N × LM) and 
G(N × LG), respectively.

The model output data are arranged as

y(N × 1) = 

gL+PH

gL+PH+1

⋮

gK

                                                       (A3)

where gL+PH is the glucose measurement at time L+PH.
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Appendix B. MATLAB Codes for the Latent-Variable-Based Modeling Algorithm

function [LVmodel]=LV_modeling(X,Y,A)
%% LVX/LV modeling algorithm to calculate the PLS-CCA prediction model
%% Reference: {Post processing methods (PLS-CCA): simple alternatives to
%% preprocessing methods (OSC-PLS). Chemometr Intell Lab Syst. 2004; 73: 199-205.}
%% Inputs X and Y are the preprocessed predictor and output matrices
%% A is the number of PLS LVs to be retained
[Nx, Jx]=size(X);
[Ny, Jy]=size(Y);
if Nx~= Ny
    disp(‘unmatched data size’);
end
[Wpls, Ppls, Qpls, Rpls,betapls]=mkernel(X,Y,A);
Tpls=X*Rpls;
[Wccax, Wccay] = canoncorr(Tpls,Y);
Tcca=Tpls*Wccax;
Pcca=(inv(Tcca’*Tcca)*Tcca’*X)’;
Qcca=(inv(Tcca’*Tcca)*Tcca’*Y)’;
LVXmodel=Rpls*Wccax*Qcca’;
--------------------------------------------------------------------------
In the MATLAB code, two key subfunctions are used, which are shown as follows:
Subfunction 1. Partial Least Squares Modeling Algorithm
function [W, P, Q, R, beta,TU,U]=mkernel(X,Y,A)
%% The PLS algorithm to calculate the PLS model parameters
%% This is the modified kernel PLS algorithm by Dayal and MacGregor
%% Reference: {Dayal B, MacGregor J. Improved PLS algorithms. J Chemometr. 1997; 11: 73-85.}
%% Inputs X and Y are the preprocessed predictor and output matrices
%% A is the number of PLS LVs to be retained
W=[];
P=[];
Q=[];
R=[];
TU=[];
U=[];
[Nx, Jx]=size(X);
[Ny, Jy]=size(Y);
if Nx~= Ny
    disp(‘unmatched data size’);
end
XY=X’*Y;
for i=1:A
if Jy==1
        w=XY;
else
        [C,D]=eig(XY’*XY);
        q=C(:,find(diag(D)==max(diag(D))));
        w=XY*q;
end
    w=w/sqrt(w’*w);
    r=w;
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    for j=1:i-1
        r=r-(P(:,j)’*w)*R(:,j);
    end
    t=X*r;
    tt=t’*t;
    p=(X’*t)/tt;
    q=(r’*XY)/tt;
    u=Y*q’/(q*q’);
    tucov=w’*XY*q’;
    XY=XY-(p*q)*tt;
    Y=Y-t*q;
    W=[W w];
    P=[P p];
    Q=[Q q’];
    R=[R r];
    TU=[TU tucov];
    U=[U u];
end
beta=R*Q’;
--------------------------------------------------------------------------
Subfunction 2. Canonical Correlation Analysis Modeling Algorithm
It uses the direct MATLAB statistics toolbox function [Wx,Wy] = canoncorr(X,Y).
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Appendix C. MATLAB Codes for Glucose Prediction Using the Developed Latent 
Variable/Latent Variable with Exogenous Input Model

function [Yhat,Eval]=LV_prediction(X,Y,LVmodel,Y_mean,Y_std,option)
%% Glucose prediction to evaluate the model performance;
%% Inputs X and Y are the preprocessed predictor and output matrices;
%% LVmodel is the developed LVX/LV model;
%% Y_mean and Y_std are the data normalization information calculated from training data, mean and standard 
deviation respectively, which are used to preprocess and normalize Y before;
%% option is used to determine which evaluation index to be calculated;
%% Outputs Yhat is the prediction and Predstat is the calculated statistical index value to evaluate the prediction 
accuracy.
[Nx, Jx]=size(X);
[Ny, Jy]=size(Y);
if Nx~= Ny
    disp(‘unmatched data size’);
end
Yhat=X*LVmodel*Y_var+Y_mean;
Predstat=Statis_calculation(Y,Yhat,option);
--------------------------------------------------------------------------
Subfunction 1. The Calculation of Prediction Errors by Different Evaluation Indices
function [Predstat]=Statis_calculation(Y,Yhat,option)
%% Prediction error calculation to evaluate the prediction accuracy;
%% Inputs Y and Yhat both are single output vectors;
%% Yhat is the prediction and Y is the corresponding CGM measurement after PH steps from the measurement time 
for Y;
%% option is used to determine which evaluation index to be calculated;
%% Output Predstat is the calculated statistical index to evaluate the prediction accuracy.
[Ny, Jy]=size(Y);
[Nyhat, Jyhat]=size(Yhat);
if Ny~= Nyhat
    disp(‘unmatched data size’);
end
if Jy~=1&Jyhat~=1
    disp(‘not single output vector’);
end
switch option
    case 1
        RMSEy=sqrt(mse(Yhat-Y)); %% to calculate root mean squared errors
        Predstat=RMSEy;
    case 2
        R2y=1-sum((Yhat-Y).̂ 2)/sum((mean(Y)-Y).̂ 2); %% to calculate R-square
        Predstat=R2y;
    case 3
        MADy=mean(abs(Yhat-Y)); %% to calculate mean absolute differences
        Predstat=MADy;
end

Note: In the function Statis_calculation, only three evaluation indices are show here. You can add the concerned 
indices as you want.
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Appendix D. Autoregressive/Autoregressive with Exogenous Input Prediction Model

The AR and ARX models are linear dynamic models having been widely considered for prediction and control 
calculations in the diabetes control literature. The general form of the ARX model used in this article is given by 
Equation (D1),

A(q–1)gt = Bins(q–1)uins,t–kins + Bmeal(q–1)umeal,t–kmeal + β + et                                      (D1)

where gt denotes glucose concentration at sampling instant t, uins,t, and umeal,t are the exogenous inputs, bolus 
insulin, and meal CHO content at time t, β is a constant bias term, and et is a zero mean, random disturbance at time t. 
Note that this ARX model is somewhat unusual because it is based on physical variables and a bias term rather than 
deviation variables. The advantage of this approach is that it eliminates the need to specify an appropriate steady-
state reference value for the glucose concentration, information that may be difficult to determine in practice because of 
the inherent dynamic behavior of blood glucose concentration. In Equation (D1) the input time delays, kins and kmeal, 
can be different for each input. The time delays are expressed as integer multiples of the sampling period, Δt. In this paper, 
the sampling period is 5 min. 

In Equation (D1), A(q-1), B1(q-1), and B2(q-1) denote polynomials in q-1, where q-1 is the backward shift operator, i.e., 
q-1gt ≡ gt–1. For example,

A(q-1) = a0 + a1q-1 + a2q-2 +...+ anA
q-nA                                               (D2)

where nA is the order of the A(q-1) polynomial. It determines the number of previous glucose measurements that are 
relevant for prediction. When polynomials B1 and B2 are set equal to zero, the ARX model in Equation (D1) reduces 
to an AR model.

The identification of an AR or ARX model corresponds with specified model orders and can be performed analytically 
using standard least-squares regression32 to estimate the model coefficients (e.g., {ai}). However, if the training data are 
highly correlated, an ill-conditioned or rank-deficient problem can arise in the least squares calculations. To address 
this problem, a regularization modification to the least squares calculations was used by Gani and associates33 to 
provide a trade-off between the fit to the training data and the smoothness of future predictions. The net effect of 
regularization is the introduction of a small bias to the standard least squares solution.


