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Abstract
This commentary reviews several of the challenges encountered when attempting to quantify glycemic 
variability and correlate it with risk of diabetes complications. These challenges include (1) immaturity of 
the field, including problems of data accuracy, precision, reliability, cost, and availability; (2) larger relative 
error in the estimates of glycemic variability than in the estimates of the mean glucose; (3) high correlation 
between glycemic variability and mean glucose level; (4) multiplicity of measures; (5) correlation of the multiple 
measures; (6) duplication or reinvention of methods; (7) confusion of measures of glycemic variability with 
measures of quality of glycemic control; (8) the problem of multiple comparisons when assessing relationships  
among multiple measures of variability and multiple clinical end points; and (9) differing needs for routine 
clinical practice and clinical research applications.
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Let us consider some of the reasons why measurement 
of glycemic variability is more challenging than measure-
ment of a mean glucose or hemoglobin A1c and identify 
some of the pitfalls.

1.	 Measurement of glycemic variability is challenging 
because it is relatively new. With all due respect to 
the seminal work of Service and colleagues1–3 who 
introduced the mean amplitude of glucose excursion 
(MAGE), mean of daily differences (MODD), and 
several other measures dating back to the early 1970s, 
the large-scale study of glycemic variability began 
in earnest only with the advent of commercially 
available continuous glucose monitoring (CGM) 
and the scientific interest and controversy in the 

hypothesis that long-term complications of diabetes 
could be linked to glycemic variability.4–6 The field 
is new and immature. The accuracy, precision, 
stability, reliability, and availability of CGM are 
improving7,8 but not yet comparable to that of self-
monitoring of blood glucose (SMBG) and laboratory 
measurements. Methods for smoothing and pre-
processing of signals from the glucose sensor may 
affect results obtained for measures of glycemic 
variability.9

2.	 There is intrinsically greater uncertainty in the  
measurement of variability than in the measure-
ment of the mean. When data obey a Gaussian 
distribution, the expected standard error of the mean 
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(SEM) is σ/√N, where σ is the true (population) 
standard deviation (SD) and N is the number of 
independent measurements on which the mean is 
based. In contrast, the expected standard error of 
the SD10 is given by se(SD) = σ/√(2N), which is 0.71 
times the SEM. For most patients with diabetes, 
the SD is only 25% to 50% of the mean glucose 
(typically 35%). Thus the relative error in the 
estimate of the SD, 100 × {se(sd)}/SD, and most of 
the other measures of glycemic variability, would 
be 0.71/0.35 or approximately two-fold larger than 
the relative error for the estimate of the mean.  
For numerical example, if the mean of 25 independent 
glucose measurements were 150 and the SD was 
50, then the SEM would be 50/√25 = 50/5 = 10,  
i.e., the mean ± SEM is 150 ± 10, or there is a 
relative error of 10/150 = 0.067, i.e., a 6.7% relative 
error in the estimate of the mean. The standard 
error of the SD would be expected to be 50/√(2∗25) 
= 7.1 mg/dl, corresponding to a relative error in 
the estimate of the SD of 7.1/50 = 0.142 or 14.2%.  
Thus the mean can often be estimated fairly well 
(±6.7%), but the SD is relatively poorly determined 
because of random sampling error (±14.2%). This is 
under a best-case scenario when the data are 
Gaussian and when there are a sufficient number of 
independent observations.10 Measurement of glycemic 
variability will be subject to even larger measurement 
errors in the presence of outliers, when distributions 
are non-Gaussian, and when glucose measurements 
are not independent (e.g., due to the autocorrelation  
of CGM measurements).

3.	 The magnitude of glycemic variability is highly 
correlated with the level of the mean. The strong 
correlation of SD with the mean glucose11–14 makes 
it extremely difficult to evaluate whether clinical 
outcomes are related to the mean, to glycemic 
variability, or to both. One can use multiple 
regression to try to separate the effects of variability 
and mean level.12 However, in view of the larger 
measurement error in the estimate of glycemic 
variability than in the mean (discussed earlier), 
one would expect higher correlations of biological 
and clinical effects with the mean glucose than 
with the SD of glucose, even if both factors were 
equally important in terms of their biological or 
pathophysiological roles. Unlike the case with 
in  vitro studies,15 it is difficult to systematically and 
independently vary the mean and the glycemic 
variability, although this has been achieved in one 
study (e.g., HEART2D).16

4.	 Uncertainty and ambiguity regarding the choice 
of the “right” measure of variability. We are now 
blessed with a multiplicity of measures of glycemic 
variability. These include SD, coefficient of variation 
(CV), interquartile range, MAGE, MODD, mean 
absolute glucose (MAG) change per hour, and 
several subtypes of the SD,11–27 including total SD 
(SDT), SD within days (SDw), between daily means 
(SDdm), between days (SDb), between days after 
correction for variability in daily means (SDb // dm), 
variability by time of day for the mean glucose 
profile from several days (SDhh:mm), measures of 
the stability of the glycemic profile or similarity 
of glucose patterns from day to day (root mean 
square error),17–19 a “distance travelled”20 that is 
closely related to the MAG rate of change,21 glucose 
fluctuation as defined by Mori and associates,22 and 
combinations of several of these measures.11,19,23 
Workers in the field need some time to evaluate 
and compare the performance of the various 
measures that have been proposed. This will enable 
us to examine the correlations among the several 
measures of variability13,14 and see if a consensus 
begins to emerge regarding which is the “best” 
or “most sensitive” or “more reliable” or “most 
reproducible” and “easiest to understand” of the 
various measures. Further, we need to examine 
which combinations of parameters, with what 
kind of weighting, will give the best correlation 
with clinically important events and long-term 
complications.11,14,19,23

5.	 High degree of correlation of different measures 
of glycemic variability. Not only do we have a 
multiplicity of measures, but these measures are 
highly correlated among themselves. This makes 
it difficult to determine which is the “right” measure,  
the “best” measure, or the measure with the greatest 
sensitivity to detect an effect such as a change in 
oxidative stress, coronary artery calcification,14 
cardiovascular disease, or measures of psychological 
factors such as depression or anxiety. If the measures 
are highly correlated, perhaps it matters less which 
measure one uses.

Each of the various parameters have their own 
problems with measurement error. Baghurst 
and colleagues have shown that the random 
sampling errors in the SD are significantly 
and consistently smaller than for MAGE or for 
CONGA1 (continuous overlapping net glycemic 
index, i.e. standard deviation of successive differences 
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of glucose values separated by 1 h). Baghurst also 
introduced the concepts of MAGE considering 
only upstrokes (MAGE+), MAGE considering only 
downstrokes (MAGE_), and the average of the two 
(MAGEavge). Mathematicians and statisticians have 
long known that SD is the most “efficient” statistic 
if the data are subject to a normal distribution, and 
this is often true even when the data depart from a 
Gaussian distribution.

6.	 Rediscovery, reinvention, and renaming of various 
measures. With so much excitement and activity in 
the field, some workers are describing “new” measures 
that have already been described under another 
name. For example, the “glycemic fluctuation”22 is 
mathematically interchangeable with a conventional 
statistical method, the mean absolute difference (MAD) 
of glucose from the mean, multiplied by a constant 
(24 h) to convert the MAD to an area under the 
curve. For data obeying a Gaussian distribution, the 
MAD is directly proportional to the SD, according 
to the following formula:28 MAD = Ö(2/p) × SD. 
This relationship applies to a Gaussian distribution; 
other relationships are available for other types of 
distributions.28 MAD = √(2/π) × SD. Thus glycemic 
fluctuation22 is expected to be proportional to the 
SD with a slope of 24 × √(2/3.1416) = 19.15.

“Distance travelled” as proposed by Marling and 
colleagues 20 for analysis of CGM data would be 
mathematically equivalent to the MAG introduced 
by Hermanides and associates21 in the context 
of SMBG or laboratory glucose values if glucose 
data were equally spaced on the time axis. Authors 
should examine the empirical correlation of “new” 
measures with previously proposed measures 
and also compare the theoretical or mathematical 
properties of the methods to detect relationships, 
similarities, or identities.

7.		 Need to distinguish between measures of “glycemic 
variability” and measures of “glycemic control.” 
A few measures of quality of glycemic control 
(hemoglobin A1c, mean glucose, fructosamine, 
glycated albumin) do not consider glycemic varia-
bility. However, most measures of glycemic control 
are sensitive to glycemic variability. Nevertheless, 
measures such as Schlichtkrull’s M value, the J index, 
the high blood glucose index/low blood glucose index) 
family of indices [BGRI (blood glucose risk index), 
ADRR (average daily risk range), HBGI (high blood 
glucose index), LBGI (low blood glucose index),26 

the index of glycemic control family of methods 
[IGC (index of glycemic control), hypoglycemia 
index, hyperglycemia index],17,18 and the glycemic 
risk assessment diabetes equation (GRADE)  
familyof methods (GRADE, %GRADEhypoglycemia ,
 %GRADEhyperglycemia , and %GRADEeuglycemia)27 are 
attempts to measure quality of glycemic control and 
not simply glycemic variability. A simple measure 
such as “percentage of glucose values falling within 
any specified range” (e.g., 80 to 180 mg/dl; or, 
conversely, the percentage of glucose values falling  
outside that range) is intended to be a measure 
of quality of glycemic control that is affected by 
glycemic variability but is not a measure of glycemic 
variability per se.13

8.	 Need to correct for the problem of “multiple 
comparisons.” With so many criteria for glycemic 
variability, one is tempted to examine each of them 
for possible relationships with the intervention or 
the effect(s) being studied. However, this increases 
the probability that some statistical significance 
tests will be positive simply because of the number 
of tests being performed. If one were to have 10 
measures of clinical outcomes and 10 measures 
of glycemic variability, one could calculate 100 
significance tests and their corresponding P values. 
Several of these might be significant at the P < .05 
level due to random chance (sampling error) alone. 
The problem becomes more complicated when the 
several measures of glycemic variability are highly 
correlated. Hence it is necessary to specify, a  priori, 
the primary response variables to test a specified 
hypothesis. This may be based on an exploratory 
analysis of a small subset of the data or of an 
independent pilot study. If need be, one can use a 

”resampling” type of statistical calculation to ensure 
that the multiplicity of hypotheses being tested are 
not generating spurious indications of statistical 
significance due to chance events.29,30

9.	 The possibility of differing needs for routine 
clinical practice and for clinical research. For routine 
clinical practice, it is likely that the SD and the 
corresponding CV obtained using either SMBG or 
CGM will be sufficient to permit assessment of 
changes in glycemic variability with time or following 
therapeutic interventions, and to permit comparison 
with reference populations of patients with similar 
type, duration, and level of control of hemoglobin A1c 
or mean glucose.11 For research applications, it will 
often be desirable to examine several additional 
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measures of glycemic control and variability. In many 
situations, use of CGM will be informative and 
cost-effective.

Conclusion
Measurement of glycemic variability is and will remain 
challenging for a number of reasons, including those 
discussed here. The scientific community is just now 
attaining the requisite level of experience to resolve the 
methodological issues, identify common pitfalls, and 
optimize methods for data collection, analysis, and display.
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