Identifying Type 1 and Type 2 Diabetic Cases Using Administrative Data: A Tree-Structured Model

Weihsuan Lo-Ciganic, M.S.C.P., M.S.,¹ Janice C. Zgibor, R.Ph., Ph.D.,¹ Kristine Ruppert, R.N., Dr.P.H.,² Vincent C. Arena, Ph.D.,³ and Roslyn A. Stone, Ph.D.³

Abstract

Background:

To date, few administrative diabetes mellitus (DM) registries have distinguished type 1 diabetes mellitus (T1DM) from type 2 diabetes mellitus (T2DM).

Objective:

Using a classification tree model, a prediction rule was developed to distinguish T1DM from T2DM in a large administrative database.

Methods:

The Medical Archival Retrieval System at the University of Pittsburgh Medical Center included administrative and clinical data from January 1, 2000, through September 30, 2009, for 209,647 DM patients aged \geq 18 years. Probable cases (8,173 T1DM and 125,111 T2DM) were identified by applying clinical criteria to administrative data. Nonparametric classification tree models were fit using TIBCO Spotfire S+ 8.1 (TIBCO Software), with model size based on 10-fold cross validation. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of T1DM were estimated.

Results:

The main predictors that distinguished T1DM from T2DM are age <40 years; International Classification of Disease, 9th revision, codes of T1DM or T2DM diagnosis; inpatient oral hypoglycemic agent use; inpatient insulin use; and episode(s) of diabetic ketoacidosis diagnosis. Compared with a complex clinical algorithm, the tree-structured model to predict T1DM had 92.8% sensitivity, 99.3% specificity, 89.5% PPV, and 99.5% NPV.

continued \rightarrow

Author Affiliations: ¹Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; ²Epidemiological Data Center, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; and ³Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pennsylvania;

Abbreviations: (CART) classification and regression tree, (DKA) diabetic ketoacidosis, (DM) diabetes mellitus, (ER) emergency room, (HbA1c) hemoglobin A1c, (ICD-9) International Classification of Disease, 9th revision, (MARS) Medical Archival Retrieval System, (NPV) negative predictive value, (OHA) oral hypoglycemic agents, (PPV) positive predictive value, (T1DM) type 1 diabetes mellitus, (T2DM) type 2 diabetes mellitus, (UPMC) University of Pittsburgh Medical Center

Keywords: administrative database, classification and regression tree, diabetes, Medical Archival Retrieval System, negative predictive value, positive predictive value, sensitivity, specificity

Corresponding Author: Weihsuan Lo-Ciganic, M.S.C.P., M.S., Department of Epidemiology, 130 DeSoto Street, Pittsburgh, PA 15261; email address wel32@pitt.edu

Abstract cont.

Conclusion:

The preliminary predictive rule appears to be promising. Being able to distinguish between DM subtypes in administrative databases will allow large-scale subtype-specific analyses of medical care costs, morbidity, and mortality.

J Diabetes Sci Technol 2011;5(3):486-493