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Abstract
Background:
Clinical trials assessing the impact of errors in self-monitoring of blood glucose (SMBG) on the quality of 
glycemic control in diabetes are inherently difficult to execute. Consequently, the objectives of this study were to 
employ realistic computer simulation based on a validated model of the human metabolic system and to provide 
potentially valuable information about the relationships among SMBG errors, risk for hypoglycemia,  
glucose variability, and long-term glycemic control.

Methods:
Sixteen thousand computer simulation trials were conducted using 100 simulated adults with type 1 diabetes.  
Each simulated subject was used in four simulation experiments aiming to assess the impact of SMBG 
errors on detection of hypoglycemia (experiment 1), risk for hypoglycemia (experiment 2), glucose variability 
(experiment 3), and long-term average glucose control, i.e., estimated hemoglobin A1c (HbA1c)(experiment 4). 
Each experiment was repeated 10 times at each of four increasing levels of SMBG errors: 5, 10, 15, and 20%  
deviation from the true blood glucose value.

Results:
When the permitted SMBG error increased from 0 to 5–10% to 15–20%—the current level allowed by 
International Organization for Standardization 15197—(1) the probability for missing blood glucose readings of 60 
mg/dl increased from 0 to 0–1% to 3.5–10%; (2) the incidence of hypoglycemia, defined as reference blood glucose 
≤70 mg/dl, changed from 0 to 0–0% to 0.1–5.5%; (3) glucose variability increased as well, as indicated by control 
variability grid analysis; and (4) the incidence of hypoglycemia increased from 15.0 to 15.2–18.8% to 22–25.6%. 
When compensating for this increase, glycemic control deteriorated with HbA1c increasing gradually from  
7.00 to 7.01–7.12% to 7.26–7.40%.

Conclusions:
A number of parameters of glycemic control deteriorated substantially with the increase of permitted SMBG 
errors, as revealed by a series of computer simulations (e.g., in silico) experiments. A threshold effect apparent 
between 10 and 15% permitted SMBG error for most parameters, except for HbA1c, which appeared to be 
increasing relatively linearly with increasing SMBG error above 10%.
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Introduction

Extensive studies have shown that intensive treatment 
with insulin or with oral medications aimed at maintaining 
near-normal levels of glycemia markedly reduces chronic  
complications in both type 1 (T1DM)1,2 and type 2 diabetes
mellitus (T2DM).3 However, because exogenous insulin 
provides imperfect replacement to its natural endogenous 
secretion, patients under intensive insulin therapy 
typically face an increased risk for hypoglycemia.4–7 Thus, 
hypoglycemia has been identified as the primary barrier 
to safe attainment of good glycemic control.8–10 In other 
words, people with T1DM and T2DM face a lifelong 
behaviorally controlled optimization problem: to maintain 
strict glycemic control without increasing their risk 
for hypoglycemia. The key to this (as well as to any) 
optimization is providing accurate information about the 
status and dynamics of the system (in this case the patient’s). 
The sources of information are at various stages of 
development and clinical acceptance: hemoglobin A1c 
(HbA1c) assays have been confirmed as the gold standard 
evaluation of glycemic control for both T1DM and 
T2DM,11 self-monitoring of blood glucose (SMBG) is now 
routine practice, and continuous glucose monitoring (CGM) 
systems are developing rapidly and entering the clinical 
mainstream.

Focusing on SMBG, contemporary home blood glucose (BG)  
meters offer convenient means for frequent BG determi-
nations. A review of standards and analytical methods 
used to judge SMBG device performance has been 
presented by Krouwer and Cembrowski.12 The accuracy 
of SMBG devices has been evaluated by multiple 
studies,13–16 and recommendations have been made for 
its improvement.17,18 The critical question is then: to what 
extent do inaccuracies in SMBG information, inherent with 
any measurement technology, influence the glycemic control  
of a person?

Several studies have addressed this question, offering 
various viewpoints and degrees of analytical complexity. 
Boren and Clarke19 presented an extensive review of over 
30 publications addressing the accuracy of SMBG devices. 
The primary conclusion of that review was because SMBG 
devices are prone to errors, “when examining blood glucose 
monitor performance in the real world, it is important  
to consider if an improvement in analytical accuracy 
would lead to improved clinical outcomes for patients.”19 
Raine and colleagues20 investigated the influence of 
miscoding meters on certain potential glycemic outcomes, 
such as hypoglycemia and hyperglycemia. They found 

that miscoding could result in significant meter bias, 
with a maximum deviation from reference BG of  
–224 mg/dl and a probability of over 10% to produce 
blood glucose reduction leading to hypoglycemia.20 
The common perception is therefore that SMBG accuracy 
(or errors) should be judged in the context of clinical 
outcomes. Clinical outcome studies of SMBG accuracy  
are, however, quite complex to design and difficult to 
execute. The reason is simple—controlled administration 
of meter errors in vivo is intricate and may be unethical 
in some cases.

A viable alternative to clinical trials testing the impact 
of SMBG inaccuracy was presented by the landmark 
studies of Boyd and Bruns,21,22 which employed computer 
simulation to assess the influence of meter errors on 
insulin dosing. These studies reported detailed results 
linking meter bias and imprecision to insulin dosing 
errors. The second of these studies also used a model of 
physiologic response to changing insulin dose to assess 
glucose outcomes due to meter errors. Two conclusions 
of these studies can be considered precursors to the 
computer simulation “in silico” experiments presented 
in this article: (1) “simulation of the clinical effects 
of measurement error is an attractive approach for 
assessment of assay performance requirements” and 
(2) “sophisticated models that give highly accurate 
representations of true physiologic response of glucose 
to insulin … would be the ideal models to apply in 
simulation studies.”22 Indeed, a computer simulator of 
the human metabolic system has been developed by 
Dalla Man and colleagues23,24 in collaboration with our 
research team and was employed in various in silico 
experiments of insulin treatment in the past 2 years.25 
This simulation platform has been used to assess 
differences in bolus calculator recommendations among 
four insulin pumps26 and was suggested as an in silico 
test bed for assessment of the accuracy of hypoglycemia 
alarm systems in CGM.27 In their 2009 work, Boyd 
and Bruns22 advocated the use of our simulator for 
assessing the impact of meter inaccuracies on clinical 
outcome.

Following this work, this article proposed to analyze  
the clinical effect of fixed standards for SMBG accuracy,  
i.e., what clinical gain should be expected when a 
standard is tightened from the current ±20% down to 
±5%. To perform this analysis, we used the simulation 
platform cited earlier.
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Methods
Continuing the work of Bruns and Boyd, we performed  
four in silico experiments using the University of Virginia/
Padova simulation platform. These experiments were 
designed to test the impact of SMBG errors on detection 
of hypoglycemia (experiment 1), BG target achieved and 
risk for hypo- or hyperglycemia following a correction 
bolus (experiment 2); glucose variability caused by  
meter-induced errors in both premeal and correction 
boluses (experiment 3); and long-term average glucose 
control, i.e., estimated HbA1c calculated from simulated 
reference BG (experiment 4).

Subjects
One hundred simulated “adults” with T1DM were 
employed in computer simulation experiments. Each of 
these “subjects” is a complex entity, generally described  
by the dynamical network model of the human metabolic 
system proposed by Dalla Man and colleagues and 
identified by 26 individual parameters.23,24 The individual 
parameters of the simulated subjects were selected carefully 
to span the interperson variability observed in  vivo 
in T1DM,25 i.e., different simulated subjects represent 
different people sampled representatively from the T1DM 
population. The “demographic” characteristics of the 100 
simulated subjects have been published previously25 and 
are presented in Table 1.

Model of SMBG Errors
Self-monitoring of blood glucose errors were modeled 
using independent Gaussian (normal) random variables 
with distribution parameters (µ,  σ) depending on the error 
to be generated. The parameter µ, which corresponds 
to the mean of a normal distribution, was kept at zero 
during the simulations, i.e., we did not investigate the 
effect of meter bias, which has been studied extensively 
in the past.20–22 The parameter σ, which corresponds to
standard deviation, was used to tune the magnitude of 
the error, i.e., the imprecision of SMBG. In addition, σ was 
made dependent on the BG level to simulate the current 
International Organization for Standardization (ISO) 
standard, which states that “ninety-five percent of the indi- 
vidual glucose results shall fall within ±0.83 mmol/liter  
(15 mg/dl) of the results of the manufacturer’s measure-
ment procedure at glucose concentrations ≤4.2 mmol/liter  
(75 mg/dl) and within ±20% at glucose concentrations 
>4.2 mmol/liter (75 mg/dl).”28 The symmetry implied by 
the standard (same margin above and below the true 
value) led us to the choice of normal distribution.

Figure 1 presents the 95th percentile of the simulated 
SMBG error (A) and the color-coded distribution of 
the error (B) at the permitted SMBG error level of 20%, 
i.e., at the upper limit of ISO requirements.

Table 1.
Key Demographic and Metabolic Parameters of 
100 In Silico “Adults” Available in Simulation 
Environment

Parameter Mean (SDb) Minimum Maximum

Weight (kg) 79.7 (12.8) 52.3 118.7

Insulin (U/day) 47.2 (15.2) 21.3 98.4

Estimated HbA1ca 7.0 (1.1) 5.4 9.7

Carbohydrate ratio (g/U) 10.5 (3.3) 4.6 21.1

Insulin effect on  
glucose utilization  
(10-2 mg/kg/min per 
pmol/liter)—a measure 
of insulin sensitivity

3.82 (1.34) 1.08 8.08

a In simulation, the HbA1c estimate depends on the simulated 
diabetes management regimen imposed on the subjects.  
Here, HbA1c corresponds to average glucose achieved 
under open-loop therapy based on each subject’s optimal 
carbohydrate ratio and correction factor.

b Standard deviation.

Figure 1. Distribution of simulated SMBG errors at the maximum 
error level of 20% permitted for BG >75 mg/dl by the ISO standard. 
The error for BG ≤75 mg/dl is kept within ±15 mg/dl from reference.  
To simulate a lower degree of error, e.g., 15, 10, or 5%, this distribution  
is scaled by appropriate reduction in its standard deviation.
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The following text refers to the ISO-permitted level of 
inaccuracy as 20% error. The simulation experiments 
scaled down the permitted SMBG error to 10 and 5%.  
It is important to emphasize that the permitted SMBG 
error does not translate into mean absolute relative 
deviation (MARD) of the same magnitude. Table  2 
illustrates the relationship between the degree of 
permitted SMBG error and MARD.

Protocol: Subjects were kept at reference BG of 200 mg/dl 
using a basal rate that was lower than nominal.  
An SMBG reading was “taken” at that point, with an 
error defined by the SMBG error model described earlier. 
Based on the SMBG reading, a correction insulin bolus 
was administered using the exact correction factor for 
each subject and the subject’s normal basal rate was 
resumed, with the goal of bringing the subject to a target 
BG of 100 mg/dl. The degrees of deviations from target 
and the risk for hypoglycemia were assessed at 5, 10, 15, 
and 20% levels of SMBG imprecision. The experiment 
was repeated 10 times per subject per accuracy level  
(n = 1000).

Relevance: Treatment of hyperglycemia in T1DM requires 
a glucose measurement from which the amount on 
insulin to be taken is computed. Thus, improper insulin 
dosing can lead to failure to correct hyperglycemia or to 
hypoglycemia.

Experiment 3
Goal: Assess glucose variability associated with a meal 
at different SMBG inaccuracy levels.

Protocol: Subjects were kept fasting at 100  mg/dl. 
An SMBG reading was “taken” at that point, with an 
error defined by the SMBG error model described earlier. 
Based on the SMBG reading, a premeal insulin bolus 
was administered using the exact carbohydrate ratio for 
each subject, with the goal of covering approximately 
60% of a meal containing 75 grams of carbohydrate, 
i.e., the meal was underbolused by 40% in order to 
necessitate a postmeal correction bolus. After observing a  
postprandial glucose increase, a second SMBG reading was 
taken, again with an error, and a correction bolus was 
administered as needed. Glucose variability was assessed 
during this up–down swing of BG as a function of meter 
errors. The experiment was repeated 10 times per subject 
per accuracy level (n = 1000).

Relevance: Glucose variability has documented negative 
consequences; increased variability around meals can 
lead to vicious cycles of overtreatment and both hyper- 
and hypoglycemic episodes.

Experiment 4
Goal: Estimate the deterioration of overall glucose control 
(HbA1c) created by increased SMBG inaccuracy.

Protocol: Long-term glucose control was assessed as 
follows: First, the subject’s glycemic control was stabilized  

Table 2.
Permitted (at 95th Percentile28) SMBG Error and 
Corresponding MARD

Permitted  
SMBG error

5% 10% 15% 20%

Observed MARD 
of the meter

2.01% 4.02% 6.03 8.04%

It is evident that the observed MARD is ~2.5-fold lower 
than the 95% percentiles permitted for meter error— 
a ratio that is a function of the distribution of the SMBG 
error described in the previous paragraph.

Procedure
As noted previously, we proposed four different 
simulations, each looking at four critical aspects of  
glucose control: (i) hypoglycemia detection, (ii) hyper-
glycemia correction, (iii) meal control, and (iv) overall 
glucose control. 

Experiment 1
Goal: Assess the deterioration of hypoglycemia detection 
as a function of SMBG inaccuracy levels.

Protocol: Hypoglycemia was induced with an insulin 
bolus and SMBG was performed at the precise time 
when the reference BG level reached an array of BG 
levels between 70 and 50 mg/dl. For each of these 
reference BG levels, the probability of SMBG missing  
the hypoglycemic episode was assessed as a function of 
the permitted meter error. The experiment was repeated  
100 times per subject (n = 10,000).

Relevance: People with T1DM rely on SMBG measures to 
assess their glycemic state (hypoglycemic, euglycemic, or 
hyperglycemic). Because hypoglycemia requires immediate 
treatment, detection of hypoglycemia is a critical use of 
point-of-care meters.

Experiment 2
Goal: Assess the effect of SMBG inaccuracy on the 
capacity to treat hyperglycemia.
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at a “nominal level” using their optimal carbohydrate 
ratio and correction parameters. The nominal glycemic 
control regiment carried a certain nominal risk for 
hypoglycemia, which was memorized for each subject. 
Further, subjects were “observed” for 10 days (it is 
understandable that a 10-day observation in vivo would 
not change HbA1c significantly because of the time 
needed to renew red blood cells; in silico, however, 
this effect is instantaneous) during which their control 
was based on SMBG with errors generated by the error 
model described previously. In some subjects, SMBG 
errors caused increased risk for hypoglycemia. We dialed 
this risk back to nominal levels for each subject and 
continued the simulation for another 10 days. Limiting the  
risk for hypoglycemia caused increases in the average 
blood glucose level of the affected subjects, simulating 
the detrimental effect of hypoglycemia on diabetes control 
observed in vivo.9,10 We converted the increase in average 
BG needed to offset hypoglycemia into an increase in 
HbA1c using the formula recommended by the American 
Diabetes Association (ADA)(28.7 × A1C – 46.7 = eAG29), 
thereby assessing in silico the relationship between SMBG 
errors and change in HbA1c as mediated by each subject’s 
risk for hypoglycemia. The experiment created n = 1000 
days of data.

Relevance: Hemoglobin A1c is the gold standard assess-
ment of glycemic control in diabetes. Thus, it is important 
to assess possible deviations in HbA1c due to SMBG 
errors.

Data Analysis
We used frequency analysis and graphical representation 
of the results to present the observed relationships. The 
main outcome measure for each experiment is as follows.

•	 Experiment  1: Probability of hypoglycemia (BG 
<70 mg/dl) detection, as estimated by the frequency 
method.

•	 Experiment  2: Probability of a hypoglycemic event, as 
estimated by the frequency of hypoglycemia. Secondary 
outcome measures: distribution of the achieved BG value, 
as represented by the box plot.

•	 Experiment  3: Glucose variability as estimated by the A+B 
zone percentage of control variability grid analysis 
(CVGA30–32).

•	 Experiment  4: Risk of hypoglycemia as estimated by 
the percentage of days with at least a hypoglycemic 
event. Secondary outcome measure: HbA1c change 

resulting from increase in the risk of hypoglycemia as 
computed by the ADA formula.29

Results

Experiment 1 
Figure  2A presents the probability for missing hypo-
glycemic reference BG events as a function of reference 
BG and meter error. It is evident that this probability 
increases sharply with the increase of SMBG error.  
For example, a reference BG level of 60 mg/dl will be 
always detected at an SMBG error of 5%, but the chances 
of missing that event even if SMBG is performed right  
on time increase to 1, 3.5, and 10% for SMBG errors of 
10, 15, and 20%, respectively. Thus, at the 20% error level 
permitted by the ISO standard,28 1 in 10 hypoglycemic 
episodes of 60 mg/dl would remain undetected, even if  
the SMBG reading is perfectly timed at the precise time 
of hypoglycemic event.

Figure 2B presents another view of this problem, 
plotting the probability for missing a hypoglycemic level  
of 60 mg/dl as a function of the SMBG error. A certain 
threshold effect is evident between 10 and 15% SMBG 
error—the probability for missing hypoglycemia is 
initially relatively low (≤1%) and increases sharply 
thereafter.

Figure 2. (A) Probability of SMBG missing hypoglycemia as a 
function of BG level and permitted SMBG error. It is evident that 
even significant hypoglycemic episodes of 60 mg/dl or lower can be 
missed by SMBG with errors within 20% as allowed by ISO 15197.  
(B) Reference BG is fixed at 60 mg/dl. The probability for missing 
that hypoglycemic event increases, initially slowly, until the permitted 
SMBG error reaches a level between 10 and 15%. After that error 
threshold, the increase accelerates substantially.
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Experiment 2
Figure 3 presents the distribution of BG levels achieved 
following a correction bolus administered at a reference 
BG level of 200 mg/dl and calculated precisely to bring 
the “subject” down to 100 mg/dl if there were no SMBG 
measurement errors. Having meter errors introduces certain 
dispersion of the BG level achieved. The dispersion 
increases with the increase of the SMBG error to the 
extent that SMBG errors within the permitted 20% 
range can cause hypoglycemia (BG ≤70 mg/dl) and 
hyperglycemia (BG >180 mg/dl), i.e., clinically significant 
over- or undercorrection.

The incidence of hypoglycemia, defined as reference BG  
≤70 mg/dl, increased from 0% at an SMBG error of 
5 and 10% error to 3.5% at 15% error and 5.5% at 20% 
error. The incidence of overshooting the target, defined 
as reference BG >140 mg/dl, increased from 0% at an  
SMBG error of 5 and 10% to 0.1% at 15% error and 
5.5% at 20% error. Again, a certain threshold effect is 
apparent—the probabilities for hypoglycemia and for 
overshooting the target are close to zero for permitted 
SMBG errors of up to 10% and increase faster thereafter.

Experiment 3
In this experiment, we simulated a sequence of two 
SMBG readings, premeal and postmeal at the peak of 
postprandial BG elevation. Figure 4 presents a CVGA 
plot comparing a 5% permitted meter error (white dots) 
vs a 20% permitted meter error identified by black 
dots. Each data point on the plot has two coordinates: 
X is the minimum BG level for each subject and Y is 
the maximum BG level for each subject during the 
experiment. The spread of data over the CVGA plot is 
a measure of overall variability.32 It is evident that a 
higher SMBG error results in a wider spread of data, 
indicating higher glucose variability. The percentage of  
points within the desired CVGA A+B zones decreases  
from 97% at permitted 5% error to 85% at 20% error,  
and percentage readings in the dangerous C, D, and E 
zones increase fivefold, from 3% at 5% error to 15% at 
20% error.

Experiment 4
Under nominal conditions (no SMBG error and optimal 
control), 15% of all observed patient days had at least one 
hypoglycemic episode across the 100 simulated subjects. 
Increasing the SMBG error resulted in an increased 
percentage of hypoglycemic episodes to 15.2% at permitted 
5% error, 18.8% at 10% error, 22% at 15% error, and  
25.6% at 20% error. In order to scale back the risk for 

Figure 3. Distribution of BG levels achieved when a correction bolus 
was calculated precisely to bring each of the simulated subjects from  
200 to 100 mg/dl. It is evident that the chances for not achieving the 
target increase substantially with the increase in meter error.

Figure 4. A CVGA plot comparing 5% permitted meter error (white 
dots) to 20% permitted meter error (black dots) in terms of glucose 
variability caused by SMBG inaccuracy. It is evident that the amplitude  
of BG fluctuations increases with increased SMBG error.

each subject to its nominal level of 15%, we needed 
to increase the average BG by 0.5 mg/dl at 5% error,  
3.5 mg/dl at 10% error, 7.5 mg/dl at 15% error, and  
11.5 mg/dl at 20% error. This corresponds to an increase 
in HbA1c by 0.01 at 5% error, 0.12 at 10% error, 0.26 at  
15% error, and 0.40 at 20% error. Figure 5A presents the 



568

Impact of Blood Glucose Self-Monitoring Errors on Glucose Variability, Risk for Hypoglycemia,  
and Average Glucose Control in Type 1 Diabetes: An In Silico Study Breton

www.journalofdst.orgJ Diabetes Sci Technol Vol 4, Issue 3, May 2010

relationship between magnitude of permitted SMBG 
error and expected increase in incidence of hypoglycemia. 
Figure 5B presents the expected increase in HbA1c due 
to the detrimental effects of hypoglycemia on subjects’ 
average glucose control.

It appears that while 5% SMBG error has almost no 
influence on HbA1c, the estimated HbA1c increases nearly 
linearly with a further increase in permitted SMBG errors.

Discussion
The experiments presented in this article are best explained 
by quoting the famous statistician George E.P. Box, 
who wrote: “Essentially, all models are wrong, but some 
are useful.”33 Here, we relied on sophisticated models 
of the human metabolic system, which are capable of 
approximating the system response to insulin and glucose 
challenges. While these models are imperfect and cannot 
truly encompass the vast variability observed in vivo, 
these models are also useful. In particular, they allow 
for experiments that are virtually impossible (or very 
time-consuming and expensive) in vivo. The full control 
over all variables in simulated experiments and the 
reproducibility of in silico results are other advantages 
to be considered when interpreting our results.

In general, model-based computer simulation is a main- 
stream engineering tool, which is being used extensively 
for the design and the safety analysis of a number of 
mechanical systems, from the simplest tools to sophisticated 
aircraft.34 In diabetes research, computer simulation has 
been used in the past to assess trends and treatment 
effects at a population level.35,36 Assessment of the impact 
of permitted SMBG errors on insulin dosing and glucose 
control has been simulated as well.21,22 As suggested by 
the Boyd and Bruns,22 the limiting step in these earlier 
experiments was the lack of realistic computer simulation 
that could mimic the reaction of human glucose control 
to inaccurate SMBG readings. This limitation is being 
overcome by newer studies, which employ simulators 
equipped with realistic simulated subjects. For example, 
Wilinska and associates37 used a cohort of 18 simulated 
subjects to show that the incidence of severe and 
significant hypoglycemia was reduced 2300- and 200-fold, 
respectively, during simulated overnight closed loop 
compared to that observed during open-loop overnight 
clinical studies in young subjects with T1DM. In our 
experience, in silico studies have been extremely helpful 
in the development and testing of closed-loop control 
algorithms, cutting the development time from years 
needed for animal studies to only a few months.38,39

This article used one of the most sophisticated currently 
available simulators of the human metabolic system 
developed to investigate the impact of permitted SMBG 
errors in four types of in silico experiments. First, we 
showed that SMBG errors can cause hypoglycemic episodes 
to be missed, with a 10-fold increase in missed BG levels 
of 60 mg/dl when permitted SMBG errors range from  
10 to 20%, even if the timing of SMBG is perfect. Then we 
showed that SMBG errors can cause hypoglycemia when 
SMBG is used to dose insulin corrections at moderately 
high BG levels of 200  mg/dl and that the incidence 
of hypoglycemia increased progressively with the 
magnitude of the SMBG error. Certain threshold effects 
were observed in experiment  1 where the probability 
for missing hypoglycemia is relatively low (≤1%) for 
permitted SMBG errors of up to 10% and increases sharply 
thereafter, and in experiment 2 where the probabilities 
for hypoglycemia and for overshooting the target were 
close to zero for permitted SMBG errors of up to 10% 
and increase thereafter.

Further, we expanded the SMBG sequence to encompass 
both premeal and correction boluses. This allowed 
simulation of a BG swing from low to high and back to 
low BG levels and permitted analysis of the influence 
of SMBG errors on glucose variability. The CVGA plot 
showed that certain sequences of errors observed in 
one-quarter of all simulated trials can cause extreme BG 
excursions into both hypo- and hyperglycemic ranges. 
Finally, we simulated long-term patterns of glycemic 
control. In doing so, we speculated that an increased 
incidence of hypoglycemia would cause deterioration 
of average glucose levels, possibly through a behavioral 
reaction to the increased risk—an idea that is consistent 
with the concept of hypoglycemia being the major 
obstacle to optimal glycemic control.9,10 This allowed 
evaluation of a relationship between increasing permitted 
SMBG errors and deterioration of HbA1c, showing that 

Figure 5. Relationship between the degree of permitted SMBG error 
and percent days with hypoglycemia during experiment 4 (A). 
Deterioration in HbA1c as mediated by risk for hypoglycemia (B).
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permitted SMBG errors of 5% have virtually no effect  
on HbA1c but that HbA1c increases steadily thereafter 
with the increase in SMBG error. A permitted SMBG 
error of 15% would result in a quarter point increase in 
HbA1c.

In this study we did not investigate the effect of SMBG 
errors in patients with T2DM because our simulation 
environment is still not ready for this task. We also 
deliberately omitted investigation of the effect of consistent 
bias in SMBG, which may occur due, for example, to 
miscoding of the meter, interfering substances, oxygenation 
of the blood, or hematocrit levels. This subject has been 
studied extensively in the past20–22 and adding a separate 
study of SMBG bias would have overloaded this article. 
Our investigation was also limited to the effects of 
SMBG errors in T1DM. Similar in silico experiments with 
T2DM can be done when the simulation environment is 
equipped with a cohort of T2DM-simulated subjects— 
a development that is ongoing.

In conclusion, in silico experiments allowed establishing 
certain relationships between the degree of permitted 
SMBG errors and the risk for hypoglycemia, glucose 
variability, and long-term glycemic control in T1DM 
represented by estimated HbA1c. We need to emphasize, 
however, that these results should be viewed cautiously 
because their validity is limited by the proximity of our 
simulations to real-life events. Nevertheless, because our 
simulator has been tested extensively in the past 2 years,  
we can anticipate that future clinical studies would 
confirm our in silico findings. Until then, we can only 
rely on the usefulness of our models.40
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