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Abstract

Background:
Models of the dynamics of interstitial fluid-based continuous glucose sensors imply a variable sensor deviation  
from reference blood glucose (BG), depending on both sensor calibration procedure and BG dynamics. These 
effects could have a significant effect on the cross-interpretation of nonidentical accuracy studies.

Methods:
Hyperinsulinemic euglycemic and hypoglycemic clamps were performed on 39 subjects with type 1 diabetes 
wearing the Medtronic Continuous Glucose Monitoring System®. Sensor calibration and interstitial glucose (IG) 
dynamics were modeled and analyzed as potential confounders of sensor deviation from reference BG.

Results:
The mean absolute deviation (MAD) of sensor data was 20.9 mg/dl during euglycemia and 24.5 mg/dl during  
descent into and recovery from hypoglycemia. Computer-generated recalibration reduced MAD to 10.6 and 
14.6 mg/dl, respectively. Modeling of IG dynamics reduced the MAD further to 10.0 and 10.4 mg/dl (using  
idiosyncratic parameters) or to 10.6 and 11.5 mg/dl (using model parameters common for all subjects), respectively.

Conclusions:
The sensor MAD from reference is strongly influenced by the choice of calibration points. Thus, cross-experiment 
comparisons of sensor accuracy are likely to be heavily dependent on the employed calibration procedures.  
Demanding calibration points substantially differing in value was found to improve calibration effectiveness. 
Simulation using existing IG models and population parameters reduced the bias resulting from BG–IG 
dynamics.
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Introduction

Continuous glucose sensor (CGS) technology has 
the potential to revolutionize diabetes management by 
providing patients with ongoing, online feedback about 
current blood glucose (BG) levels and rate/direction 
of change, as well as signals to alert for possible 
dangerous trends, such as rapid decreases that may 
lead to hypoglycemia.1 Compared to few self-monitoring 
blood glucose readings per day, CGS yield detailed time 
series of BG estimates (e.g., every 5 minutes), allowing 
for the precise tracking of BG variation—an essential 
component of glycemic control.2 It is important, however, 
to emphasize that most contemporary CGS yield estimates  
of BG not via direct measurement in blood, but via 
sampling of interstitial fluid (IF). Such estimates are the 
product of at least two consecutive steps: (1) blood-to-
interstitial glucose (IG) transport and (2) deduction of 
BG values from IG-related electrical current recorded by 
the sensor. As a result, although CGS technology has 
made dramatic strides,1,3,4 the development of accurate 
and reliable CGS devices continues to face a number of 
significant challenges in terms of sensitivity, stability,  
calibration, and the physiological time lag between blood 
and interstitial glucose concentration, which has been 
observed in a number of clinical studies and laboratory 
experiments.5–10 Such a time lag becomes particularly 
important in the context of real-time warnings for 
hypoglycemia or hyperglycemia or in the context of a 
closed-loop system based on the combination of a CGS, a  
control algorithm, and an insulin pump (although in the 
latter case the time lag related to subcutaneous insulin 
injection is much more pronounced11).

While models of IG dynamics have been explored and 
validated,12–14 there remains an unanswered question of how 
these dynamics impact the deviation of CGS readings from 
reference blood glucose data. In particular, the relative 
contribution of calibration and BG-to-IG diffusion to the 
deviation of sensor data from reference BG remains unclear. 
The evaluation of CGS performance is therefore left with 
a central difficulty: separating the portion of CGS-BG 
deviation due to the sensor from that due to the IG–BG  
gradient. This article models mathematically the two steps  
of conversion of sensor current to BG reading: calibration 
and IG dynamics. It then explores their impact on sensor 
deviation from reference using a standard metric of CGS  
accuracy, the mean absolute deviation (MAD). Because we 
intend to view these two steps as potential study biases/
confounders, the precision of CGS under different conditions 
of IG dynamics and simulated recalibration is examined. 

We utilize CGS results from hyperinsulinemic euglycemic  
and hypoglycemic clamps in subjects with type 1 diabetes 
(T1DM) with the premise that the contrasting conditions 
of steady-state euglycemia, descent into hypoglycemia, 
and recovery will provide a comprehensive view on IG 
dynamics. In addition, because IG is difficult to measure 
directly, we introduce and utilize a model-predicted IG,  
i.e., surrogate interstitial glucose (SIG).

Methods

Subjects 
Thirty-nine subjects with TIDM were recruited through 
regional advertisement. Exclusion criteria were age >65 
years, mental retardation, psychological diagnoses, or active 
substance abuse. The average age of the participants was 
42.5 ± 12 years, the average duration of T1DM was 21.6 ±  
9.4 years, and the average hemoglobin A1c was 7.4 ± 0.8%; 
there were 16 males. The study was approved by the 
University of Virginia Human Investigation Committee. 
All subjects gave written consent and had a complete 
physical examination prior to the beginning of the protocol.

Procedure
Subjects were admitted to the University of Virginia 
General Clinical Research Center in the evening prior to 
the study, and their BG levels were controlled overnight 
within the target range of 100–150 mg/dl, preventing 
hypoglycemia (BG <70 mg/dl). The Medtronic CGMS® 
(Medtronic, Northridge, CA) was attached to each subject 
on the evening of admission, approximately 12 hours 
prior to the initiation of the principal procedure, and 
was calibrated 2 hours after sensor insertion and before 
and after the clamp procedure on the next day. The 
device clock was synchronized with the room clock for 
subsequent matching of data. The total time of CGMS data 
recording during the study was approximately 18 hours. 
All CGMS were inserted in the abdomen. In the morning,  
a hyperinsulinemic clamp was initiated using a constant 
insulin infusion rate of 1 mU/kg/min and a variable 
glucose infusion rate to achieve and maintain BG levels 
at approximately 110 mg/dl. Subsequently, the glucose 
infusion rate was reduced to permit a controlled decline 
in BG of approximately 1 mg/dl/min until BG reached 

~50 mg/dl. Glucose infusion was then resumed to allow 
a recovery to normal glucose levels. The lead-in portion 
of the clamp study (until achieving BG of 110 mg/dl)  
varied significantly across the subjects (between 20 and
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140 minutes) depending on their morning glucose level. 
Once stable BG was achieved, euglycemia was maintained 
for 50–70 minutes, followed by descent into hypoglycemia 
and recovery. The rates of descent and ascent were quite  
uniform across the subjects, with a mean rate of descent of 
1.15 (SEM = 0.03) mg/dl/min and a mean rate of ascent of 
1.73 (SEM = 0.07) mg/dl/min. Arterialized blood was achieved 
by warming the hand to 50ºC and was sampled every  
5 minutes for reference BG levels using a Beckman glucose 
analyzer (Beckman Instruments, Inc., Fullerton, CA).

Data Preprocessing
The first 15 minutes of data after the beginning of infusion 
were ignored to avoid rapid fluctuations in insulin and  
glucose levels at the beginning of the study. CGMS readings, 
recorded at the standard Medtronic CGMS frequency of  
5 minutes, were synchronized for each subject with 
his/her reference BG and other clinical measures with 
a precision of 30 seconds. This synchronization was 
strictly of the devices’ clocks, without adjustment for 
any possible time lags. Further, we separated each clamp  
into two data sets for comparison across subjects: steady-
state euglycemic clamp and hypoglycemic descent and 
recovery by matching data streams across subjects at the 
moment of BG nadir. 

Sensor Recalibration
To test the effect of the spacing across the BG scale of 
sensor-calibration points, we took a 2-hour time window 
of each subject’s CGMS BG estimates around his/her 
nadir of BG during hypoglycemia and generated sensor 
recalibration using two reference BG values chosen to have 
been different by a given BG gradient. The recalibration 
used the standard linear calibration function of the 
CGMS, BG = scale × [current offset]. We also performed 
an optimal calibration, which used all available reference 
BG values to estimate the parameters of the sensor 
calibration function. For the purposes of evaluating the 
effect of calibration, optimal calibration was performed 
within a 2-hour time window around the nadir of BG;  
for the purposes of computing the SIG (next section), 
optimal calibration was performed using all data from 
the entire experiment (except the first 15 minutes).

Mathematical Model of IG Changes in Response to BG
Because glucose is a relatively small molecule, it is widely 
supposed to diffuse freely across the capillary wall.6 
Adipose tissue is highly vascularized, and the IF occupies 
a relatively thin layer between cells.12 This means that 
no volume element is very far from a cell surface, nor 
is it very far from a capillary wall. Hence, uptake and 
diffusion of glucose in the IF can be assumed to be 

relatively uniform, without a significant local gradient. As  
reported previously,13–15 the dynamics of glucose diffusion 
and uptake can be described as 

(1)

Equation (1) assumes that the rate of removal of glucose  
from the interstitial fluid is proportional to IG (with rate 
parameter α) and that the movement of glucose from the 
blood to the interstitial fluid (or vice versa) is passive 
diffusion and hence is proportional to the gradient (with 
rate parameter β). Because there are no other apparent  
sources or sinks of glucose in the interstitium, Equation (1) 
describes the net change in IG via two parameters (α, β). 
In order to follow the standard representation in the 
literature, we rearrange the terms of the equation with 
two parameters (k1, k2). The parameters were estimated 
via numerical integration of Equation (1) using reference 
BG values and recalibrated sensor readings. The step of  
numerical integration was fixed at <0.001 minute, a data 
density not provided by original data. In order to achieve 
such a data density, original data were interpolated using  
smooth interpolation curves between the data points. 
This process identified SIG, a fitted, scaled continuous 
approximation of each person’s IG concentration. 
Furthermore, because the ratio of k1 to k2 affects a change  
in scale of the integrated solution, allowing k1 and k2 to vary  
independently would essentially recalibrate the result. 
Hence, in already recalibrated data we required k1 = k2, 
which results in one-dimensional parameter space. Having  
arrived at parameters (equivalent to delay estimates), we 
used SIG to estimate the impact of that delay.

Results

Sensor Calibration
Figure 1 illustrates the influence of BG differential 
between two calibration points on the quality of 
calibration: the X axis represents the distance between  
two simulated calibration points in BG units (mg/dl); the 
Y axis represents MAD of the sensor output, given this 
two-point calibration with error bars ±SEM of absolute 
deviation. The MAD was computed within a 2-hour time 
window encompassing the nadir of BG for each subject.  
It is evident that MAD is high if the two calibration BGs 
are close by in value, is decreasing rapidly when the 
difference approaches 20 mg/dl, and is decreasing slowly 
after that. Thus, Figure 1 demonstrates that MAD is  
very dependent on the choice of points for a two-point 
calibration. The upper dashed horizontal line in Figure 1 
represents the MAD of the sensor’s original calibration  
(i.e., that created by calibration points in the evening, 
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before and after the clamp); the lower dashed horizontal 
line in Figure 1 represents the MAD resulting from an 
optimal calibration using all reference points within the 
selected time window. It is evident that two calibration 
BGs >40 mg/dl apart would achieve nearly optimal 
results.

Modeling of IG Changes in Response to BG
Figure 2 presents the three signals considered in this 
article (averaged across all subjects): reference BG, model-
predicted surrogate IG, and recalibrated sensor current, 
with error bars ±SEM. It is evident that the SIG trace is 
much closer to reference BG than original sensor data.

The parameters of the diffusion model were fitted for 
each individual subject, as well as globally across all 
subjects. The median best-fitted parameters of the SIG 
fitted individually to each subject were keu_id = 0.12/min 
(SEM = 0.06/min) for euglycemia and khypo id = 0.17/min 
(SEM = 0.13/min) for the hypoglycemic descent. The global 
best-fit parameters were keu_gl = 0.10/min for euglycemia 
and khypo_gl = 0.09/min for the hypoglycemic descent. 
Table 1 displays the MAD computed under the following 
circumstances: original sensor readings, recalibrated 
readings using all reference data points during the study, 
SIG using idiosyncratic parameters fitted separately to 
each subject, and SIG using global parameters.

Table 1 shows that the recalibration accounts for a large 
portion of the sensor deviation from reference BG. It is 
also evident that the difference between individually 
fitted and global parameters is minimal.

Discussion

Calibration
It is intuitively clear that the accuracy of sensor calibration 
depends on the rate of BG change and perhaps on the 
BG value at the moment of calibration. Assuming that 
calibration is performed at a steady BG level (a condition 
generally required by sensor manufacturers), it is also 
reasonable to expect that if two calibration points are 
taken at about the same BG level, the quality of calibration 
would be lower than if these points were taken at different 
BG levels. The reason behind this premise is that a 
calibration function would perform better if its input has 
certain variance, as opposed to two repeated calibrations 
at the same BG level, as demonstrated by Figure 1. This 
dependency means that when comparing CGS accuracy 
results across studies, a strong bias can emerge if the 
method and timing choices of calibration points are 
not identical. For example, in our study calibration was 

Figure 1. Sensor accuracy against reference of two-point recalibration 
given forced difference in recalibration point values. Bottom dashed 
line is optimal all-point calibration; top dashed line is original device 
calibration.

Figure 2. Averaged time courses of CGS, BG, and SIG.  Subjects are time 
matched by nadir of BG.

Table 1. Mean Absolute Deviation

Model

MAD: Steady 
euglycemic state, 

N = 1146 data 
points

MAD: Descent 
and recovery from 

hypoglycemia,
N = 699 data points

Sensor recalibration

Original sensor 
readings

20.9 24.5

Recalibrated 10.6 14.6

BG-to-IG diffusion
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performed in the evening and then in a steady state before 
and after hypoglycemia, with little BG gradient between 
the calibration points. This resulted in the original sensor 
trace in Figure 2, which deviates significantly from 
reference during induced hypoglycemia. In an otherwise 
identical study with the second calibration point taken in 
hypoglycemia, the MAD would have been over 50% less. 
The clinical message therefore is that sensors (particularly  
those with a current offset, such as the CGMS) need to be 
calibrated at points with a sufficient difference between 
the glucose levels, e.g., >30 mg/dl.

Surrogate Interstitial Glucose
The dynamics of SIG in Figure 1 reflects the basic features 
of IG profiles reported in studies using euglycemic/
hypoglycemic clamp and CGS: a low bias during stable 
BG values and during BG descent and a delayed recovery 
following BG nadir.5 This indicates that the proposed 
mathematical model is capable of describing quantitatively 
IG dynamics during hyperinsulinemic clamp. In general, 
the BG-to-IG dynamics is idiosyncratic and the diffusion 
equation [Equation (1)] is solved individually using the 
trace of each person, assigning idiosyncratic parameters 
specific to that person. It appears, however, that the 
computation of SIG dynamics with global parameters is 
possible and does not increase the deviation of the IG 
trace significantly (the last two lines of Table 1). Because 
SIG based on global parameters effectively eliminates 
the influence of any particular sensor, it is not dependent 
on sensor mechanical performance. In that sense, SIG 
represents the “ideal sensor” that reflects IG dynamics 
free of engineering limitations. 

Using SIG as an intermediate component in the analysis 
of sensor deviation from reference BG, Table 1 shows that 
descent vs steady-state deviations differ only in terms of 
their physiological component and are virtually identical  
in terms of mechanical sensor error. Thus, it appears that  
the time lag between BG- and IG-based sensor readings is 
mostly because of IG consumption and glucose diffusion 
between the two compartments—blood and interstitium. 

The computation of SIG is relatively uncomplicated 
and can be done with idiosyncratic estimation of a 
rate constant from reference BG data or using “global” 
population estimates of this parameter. As presented in 
Table 1, the differences, in terms of accuracy, between  
idiosyncratic and global rate constants are minimal. Thus, 
future studies could establish SIG as a bias-correction 
tool when seeking to compare results across accuracy 
experiments. The utility of that tool may seem limited: 
many studies are designed precisely to bypass this 

confounder by putting multiple sensors on the same 
patients and calibrating them the same way. However, 
in a growing marketplace of sensors such demanding 
comparisons may become infeasible. In addition, such a 
tool would allow data combination from multiple studies  
to increase their power.

During the development of SIG methodology we have 
experimented with different, including nonlinear, forms 
of the model, incorporating features such as (i) glucose 
uptake controlled by nonlinear kinetics, (ii) flow-limited  
rate of glucose transfer, (iii) active transport models of 
glucose transport across the microvasculature, (iv) gradient 
corrections for large interstitial compartments, and 
(v) use of state space models and filters for estimation.16 
So far, we have no compelling results showing any of the 
aforementioned as superior to the minimal assumptions 
outlined in our methodology. However, continued 
experiments are needed, particularly regarding the 
application of SIG methodology to nonclamp field data 
where the parameters likely vary in time and may 
have much higher variance than in our relatively small 
study in a well-controlled environment. In addition, we 
recognize that some of these different forms may be 
more appropriate to different interstitial locations. For 
example, the blood–brain barrier controlling cerebrospinal 
fluid is thought by many to use active transport17 and 
would likely be a large compartment. Alternatively, 
fluid compartments with high glucose values may be 
better described by nonlinear uptake kinetics. Further 
developments of SIG methodology would also account for 
the ways in which factors, such as body mass index or 
insulin resistance, can be used to produce more accurate 
population parameters.
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