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Abstract

Background:
Control algorithms that regulate blood glucose (BG) levels in individuals with type 1 diabetes mellitus face 
several fundamental challenges. Two of these are the asymmetric risk of clinical complications associated with 
low and high glucose levels and the irreversibility of insulin action when using only insulin. Both of these 
nonlinearities force a controller to be more conservative when uncertainties are high. We developed a novel 
extended model predictive controller (EMPC) that explicitly addresses these two challenges.

Method:
Our extensions to model predictive control (MPC) operate in three ways. First, they explicitly minimize the 
combined risk of hypoglycemia and hyperglycemia. Second, they integrate the effect of prediction uncertainties 
into the risk. Third, they understand that future control actions will vary if measurements fall above or below 
predictions. Using the University of Virginia/Padova Simulator, we compared our novel controller (EMPC) 
against optimized versions of a proportional-integral-derivative (PID) controller, a traditional MPC, and 
a basal/bolus (BB) controller, as well as against published results of an independent MPC (IMPC). The BB 
controller was optimized retrospectively to serve as a bound on the possible performance.

Results:
We tuned each controller, where possible, to minimize a published blood glucose risk index (BGRI).  
The simulated controllers (PID/MPC/EMPC/BB) provided BGRI values of 2.99/3.05/2.51/1.27 as compared to the 
published IMPC BGRI value of 4.10. These correspond to 73/79/84/92% of BG values lying in the euglycemic 
range (70–180 mg/dl), respectively, with mean BG levels of 151/156/147/140 mg/dl.

Conclusion:
The EMPC strategy extends MPC to explicitly address the issues of asymmetric glycemic risk and irreversible 
insulin action using estimated prediction uncertainties and an explicit risk function. This controller reduces 
the avoidable BGRI by 56% (p < .05) relative to a published MPC algorithm studied on a similar population.
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Motivation

Patients with longstanding type 1 diabetes mellitus 
have little or no endogenous insulin production, leaving 
the body unable to lower blood glucose (BG) levels 
without exogenous insulin. Technological advances 
have enabled the development of a closed-loop artificial 
pancreas, reducing the burden of glucose management 
for these patients.1–3 Continuous glucose monitors 
measure subcutaneous glucose levels while pumps infuse 
insulin and/or glucagon subcutaneously. A controller 
then connects these two. While some investigators have 
proposed and tested controllers using pumps for both 
insulin and glucagon,4 we focus on the more common 
approach using only an insulin pump.

In this study, we examined two fundamental challenges 
faced by any such closed-loop artificial pancreas and 
developed a novel controller to explicitly address these 
difficulties.

First, the acute and chronic risks of extreme blood 
glucose levels are asymmetric.5 Low BG levels 
(hypoglycemia) are acutely risky as they can result in 
altered mental state, seizures, and coma. Meanwhile, 
high BG levels (hyperglycemia) increase the risk of 
chronic complications such as retinopathy, nephropathy, 
and cardiovascular disease. In the face of significant 
uncertainty, this asymmetry should cause a controller 
to err toward high BG levels. That is, controller behavior 
should vary with observed uncertainty.

Second, insulin action is irreversible. Using only insulin, 
the controller cannot actively counter the effects of 
delivered insulin. This means that a controller should 
be cautious to avoid slow recoveries from unexpected 
insulin overdoses. And again, the level of caution should 
vary with the level of uncertainty.

In this work, we extended model predictive control6 
as a basis for a closed-loop artificial pancreas. We 
explicitly managed the expected future risk to trade 
off the dangers of hypoglycemia and hyperglycemia. In 
the process, we explicitly considered uncertainty and 
the potential effects of future BG measurements and 
controller actions.

We began by analyzing the challenges of asymmetry 
and irreversible insulin. We then developed the novel 
extended model predictive controller (EMPC) that 
explicitly deals with these challenges. We finally 

demonstrated the improved performance of this 
controller on the University of Virginia/Padova (UVa/
Padova) Metabolic Simulator7 against a proportional-
integral-derivative (PID) controller, a basic model 
predictive controller (MPC), and a published MPC 
algorithm.8

Asymmetric Risk
The ultimate objective of any BG controller is to 
minimize the complications resulting from poor BG 
control. To this end, we proposed incorporating an 
explicit estimate of risk into our feedback controller. 
We first discussed known approximations of the risk of 
diabetic complications versus BG level. Thereafter, we 
developed a continuous, convex function describing risk 
that is also suitable to the optimization needed in MPC. 
We then explored how asymmetric risk should affect 
control decisions.

Approximating the Risk of Complications
The Diabetes Complication and Control Trial (DCCT)9 
and the Epidemiology of Diabetes Interventions and 
Complications (EDIC) trial10 show an increased risk 
of chronic complications with higher hemoglobin A1c 
(HbA1c) (glucose levels). They also describe the acute 
detrimental effects of hypoglycemia. While informative, 
they do not provide a single numerical metric of the risk 
of complications.

To provide a single risk metric combining chronic 
and acute elements, Kovatchev and colleagues5,11 
symmetrized the distribution of BG levels. They assumed 
that less common BG levels are inherently more risky 
than more common BG levels. The resulting formula is 
R(g) = 10[1.509ln(g)1.084 – 5.381]2, where g is the glucose 
concentration in mg/dl. Meanwhile, other research8 
proposed a similar function that penalizes low blood 
glucose levels more: R’(g) = 10[3.5506ln(g).8353 – 3.7932]2. 
This second metric was “modified with respect to 
literature values to better suit control performance 
results.”8

To enable comparisons with published results, we 
adopted the second approximation in our validations. 
Both approximations are shown in Figure 1. While these 
works provide a nice estimate of clinical risk, neither 
estimate is well suited to estimation of clinical risk as 
part of a controller, because neither handles negative 
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values and so are not continuous or convex over the 
set of real numbers. Handling negative values is critical 
since many proposed closed-loop controllers use simple 
models of the glucose system that predict negative 
glucose values when simulating large insulin doses.8,12–15 
Continuity and convexity are also important since they 
make optimizations faster and more robust.

Clinical Risk Measure for Control
While there are ways to modify the existing risk 
functions to make them continuous and convex over 
the real numbers, we chose to generate a new simpler 
function based directly upon the DCCT and EDIC trials.

The chronic risk of retinopathy correlates roughly 
linearly with the HbA1c for values between 5.5 and 9.0 
(about 111 to 212 mg/dl).9 Because HbA1c correlates with 
mean BG values,16 we could approximate the risks of 
chronic complications as a linear function of BG levels.

riskchronic(g) = ag + b                     (1)

The acute risks of low BG levels increases sharply with 
dropping BG level starting with lethargy and mild 
hypoglycemia and progressing quickly to seizures and 
sever hypoglycemia. As there is no data to directly 
support a specific analytic expression, we chose a simple 
cubic model.

riskacute(g) = 
⎧
⎨ 

c(d – g)3     if g ≤ d
0             otherwise⎩

         (2)

The risk function for control that combines hypoglycemic 
and hyperglycemic risks is then

risk(g) = ag + b 
⎧
⎨ 

c(d – g)3     if g ≤ d
0             otherwise⎩

      (3)

and is parameterized by the constants a, b, c, and d. In 
practice, this expression could be adjusted parametrically 
or even functionally subject to clinical judgement or at a 
user’s discretion.

To match the R’(g) function, discussed above, used in 
Magni and colleagues8 we chose the parameter values

a = 0.2370 
1

mg/dl
, b = –36.21, 

c = 6.0 
1

(mg/dl)3 × 10-5, d = 177 mg/dl
          (4)

Figure 1 graphs the risk function developed here 
together with two other published graphs.

Figure 1. Blood glucose risk profiles. The functions shown are the 
risk function risk(g) (dashed blue) used in feedback control in this 
paper and the nonconvex, discontinuous approximations published by 
Clarke, Kovatchev, and colleagues5,11 (dash-dotted red) and Magni and 
colleagues8 (solid black).

The Effects of Risk Asymmetry on Optimal Control
The risk of complications is asymmetric about the 
lowest risk glucose concentration of 140 mg/dl,8 so that 
a glucose concentration of 190 mg/dl is much less risky 
than a glucose concentration of 90 mg/dl. Since future BG 
concentration values are never certain, controllers should 
always consider the possibility of values that become 
higher or lower than expected. This means that as the 
prediction uncertainty increases, less insulin should be 
delivered to bias BG levels to higher values where risk 
increases more gently. Figure 2 shows an illustrative 
example where shifting the range of possible future 
values upward lowers the average risk. Mathematically, 
this corresponds to minimizing the expected risk of the 
prediction distribution instead of minimizing the risk 
of the mean prediction. This is a significant effect since 
predictions for several hours into the future can easily 
have standard deviations of 40 to 100 mg/dl.12

Figure 2. The effect of uncertainty and asymmetric risk on control 
decisions. The solid vertical lines indicate the center of two uniform 
glucose distributions while the dotted lines with matching colors 
indicate the lower and upper bounds of those distributions.  
The “Too risky” distribution (red) is positioned with its center at the 
minimum risk glucose concentration of 140 mg/dl. The “Minimally 
risky” distribution is positioned to minimize the expected risk of the 
uniform distribution. We chose uniform distributions for display only.
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Irreversible Insulin
Predictions are inherently uncertain, hence controllers 
should consider how they will respond when the actual 
values end up above or below the predicted mean values. 
With the aid of future glucose measurements, higher 
than predicted mean values will be rejected by injecting 
more insulin. Lower than predicted values may be 
rejected by injecting less insulin provided that injecting 
less insulin does not mean removing already injected 
insulin. In that case, the controller can only rely on the 
endogenous glucose production (EGP) to slowly raise the 
glucose concentrations back to desirable levels, as shown 
in Figure 3. Therefore, it is imperative that controllers 
understand how uncertain predictions are and not inject 
too much insulin too soon.

Extended Model Predictive Control
This section extends MPC in three steps to explicitly 
incorporate the risk of complications, prediction 
uncertainty, and future glucose measurements.

Basic MPC Framework
MPC chooses insulin infusions to optimize a cost 
function.6 We denote u0 as the insulin to be infused 
at the current time, u→  = [u1,...uN] a vector of future 
insulin infusions, and g→(u0, u→) = [g1,...gN] a vector of BG 
predictions based on the current and future insulin. The 
optimization can be written mathematically as

min	 Cost(u0, u→ , g→(u0, u→))

s.t. 	 0 ≤ u→  ≤ Umax

	 0 ≤ u0 ≤ Umax

u0,u
→

               (5)

where all infusions must fall below the pump limit Umax. 

Traditionally, cost functions are often quadratic and 
trade off glucose excursions with infusion rate changes. 
For example,

Cost(u0, u→ , g→(u0, u→)) = S (gi – 140)2 + J(ui – ui-1)2
N

i=1
   (6)

where J provides a weighting parameter for tuning 
controller aggressiveness.

Risk of Complications
To minimize the risk of complications, we replaced the 
traditional cost function with the average risk

risk(g→) = S (risk)(gi)
N

i=1
                    (7)

for all predicted glucose concentrations. We generated 
the predictions using a published prediction algorithm 
that incorporates meal detection and estimation.17 The 
adjusted optimization is

min	 risk(g→(u0, u→))

s.t. 	 0 ≤ u0 ≤ Umax

	 0 ≤ u→  ≤ Umax

u0,u
→

               (8)

This change allowed us to minimize the risk but 
ignores both prediction uncertainty and future glucose 
measurements.

Prediction Uncertainty
In addition to the predicted future glucose concentrations 
g→ , the prediction algorithm also supplies the estimated 
standard deviations s→  of the predicted concentrations. 
Assuming that the prediction errors are Gaussian, g→  
and s→  fully describe the distribution of possible future 
glucose values.

To approximate the expected risk of the entire 
distribution of predictions, we calculated the average 
risk for five parallel predictions that span the full 
distribution. These five trajectories are gj→  = g→  + js→ , 
where j ∈ [–2.5, –1.25, 0, 1.25, 2.5]. The average risk values 
for the five trajectories are summed according to their 
normalized probability Pj. We omitted the constants 
and standard deviation terms in the calculation of Pj as 

Figure 3. Example of pump limited compensation for uncertainty. 
At time “Now” the controller injects insulin and is then told at “Future 
measurement” whether the actual value was higher, at, or lower than 
the expected value (black Xs). The higher trajectory is rejected quickly 
by injecting more insulin. The lower value is corrected slowly by 
endogenous glucose production.
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they either cancel out or do not affect the optimization.  
The resultant framework is

min	 SPj       SPj risk(gj→ (u0, u→))

s.t. 	 0 ≤ u0 ≤ Umax

	 0 ≤ u→  ≤ Umax

	 Pj = e–j2

	 j ∈ [–2.5, –1.25, 0, 1.25, 2.5]

u0,u
→ j

⎡
⎢
⎣

⎡
⎢
⎣

–1

            (9)

We chose to approximate the full distribution of 
predictions by five potential trajectories as this provides 
minimal error for a reasonable computational cost.

Future Controller Actions
As we were now considering five potential future 
glucose trajectories, we realized that the controller would 
have to respond differently in the future based on which 
of these trajectories will come true. And while future 
measurements will resolve this multiplicity, until such 
measurements arrived we had to allow a multiplicity 
of future control actions. So we defined five parallel 
future control actions uj→ , each associated with a potential 
glucose trajectory gj→ . The final form of the optimization 
problem solved in the EMPC is thus

min	 SPj       SPj risk(gj→ (u0, uj→ ))

s.t. 	 0 ≤ u0 ≤ Umax

	 0 ≤ uj→  ≤ Umax

	 Pj = e–j2

	 j ∈ [–2.5, –1.25, 0, 1.25, 2.5]

u0,uj→ j

⎡
⎢
⎣

⎡
⎢
⎣

–1

    (10)

Validation
We validated the performance of the EMPC on the 
UVa/Padova Metabolic Simulator.7 The simulator is 
approved by the U.S. Food and Drug Administration as 
a substitute for animal trials using a population of 100 
patients to model meals, glucose-insulin dynamics, and 
interpatient variability. The publicly available portion 
of the simulator includes only 10 adult patients who 
were chosen to span the full range of the 100 patients. 
Unfortunately, for such a small a number of patients this 
implies that these patients are not a typical distribution 
of patients. In particular, we believe patient 9 encodes 
an outlier case and is not representative of one tenth 
of patients. So while we show individual results for 

all 10 publicly available patients, we exclude patient 9 
when averaging over the patient population. This is also 
detailed in Appendix A.

Each patient was simulated for 36 hours and was 
provided with six unannounced meals, lasting 20 
minutes each and measuring 50 g CHO at 9 a.m., 70 
g at 1 p.m., 90 g at 5:30 p.m., 25 g at 8 p.m., 50 g at 9 
a.m., and 70 g at 1 p.m. This scenario matches a scenario 
used for a clinical trial, and further represents a worst-
case scenario where the patient announces none of their 
meals. Research shows that adolescents routinely miss 
two meal boluses per week while using manual control.18 

We feared that the use of closed-loop control will 
worsen this behavior, making the worst-case scenario an 
important test.

The controllers used a sample time of 5 minutes, 
calculating a new insulin infusion every 5 minutes. 
Each infusion was limited to a Umax of six units and 
predictions were carried out to a horizon of 60 samples 
or 300 minutes.

Controllers for Comparison
We provided three controllers for direct comparison to 
the EMPC results.

First, we created a basic PID controller that is fully 
described by

	 un = 6.375 × 10-5Pn + basal + 0.0046Dn

	 Pn = gn – 140                                                    (11)

	 Dn = gn – gn–1

The setpoint was chosen to match the lowest risk 
glucose value, 140 mg/dl. The integral term was locked 
to the basal rate to avoid windup issues associated with 
saturated inputs and sustained positive disturbances, 
such as meals. The weights for the proportional  
(6.375 × 10-5 units per mg/dl) and derivative (0.0046 U per 
mg/dl) terms were optimized to minimize the average 
blood glucose risk index (BGRI)8 on the 10 patients.

Second, we created an MPC using the cost function in 
Equation (6), where J = 300 was chosen to minimize the 
average BGRI on the 10 patients.

This MPC shares the same prediction algorithm as 
EMPC but differs in the cost function. Thus, comparing 
the results of EMPC and MPC controllers should serve 



373

A Closed-Loop Artificial Pancreas Based on Risk Management Cameron

www.journalofdst.orgJ Diabetes Sci Technol Vol 5, Issue 2, March 2011

to illuminate the benefits of the contributions of this 
article, isolated from the potential confounding effects of 
different prediction methods.

Lastly, we used an optimized BB control as a lower 
bound on the BGRI.8 Specifically, the basal rate and 
one bolus at the start of each meal were optimized to 
provide the minimum possible BGRI.8 The basal rate was 
chosen to cause a steady state value lower than the zero 
risk value of 140 mg/dl. This reduces the risk effect of 
meals, and suggests a slow recovery from the last meals 
in the day. Because so many parameters (basal rates and 
boluses) were tuned noncausally, on a patient-specific 
level and with full knowledge of meals, this served as a 
lower bound on the achievable BGRI.8

Results
These controllers caused different characteristic effects on 
the controlled BG level. The PID controller reacted slowly 
to meals allowing larger disturbances due to meals.  
On the other end, the BB control reacted immediately. 
Since the EMPC controller was not hampered by the 
objective weight on large insulin infusion rates, it 
rejected meal disturbances faster than the MPC controller 
but slower than the noncausal BB controller.

The EMPC and MPC both show dips in the BG value 
just before meals as a result of meal anticipation in 
the prediction between 6 a.m. and 10 p.m. Because the 
EMPC also uses uncertainty, it avoided the prebreakfast 
low that occurs for the MPC after 3 hours of anticipated 
but unrealized meals. Figure 4 shows the average BG 
levels across all valid patients. Appendix B shows the 
individual results for all simulated patients.

Tables 1 and 2 provide the value of published 
performance measures.5 The BGRI, low blood glucose 
index (LBGI), and high blood glucose index (HBGI) 
follow Magni and colleagues’ definition used in the 
published results.8 In Table 1, we include the Student’s 
t-test significance measure of the changes in the BGRI 
relative to EMPC. Comparing the EMPC to the PID, 
MPC, and BB controllers, the t-test assesses whether the 
two sets of nine BGRI values for the nine valid patients 
are likely to share the same mean.

Independent Validation
We also validated against the published results from 
an independently created MPC,8 denoted by IMPC. 
The IMPC was tested on the private set of 100 adult 
simulator patients. The IMPC controller is advantaged 

Figure 4. Average control performance across all valid patients. The top plot shows the blood glucose levels averaged over the nine typical 
patients. The bottom plot shows the meal history, which is the same for all patients. PID with no feed-forward compensation of meals rejects 
meals slowest. EMPC rejects meals second fastest, second only to the retrospectively optimized BB controller.

Table 1.
Indirect Performance Measures

Algorithm BGRI/p value
Mean BG 

(mg/dl)
Interquartile range

(mg/dl)

Rate of change
standard deviation  

(mg/dl/min)
LBGI HBGI

PID 2.99/9.69% 156 54.9 0.72 0.61 2.38

MPC 3.05/1.24% 151 54.8 0.66 1.19 1.86

EMPC 2.51 147 45.0 0.68 1.10 1.41

BB 1.27/5.58% 140 35.5 0.52 0.49 0.78



374

A Closed-Loop Artificial Pancreas Based on Risk Management Cameron

www.journalofdst.orgJ Diabetes Sci Technol Vol 5, Issue 2, March 2011

because it uses a linearized version of the simulator 
model, but disadvantaged because it changes the insulin 
infusion rate only once every 30 minutes compared to 
our 5-minute update rate. Consequently, a comparison of 
the results for the IMPC and EMPC results (Table 3) is 
informative but not authoritative.

Assuming that the Student’s t-test applies, there is a 
98.34% chance that the EMPC provides a lower mean 
BGRI than the IMPC.

Discussion
The EMPC controller has shown statistically significant 
performance benefits on the Metabolic Simulator, as 
measured by the BGRI. In comparison to the published 
MPC,8 which differs both in prediction and control 
algorithm, the EMPC reduced the avoidable risk by 
56%. In comparison to our MPC, which shares the same 
prediction algorithm, the EMPC lowered the avoidable 
risk by 30%.

These improvements can be traced to two general sources: 
the prediction algorithm and the control algorithm. 
With regard to prediction, we know that reduced BGRI 
correlates with a decreased premeal glucose level.  
This suggests a benefit from controlling more aggressively 
in advance of expected meals to help reduce the future 
meal effect. Indeed, the prediction algorithm used by 
both the MPC and EMPC anticipates meals, allowing 
the controllers to implicitly accomplish this. Testing of 
the EMPC controller with a worst-case missed dinner 
and evening snack shows a minimal downside for this 
benefit. In these tests, the glucose concentrations only 
dropped to a minimum of 84 mg/dl after the missed 
meals. A concentration of 84 mg/dl has the same BGRI 
as the hyperglycemic glucose value of 244 mg/dl.

The improvement due to the controller extensions 
presented in this article can be attributed to the 
incorporation of uncertainty and thereby the ability 
to pursue prediction horizons of 5 hours. Other MPC 
algorithms use maximum prediction horizons between 

2 and 4 hours.8,14,19,20 Without evaluating uncertainty, 
each of those algorithms is forced to treat all predictions 
with the horizon as equally relevant. Our inclusion of 
uncertainty can implicitly reduce the weight given to the 
less certain, long-term predictions. This also allows us to 
adapt to the increased uncertainty around  unannounced 
meals with unknown sizes.

We also believe the presented MPC extensions will 
prove robust in practice. The EMPC contains no tuning 
parameters or indirect weighting parameters. It simply 
allows the definition and adjustment of the risk function, 
Equation (3), which has direct clinical relevance.

Of course, the EMPC does leave room for improvement. 
In particular, we approximated the distribution of 
potential future glucose values by five distinct glucose 
trajectories. Other approximations using more trajectories 
or trajectories that branch further in the future are 
conceivable. With increasing computational power, it 
may be feasible and even beneficial to consider greater 
degrees of multiplicity.

Conclusions
By taking advantage of estimates of prediction uncertainty 
and understanding the asymmetries associated with the 
risks of complications and irreversible insulin action, 
we extended the MPC framework. The resultant, novel 
MPC‑based controller lowers the avoidable risk by 56% 
relative to a published MPC algorithm when tested on 
a similar population. We hope and believe that with 
additional in silico and in vivo testing, these extensions 
and the controllers and products they enable will help 
alleviate the burden for type 1 diabetes patients.

Table 2.
Direct Performance Measures

Algorithm
% BG

<50 mg/dl
% BG 

50–70 mg/dl
% BG 

70–180 mg/dl
% BG

>250 mg/dl
Mean premeal BG  

(mg/dl)
Mean postmeal BG 

(mg/dl)

PID 0 0 72.6 0.56 142 204

MPC 0 0.15 79.4 0.26 135 187

EMPC 0 0.70 84.3 0 135 185

BB 0 0 92.0 0 127 162

Table 3.
IMPC and EMPC Comparison

Algorithm BGRI LBGI HBGI

IMPC 4.10 1.07 3.03

EMPC 2.51 1.10 1.41
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Appendix A. Exclusion of Patient 9

The UVa/Padova Simulator uses a population of 100 adults to function as an FDA-approved substitute for animal 
trials. Unfortunately, only 10 adult patients are publicly available. We examined these 10 adult patients to find that 
patient 9 falls well outside the norm and does not represent a normal patient. While such outliers may be useful in 
large populations to test worst-case behaviors, they do not represent one tenth of all patients. As such, we were forced 
to exclude patient 9 from the averaged results.

We first examined insulin action. We see that insulin has a very slow and powerful effect on the BG levels of  
patient 9. We simulated all 10 patients with a 50 g CHO meal and an optimal meal bolus, as defined by the simulator’s 
user’s guide. Figure A1 shows the resulting blood glucose values.

We also reviewed EGP suppression following a 50 g CHO meal in Figure A2. Insulin suppressed EGP by 46% more for 
patient 9 than for any other patient. This effect is compounded by the delayed nature of EGP suppression. Published 
meal shapes21–24 and insulin time action profiles25–27 are 90% finished after 6 and 6.33 hours or less, respectively. The 
cumulative effect of the EGP suppression for patient 9 is only 63% complete after 6.33 hours.

This slow, powerful suppression of EGP caused a significant drop in the BG values for patient 9 long after the EGP 
and meal bolus effects had faded for the other nine patients. While exercise can cause similar symptoms, we were not 
trying to test for those here.

Figure A1. BG levels resulting from a 50 g CHO meal with an optimal 
meal bolus. The response for patient 9 is drawn as a dashed blue line.

Figure A2. Suppression of EGP following a compensated 50 g CHO 
meal. The response for patient 9 is drawn as a dashed blue line.
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Appendix B. Individual Results

The following table provides the results individually for all ten patients.

Table B1.
Individual Patient Risk Results

Patient
LBGI/HBGI8

PID MPC EMPC BB

Adult 1 0.68/2.58 1.67/1.58 0.81/1.41 0.61/1.01

Adult 2 0.68/1.74 0.86/0.99 1.28/0.89 0.84/1.43

Adult 3 0.14/2.56 0.29/1.67 0.05/1.45 0.32/0.49

Adult 4 2.33/2.92 4.95/2.26 4.90/1.44 0.39/1.05

Adult 5 0.32/2.06 0.28/1.93 0.42/1.32 0.74/0.19

Adult 6 0.37/2.88 0.43/3.13 0.80/2.01 0.32/0.47

Adult 7 0.49/2.39 1.31/2.26 1.18/1.95 0.51/0.08

Adult 8 0.08/1.64 0.37/0.50 0.28/0.67 0.31/1.10

Adult 9 7.67/3.99 5.76/3.78 11.84/2.45 0.38/4.76

Adult 10 0.37/2.68 0.51/2.46 0.19/1.56 0.36/1.19
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Figure B1.
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Figure B2.


