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Abstract
Background:
Continuous glucose monitors (CGMs) present a problem of lack of accuracy, especially in the lower range, 
sometimes leading to missed or false hypoglycemia. A new algorithm is presented here aimed at improving 
the measurement accuracy and hypoglycemia detection. Its core is the estimation of blood glucose (BG) in real  
time (RT) from CGM intensity readings using autoregressive (AR) models.

Methods:
Eighteen patients with type 1 diabetes were monitored for three days (one at the hospital and two at home)  
using the CGMS® Gold. For these patients, BG samples were taken every 15 min for 2 h after meals and every 
half hour otherwise during the first day. The relationship between the current measured by the CGMS Gold 
and BG was learned by an AR model, allowing its RT estimation. New capillary glucose measurements were 
used to correct the model BG estimations.

Results:
A total of 563 paired points were obtained from BG and monitor readings to validate the new algorithm. 
98.5% of paired points fell in zones A+B of the Clarke error grid analysis with the proposed algorithm. The 
overall mean and median relative absolute differences (RADs) were 9.6% and 6.7%. Measurements meeting 
International Organization for Standardization (ISO) criteria were 88.7%. In the hypoglycemic range, the mean  
and median RADs were 8.1% and 6.0%, and measurements meeting ISO criteria were 86.7%. The sensitivity 
and specificity with respect to hypoglycemia detection were 91.5% and 95.0%.

Conclusions:
The performance measured with both clinical and numerical accuracy metrics illustrates the improved accuracy 
of the proposed algorithm compared with values presented in the literature. A significant improvement in 
hypoglycemia detection was also observed.

J Diabetes Sci Technol 2010;4(2):391-403

Author Affiliations: 1Institute of Informatics and Applications, University of Girona, Girona, Spain; 2Department of Electrical, Electronic and 
Control Engineering, University of Girona, Girona, Spain; 3Instituto Universitario de Automática e Informática Industrial, Universidad Politécnica 
de Valencia, Valencia, Spain; 4Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigacio Biomedica de Girona, Girona, Spain; 
and Department of Obesity and Nutrition, CIBEROBN Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain

Abbreviations: (AR) autoregressive, (BG) blood glucose, (BJ) Box–Jenkins, (CGM) continuous glucose monitor, (EGA) error grid analysis, 
(IG) interstitial glucose, (ISO) International Organization for Standardization , (RAD) relative absolute difference, (RT) real time

Keywords: autoregressive model, continuous glucose monitoring, hypoglycemia, type 1 diabetes

Corresponding Author: Yenny Leal, M.Sc., University of Girona, Campus Montilivi, P4, 17071, Girona, Spain; email address yennyteresa.leal@udg.edu



392

Real-Time Glucose Estimation Algorithm for Continuous Glucose Monitoring Using Autoregressive Models Leal

www.journalofdst.orgJ Diabetes Sci Technol  Vol 4, Issue 2, March 2010

Introduction

Continuous glucose monitors (CGMs) can improve 
glycemic control of patients.1 These devices have helped 
the management of type 1 diabetes by providing 
detailed information about glucose variability: direction, 
magnitude, duration, and frequency of hypo- or 
hyperglycemia.2 Additionally, the use of CGMs in 
patients with type 1 diabetes has shown positive 
effects in the reduction of the hemoglobin A1c3,4 and 
glucose variability.5 However, preliminary studies 
have concluded that there are open challenges in the 
research field of CGM technology: sensitivity, stability,  
noise, physiological time lag between blood glucose (BG) 
and interstitial glucose (IG), and quality of calibration.6 
Conventional calibration methods in CGM devices 
recommend calibrating when BG is not changing very 
rapidly, in search of an “equilibrium” between BG and IG, 
but do not take into account the dynamic relationship 
between them (other than time lag considered as a pure 
delay).7–10

Previous clinical studies have concluded that the accuracy 
problems presented by CGMs are highly influenced by 
the quality of the calibration algorithms, which have 
several shortcomings, especially in hypoglycemia.11–13 
Continuous glucose monitor recalibration techniques 
have been presented in CGM literature.6,9,14,15 These changes 
in the calibration methods have shown improvements 
in the accuracy of the estimated glucose by CGM.  
A recalibration method was applied to the CGMS® Gold 
using a calibration function whose input has certain 
variance.6 The same recalibration method was applied to 
the NavigatorTM (Abbott, Diabetes Care, Alameda, CA).14 
A scalar recalibration parameter was estimated using 
linear least squares. The plasma glucose profiles were 
reconstructed using deconvolution techniques. In another  
study, a conversion algorithm that incorporates glucose and 
time-dependent factors has been proposed. Logarithmic 
transformations and multiple regression techniques were 
used to quantify these factors.15 In healthy persons, the 
mean relative absolute difference (RAD) compared to 
CGMS Gold algorithm was significantly reduced (20.6 ± 5.9% 
versus 11.6 ± 6.5%). In one study, a posteriori calibration 
was performed to the Navigator readings using a simple 
linear regression to isolate the errors due to calibration 
and to obtain a description of the sensor error.9

In diabetes management, autoregressive (AR) models are 
used as tools for short-term glucose prediction from 
CGM data. Several authors used AR models for the 

development of subject-specific glucose prediction models 
from CGM data.16,17 A first-order AR model, with time-
varying parameters, was considered by Sparacino 
and colleagues.18 In a parallel work, a tenth-order AR 
model without parameter adjustments was developed.19 
However, this model showed relatively large time lags 
that reduce its clinical benefits. Gani and associates used 
thirty-order AR models.20 They have shown that stable 
and accurate models for short-term glucose prediction 
with acceptable time lags are attained only when the 
raw glucose measurements are smoothed and the model 
coefficients are regularized. 

In this study, AR models were used to estimate BG in real 
time (RT) from CGM intensity readings. Eighteen type 1  
diabetes patients were monitored, and after some pre-
processing, these data were used to train a population 
AR model. This model was then incorporated into a 
calibration algorithm to estimate BG concentrations in 
RT, given the sensor intensity measurements. The BG 
estimations of the algorithm were corrected whenever a 
new calibration point was entered. The capillary glucose 
measurements were thus used as calibration points for 
the proposed algorithm. In this article, profiles of the 
CGMS Gold, the proposed glucose estimation algorithm, 
and BG were compared. Results were evaluated from a 
numerical and clinical point accuracy,21–23 showing more 
accurate BG concentrations when compared with CGMS 

Gold and results reported in literature. 

Materials and Methods 

Subjects and Study Design
The study included 18 patients with type 1 diabetes 
according to American Diabetes Association criteria 
(see Table 1). This study followed the protocol approved 
by the Dr. Josep Trueta University Hospital of Girona’s 
Ethics Committee. Patients were monitored for three days 
(one day at the hospital and two days at home) using the 
CGMS Gold (MiniMed CGMS MMT-7102). The CGMS 
Gold was applied to the subcutaneous abdominal region 
of each patient and was used continuously for a period 
of 72 h. After the third day, the monitor data were 
downloaded to a computer using the CGMS Gold 
algorithm (Solutions Software 3.0). The CGMS Gold was 
calibrated with capillary glucose measurements using 
conventional self-measurement of BG. These calibrations 
were taken according to the CGMS Gold manufacturer’s 
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instructions24 (at least three calibration readings each day 
for optimal accuracy determination purposes) and the 
standard hospital procedure. Blood glucose data were 
determined through blood tests by means of a Glucose 
Analyzer II (Beckman Instruments, Brea, CA) on the 
first day at the hospital and taken every 15 min for 2 h  
after each meal and every 30 min otherwise. Only data 
obtained during the first day were used in the analysis, 
since no gold standard measurements were available for 
the rest of data. The CGMS Gold uses a retrospective 
calibration algorithm. The CGMS Gold algorithm does 
not give RT values; it estimates each glucose value 
incorporating both future and previous data points.  
This algorithm considered that IG lagged BG by 10 min. 

A total of 563 BG readings were obtained from all patients 
who finished the experiment, but 14 out of the original 
563 samples were excluded because they are extreme 
outliers caused by errors in measurement. Identification 
of outliers was based on the box plot criteria25 and 
corresponded to points above the third quartile plus three 
times the interquartile range. All extreme outliers were 
caused by errors in the measurement of BG; however, 
in some cases, these values were below 30 mg/dl (not 
clinically acceptable), and in other cases, they were 
due to human error. Finally, a total of 549 samples 
were obtained (83 below 71 mg/dl, 281 between 71 and 
180 mg/dl, and 185 above 180 mg/dl). Blood glucose 
measurements were interpolated using a cubic method26,27 
every 5 min (sampled period of CGMS Gold readings). 
A total of 2206 paired points were obtained (365 below 

71 mg/dl, 1092 between 71 and 180 mg/dl, and 749 above 
180 mg/dl). Because BG and CGMS Gold readings were 
obtained at different times, CGMS Gold readings were 
matched to the reference BG within ±2.5 min.28

Model Training: Identification of Model Parameters
Autoregressive models29 were developed using the patient’s 
first-day CGMS Gold data. CGMS Gold intensity (I) 
measured in nanoampere was considered as an independent 
process variable (input), whereas BG measured in mg/dl 
was considered as a dependent process variable (output). 
Blood glucose and I were normalized dividing by 
400 mg/dl and 100 nA, respectively, and these values 
were named BGN and IN , respectively. These values were 
chosen based on the maximum range of values of the 
available signals.24

Time-domain parameter estimation methods were used for 
the identification. The platform used was the MATLAB 
(Natick, MA) System Identification Toolbox.30 A leave-
two-out cross-validation strategy was used. Patients’ data 
were partitioned into two sets: training set (consists of 
16 patients) and validation set (consists of the 2 patients 
excluded) and a population model derived. The procedure 
was repeated for different data partitions (iteration).  
Four parametric model structures were tested at each 
iteration. The model structures29 used were AR exogenous 
input, AR moving average exogenous input, Box–Jenkins 
(BJ), and output error. These structures were tested 
considering all possible model order combinations 
(denoted as na, nb, nc, nd, and nf) from 1 to 8. All models 
obtained from these structures were validated using 
their corresponding validation set. The metric used to 
quantify the models’ estimations accuracy was the best  
fit value in Equation (1): 

. (1)

The best fit corresponds to the percentage of the 
output that the model reproduces, where BGN is the 
vector of measured BG values, GE is the vector of the 
corresponding BG estimations, and   BGN  is the mean of 
BGN. 

The results of the best fit indicate that the structure of 
lowest order that best describes the dynamics of the 
system is a third-order BJ model (nb = nc = nd = nf =3) with 
a sampling rate of 5 min. The BJ model in Equation (2) 
is a structure in which an output signal y(t), in this case 
the glucose estimation at discrete time t, is described 

Table 1. 
Clinical Characteristics of All Subjects Included in the 
Study
Number 18

Gender (F/M) 8/10

Age (years) 28 ± 5.6

Weight (kg) 71.8 ± 12.9

Body mass index (kg/m2) 24.3 ± 2.9

Systolic blood pressure (mmHg) 123.4 ± 12.7

Diastolic blood pressure (mmHg) 69.4 ± 9.6

Total cholesterol (mg/dl) 189.5 ± 35.3

Triglycerides (mg/dl) 114.8 ± 82.1

High-density lipoprotein cholesterol (mg/dl) 65.4 ± 15.9

Low-density lipoprotein cholesterol (mg/dl) 100.1 ± 30.4

Duration of diabetes (years) 14.6 ± 5.7

Hemoglobin A1c (%) 8.8 ± 2.1
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as a linear combination of previously observed signals, 
where the deterministic component [input u(t)], denoted by 
B(q–1) and F(q–1), and stochastic component [input e(t)], 
denoted by C(q–1) and D(q–1), do not share coefficients: 

  
y(t) = B(q−1 )

F(q−1 )
u(t) + C(q−1 )

D(q−1 )
e(t)  (2)

  
B(q−1 ) = b0 + b1q−1 + ... + bnb −1q−nb −1  (3)

  
F(q−1 ) = 1 + f1q−1 + ... + fn f

q−n f  (4)

  
C(q−1 ) = 1 + c1q−1 + ... + cnc

q−nc  (5)

  
D(q−1 ) = 1 + d1q−1 + ... + dnd

q−nd . (6)

B(q–1), F(q–1), C(q–1), and D(q–1) denote AR polynomials of 
third-order in Equations (3) through (6). Parameters bi , 
fi , ci  , and di are unknown and are identified by using 
the patients’ data. q–1 is the backward shift operator 
that transforms a current observation to a previous one  
[q–ky(t) = y(t–k)], where y(t–k) is the measurement k time 
units before the current time t.

All the 153 possible partitions of the leave-two-out 
cross-validation strategy were tested, but using only 
the third-order BJ model, and coefficients of 153 models 
were obtained. Coefficients of the proposed final model  
were computed as the average. Five of the models were 
discarded in this computation because they were 
unstable, and the rest were used to estimate the final 
model parameters.

The proposed model thus has fixed population  
parameters (see Table 2) and is defined by Equation (7). 
G(t) represents the model BG estimations, IN(t) is the 
normalized CGMS Gold intensity, and e(t) represents a 
white Gaussian noise source with zero mean and with  
an arbitrarily small variance λ = 3.37 x 10–11 mg/dl.20 

  
G(t) = B(q−1 )

F(q−1 )
IN (t) + C(q−1 )

D(q−1 )
e(t)  (7)

Proposed Real-Time Glucose Estimation Algorithm
The population AR model obtained was used to develop  
an algorithm to estimate glucose in RT, defined as G(t) 
(mg/dl), from CGM intensity readings.

The input of the RT glucose estimation algorithm is 
IN(t). The same capillary glucose measurements used 

to calibrate the CGMS Gold were used as calibration 
points for the proposed algorithm. These calibration 
points were also normalized dividing by 400 mg/dl and  
defined as GC(t). Initially (t = 0), G(t) is the value of 
the first calibration point and is computed considering 
G(t) = G(t – 1) = G(t – 2) = GC(t) and IN(t) = IN(t – 1) = IN(t – 2). 
For the next sample, G(t + 1) is estimated using the 
proposed model in Equation (7). Because it is a third-
order model, the RT glucose estimation algorithm 
requires the three previous samples of G(t + 1) and the 
two previous samples of IN (t + 1). 

Whenever a new capillary measure is entered, the RT 
glucose estimation algorithm replaces G(t) by GC(t). 
Additionally, the two previous instances G(t – 1) and 
G(t – 2) are also set to this new value. This consideration 
is used to avoid drastic differences between the 
calibration point and the model estimation. Finally, G(t) 
is returned to its original range by multiplying it by 400. 

Results
Figure 1 shows the results for four representative 
patients. 

The original 549 BG readings obtained during the first 
day were used in the validation since no gold standard 
measurement was available for the rest of the data. 
Blood glucose readings were used as reference values 
and were paired with the glucose readings estimated by 
both algorithms (CGMS Gold and RT glucose estimation 
algorithm). 

Assessment Considering Numerical Point Accuracy
The U.S. Food and Drug Administration currently accepted 
accuracy criteria for CGM statistics are the Pearson 
correlation coefficient (r), the mean and median RADs, 

Table 2.
Box–Jenkins Model Parameters
Model polynomials Polynomials parameters

B
b0 b1 b2

1.465452 –1.786699 0.334811

F
f1 f2 f3

–1.204988 0.188096 0.024471

C
c1 c2 c3

–0.137914 –0.010064 0.008919

D
d1 d2 d3

–1.605645 0.700240 –0.083482
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and the International Organization for Standardization 
(ISO) criteria. These criteria were thus used to evaluate 
the numerical point accuracy for each patient.

The r obtained with the RT glucose estimation algorithm 
was 0.96. Paired points in agreement within ±20% or 30% 
were assessed for readings over 70 mg/dl. Glucose readings 
lower or equal than 70 mg/dl were assessed within  
20 mg/dl (see Table 3). 

Table 3 shows the overall mean and median RADs 
for all patients. Comparing the CGMS Gold results 
and those obtained with the proposed algorithm 
(mean RAD = 17.6% versus 9.6%, p < .05, and median 
RAD = 11.3% versus 6.7%), reductions of 45% and 41%  
in the overall mean and median RADs, respectively, 
were achieved. Compared to other accuracy studies 

previously reported in the literature, results presented 
in this work show lower numerical accuracy metrics.  
Weinstein and coworkers31 reported mean and median 
RADs of 12.6% and 9.4%, respectively, for the Navigator. 
Mazze and colleagues32 reported mean and median 
RADs of 19.9% and 16.9%, respectively, for the Guardian 

REAL-Time (Minimed, Northridge, CA) and 16.7% and 
14.2%, respectively, for the DexCom STS (DexCom,  
San Diego, CA). The RT glucose estimation algorithm 
also was assessed using ISO criteria, the measurements 
meeting ISO criteria were increased by 21.5% with 
respect to CGMS Gold.

The numerical point accuracy was also calculated by 
glucose ranges. Table 3 shows that the numerical point 
accuracy of the proposed algorithm was lowest during 
euglycemic range (71–140 mg/dl). 

Figure 1. Representation of glucose profiles.
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In the hypoglycemic range (see Table 3), when comparing 
the CGMS Gold and the proposed methodology results, 
reductions of 55% and 60% in the overall mean and 
median RADs were achieved, respectively. Moreover, 
lower numerical accuracy metrics with respect to previous 
accuracy studies were obtained. Weinstein et al.31 reported 
mean and median RADs of 19.8% and 15.4%, respectively, 
for the Navigator. Kovatchev and associates33 reported 
mean and median RADs of 16.1% and 13.8%, respectively,  
for the Guardian REAL-Time; 21.5% and 22.5%, respectively, 

for the DexCom STS; and 10.3% and 7.4%, respectively, 
for the Navigator. The ISO criteria for the Guardian 

REAL-Time, DexCom, and Navigator were 76.5%, 52.9%, 
and 79.4%, respectively.

Assessment Considering Clinical Point Accuracy: Clarke 
Error Grid Analysis and Consensus Error Grid Analysis
The Clarke error grid analysis (EGA) and the consensus 
EGA have been used to assess the clinical point accuracy of 

Figure 2. Assessment of RT glucose estimation algorithm and the CGMS Gold algorithm using clinical point accuracy. A, Clarke EGA; 
B, consensus EGA.
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the RT glucose estimation algorithm using BG as a 
reference (see Table 4). Continuous glucose error grid 
analysis34 was not used here due to the insufficient 
sampling time of the data used in this work. Results 
showed that 98.5% of paired points in the overall patient 
population fell in zones A+B of the Clarke EGA, while  
99.0% of paired points fell in these zones for the 
consensus EGA. Figure 2 shows the classification of 
data using the Clarke EGA and the consensus EGA. 
Compared with the CGMS Gold, the methodology 
presented higher clinical accuracy metrics (see Table 4). 
With respect to studies of clinical accuracy previously  
reported in the literature, the methodology reported here 
achieves similar clinical accuracy metrics. Mazze et al.32 
reported that 93.0% of paired points fell in zones A+B  
of the Clarke EGA for the Guardian REAL-Time and 
98.0% for the DexCom STS. Weinstein and coworkers31 
reported 98.9% for the Navigator.

The reliability and performance of the RT glucose 
estimation algorithm in different glucose ranges were 
also assessed considering clinical point accuracy (see 
Table 4). The Clarke EGA and consensus EGA results 
show that the clinical point accuracy of the proposed 
algorithm was lowest during hypoglycemic range.  
Paired points were analyzed during hypoglycemic 
episodes. Clarke EGA indicated that 90.4% of paired 
points fell in zones A+B. Consensus EGA indicated that 
97.0% of paired points fell in zones A+B. Similar analysis 
was performed with paired points during euglycemic 
and hyperglycemic episodes. 

Hypoglycemia Detection
To illustrate the ability of the RT glucose estimation 
algorithm to detect hypoglycemic events (BG ≤70 mg/dl),  
profiles of the 18 patients were plotted. The profiles in 
Figures 1A and 1D give an example of the results obtained 
with the new algorithm. 

Its analysis shows that the RT glucose estimation algorithm 
is very sensitive in the hypoglycemic range, correctly 
detecting 76 out of 83 cases of hypoglycemia (91.6%).  
The sensitivity and specificity obtained with the proposed 
algorithm were 91.6% and 95.0%, respectively. 

Comparing the results obtained with the proposed 
algorithm with those obtained in other previous studies 
of accuracy reported in the literature, our results show 
higher values of sensitivity and specificity. Bode et al.35

reported hypoglycemia detection (BG ≤ 70 mg/dl) sensitivity 
of 67% and specificity of 90.0% for the Guardian  

REAL-Time. Garg and Jovanovič36 reported a sensitivity 
of 88% and specificity of 91.4% for the DexCom STS.  
Garg and coworkers37 reported (BG ≤80 mg/dl) a sensitivity 
of 61% and specificity of 91% for the DexCom STS using  
it for 10 days. 

Discussion
Continuous glucose monitors are not accurate enough, 
especially in detecting hypoglycemias. To reduce these 
errors, a new RT algorithm is proposed for glucose 
estimation. This study shows that it is feasible to use AR 
models to estimate BG in RT from CGM intensity readings. 

The best overall AR model was a third-order BJ structure 
with fixed parameters. This model showed good 
generalization ability. Structures of order less than third 
order are not able to reproduce the relationship between 
CGMS Gold intensity and BG. Fourth-order structures 
capture better the correlations in the data. However, 
differences are not significant with respect to third-order 
structures, and the complexity of the model is increased. 
Structures higher than fourth order were found to be 
unstable.

Accuracy of the model BG long-term estimations is not 
entirely satisfactory. It is necessary to incorporate calibration 
points, as in current algorithms, to correct the estimated 
glucose levels. Here, the two previous instances are made
equal to the calibration point in order to correct 
the dynamics of the model estimations. In fact, if this  
measure was not taken, glucose concentration after 
the calibration points may be not accurate and present 
drastic differences with respect to the gold standard. 
This is illustrated in Figure 3, where the two previous 
instances were left unchanged, only updating the current 
measurement. As a result, the overall mean and median 
RADs for all patients were increased (mean RAD = 18.2% 
versus 9.6%, p < .05, and median RAD = 15.3% versus 
9.6%). 

The results in Figure 1 may suggest the need of 
frequent calibration points for a good performance of 
the new algorithm. Tests introducing only calibration 
points before each intake were performed to assess this 
(see Figures 4 and 5). Results did not show significant 
changes in the accuracy of glucose estimations (mean 
RAD = 11.5% ± 11.0% versus 9.6% ± 9.6%, p < .05 and 
median RAD = 8.1% versus 6.7%). However, further 
research is needed to confirm how frequently the 
calibration process needs to be carried out in general for 
this new technique. 
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Figure 4. Example of a patient with only four calibration points taken before each intake. The profile of the proposed algorithm shows glucose 
measurements in RT very close to BG (mean RAD = 5.6% ± 4.5%, p < .05 and median RAD = 5.1%). Additionally, the profile illustrates the ability 
of the proposed algorithm to detect hypoglycemic events.
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Figure 3. Example of RT glucose estimation algorithm with and without history update in two illustrative patients. The numerical point accuracy 
metrics were increased in the latter. (A) In patient 20, mean RAD = 18.1% ± 15.1% versus 16.1% ± 12.5%, p < .05, and median RAD = 14.2% versus 
11.9%. (B) In patient 21, mean RAD = 9.2% ± 7.0% versus 6.1% ± 5.9%, p < .05, and median RAD = 8.0% versus 5.0%.
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