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Abstract

Background:
The utility of simulation environments in the development of an artificial pancreas for type 1 diabetes mellitus 
(T1DM) management is well established. The availability of a simulator that incorporates glucagon as a 
counterregulatory hormone to insulin would allow more efficient design of bihormonal glucose controllers.

Existing models of the glucose regulatory system that incorporates glucagon action are difficult to identify 
without using tracer data. In this article, we present a novel model of glucagon–glucose dynamics that can be 
easily identified with standard clinical research data.

Methods:
The minimal model of plasma glucose and insulin kinetics was extended to account for the action of glucagon 
on net endogenous glucose production by incorporating a new compartment. An existing subcutaneous 
insulin absorption model was used to account for subcutaneous insulin delivery. The same model of insulin 
pharmacokinetics was employed to model the pharmacokinetics of subcutaneous glucagon absorption. Finally, 
we incorporated an existing gastrointestinal absorption model to account for meal intake. Data from a closed-
loop artificial pancreas study using a bihormonal controller on T1DM subjects were employed to identify the 
composite model. To test the validity of the proposed model, a bihormonal controller was designed using the 
identified model.

Results:
Model parameters were identified with good precision, and an excellent fitting of the model with the experimental 
data was achieved. The proposed model allowed the design of a bihormonal controller and demonstrated its 
ability to improve glycemic control over a single-hormone controller.

Conclusions:
A novel composite model, which can be easily identified with standard clinical data, is able to account for the 
effect of exogenous insulin and glucagon infusion on glucose dynamics. This model represents another step 
toward the development of a bihormonal artificial pancreas.
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Introduction

In silico validation of glucose controllers1–3 is a valuable tool for the progression of artificial pancreas development for 
type 1 diabetes mellitus (T1DM) management.4 Current available simulators5–7 incorporate only insulin as a regulatory 
hormone, and do not take account of other regulatory hormones such as glucagon. These simulators are therefore not 
suitable for designing and testing bihormonal controllers for artificial pancreas design that incorporate both insulin 
and glucagon.8–10

Different attempts have been made to incorporate the glucagon effect in models of the glucose regulatory system. 
Several complex mathematical models of the endocrine–metabolic system incorporating this have been proposed.11–13 
However, the complexity of these models, with a high number of equations and parameters, makes them difficult to 
identify and, therefore, impractical for design. 

An augmented minimal model was proposed that incorporates the glucagon effect.14 However, this model is simplistic 
and is only compared against Sorensen’s model,11 with no validation using clinical data shown. Bequette15 presented a 
comprehensive model for glucagon–glucose dynamics. However, details for this model are not available.

In this article, we propose a novel composite model of glucagon–glucose dynamics for in silico validation of artificial 
pancreas bihormonal controllers. This is a modification of the Bergman minimal model16 by addition of a compartment 
to account for the pharmacodynamics of glucagon on the net endogenous glucose production, incorporation of an 
existing insulin absorption model17 to include the effects of subcutaneous glucagon and insulin delivery on plasma 
glucagon and insulin concentrations, and, finally, the addition of a gastrointestinal absorption model17 to account for 
meal ingestion.

Data from a closed-loop artificial pancreas study using a bihormonal controller on T1DM subjects were employed to 
identify our composite model.8

Finally, an example of utilization of the proposed model is shown through the design and testing of a bihormonal 
glucose controller.

Methods

The Minimal Model of Glucose Kinetics
The minimal model of plasma glucose and insulin kinetics was developed in the late 1970s by Bergman and 

Figure 1. The minimal model of glucose kinetics. K1–6 are rate 
constants characterizing either material fluxes (solid lines) or control 
actions (dashed lines).

coauthors16 to investigate glucose metabolism in vivo in 
physiological, pathological, and epidemiological studies  
from a standard intravenous glucose tolerance test (IVGTT).  
The standard IVGTT consists of injecting glucose over a 
period of 30–60 s and measuring the resulting plasma 
glucose and insulin concentrations. To interpret IVGTT 
data, it is necessary to explicitly describe not only glucose 
disappearance, but also endogenous production—or at 
least net endogenous glucose balance—depending on 
glucose and insulin, since endogenous sources of glucose 
(liver and kidney) are contributing to the measured 
plasma glucose concentration. The minimal model does 
so as shown in Figure 1, where k1–6 are rate constants 
characterizing either material fluxes (solid lines) or 
control actions (dashed lines) and D is an exogenous 
glucose administration.
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To make the model uniquely identifiable, it needs to be reparameterized as follows:

Ġ(t) = –[SG + X(t)] G(t) + SGGb,                                                    (1)

Ẋ(t) = –p2 X(t) + p2SI [I(t) – Ib],                                                    (2)

where

SG = k1 + k5,                                                                (3)

p2 = k3,                                                                  (4)

SI = 
k2

k3
(k4 + k6),                                                              (5)

and G (mg/dl) is plasma glucose concentration with G(0) = Gb, where suffix b denotes basal value; I is plasma insulin 
concentration with I(0) = Ib; X is insulin action on glucose production and disposal, with X(0) = 0; SG (min-1) is 
fractional (i.e., per unit distribution volume) glucose effectiveness, which measures glucose ability per se to promote 
glucose disposal and inhibit glucose production (min-1); SI is insulin sensitivity, measuring the ability of insulin to 
enhance the glucose per se stimulation of its disappearance and the glucose per se inhibition of endogenous production 
(min-1 per μU/ml); and p2 is the rate constant describing the dynamics of insulin action (min-1).

The Glucagon-Extended Minimal Model of Glucose Kinetics
Following a similar approach to the one used in the development of the minimal model, an additional compartment 
was added to account for the pharmacodynamics of exogenous glucagon on net endogenous glucose production. 
Figure 2 graphically shows the structure of the proposed glucagon-extended minimal model.

Figure 2. The glucagon-extended minimal model. K1–9 are rate constants 
characterizing either material fluxes (solid lines) or control actions 
(dashed lines).

The equations describing the proposed glucagon-extended 
minimal model are

Ġ(t) = –[SG + X(t) – Y(t)] G(t) + SG Gb,          (6)

Ẏ(t) = –p3 Y(t) + p3 SN [N(t) – Nb],            (7)

where
p3 = k8,                           (8)

SN = 
k7

k8
 k9,                         (9)

and Y is glucagon action on glucose production, with  
Y(0) = 0; N is plasma glucagon concentration (pg/ml), 
where suffix b denotes basal value; SN is glucagon 
sensitivity, which measures the ability of glucagon to 
enhance endogenous glucose production by the liver 
(min-1 per pg/ml); and p3 is the rate constant describing 
the dynamics of glucagon action (min-1).

The Glucagon–Glucose Composite Model
The glucagon secretory response of α cells to low glucose concentrations is impaired in T1DM and long-standing type 2 
diabetes mellitus, increasing the risk of severe hypoglycemia, especially in subjects with diabetes treated with insulin.18 
Therefore, subjects with diabetes may require exogenous delivery of glucagon, or glucose, to address hypoglycemia.
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The minimal model of plasma glucose and insulin kinetics, in combination with a subcutaneous insulin absorption 
model and a gastrointestinal absorption model, has already been used to estimate blood glucose levels in T1DM.19,20 
However, this model fails to estimate blood glucose levels when exogenous glucagon is delivered. We propose an 
extension of the minimal model to account for this effect.

With the aim of building a model of the glucose regulatory system of a subject with T1DM that allows the testing of 
a bihormonal glucose controller, a gastrointestinal absorption model, a subcutaneous insulin absorption model, and a 
subcutaneous glucagon absorption model were added to the glucagon-extended minimal model.

Gastrointestinal Absorption Model
The gastrointestinal absorption model presented by Hovorka and coauthors17 was incorporated to the glucagon-
extended minimal model to account for the glucose rate of appearance into the systemic circulation after the ingestion 
of a meal. The equations representing such a model are

Ḟ(t) = 1
tmaxG

 (–F(t) + AGDG),                                                     (10)

Ṙa(t) = 1
tmaxG

 (–Ra(t) + F(t)),                                                     (11)

where Ra (mg/min/kg) is plasma appearance of glucose, F is glucose appearance in the first compartment, AG is 
carbohydrate bioavailability (unitless), and DG (mg) is the amount of carbohydrates ingested at meal time tmeal (min).

The resulting equation representing the glucagon-extended minimal model is expressed by

Ġ(t) = –[SG + X(t) – Y(t)] G(t) + SGGb + 
Ra

V
,                                           (12)

where V is the glucose distribution volume (dl/kg).

Subcutaneous Insulin Absorption Model
To estimate plasma insulin concentration I (μU/ml) due to subcutaneous insulin infusion, an existing model of 
subcutaneous insulin absorption17 was employed. The equations of such a model are

İ(t) = –ke I(t) + 
S2(t)

VItmaxI
                                                        (13)

Ṡ1(t) = u(t) – 
S1(t)
tmaxI

                                                        (14)

Ṡ2(t) = 
S1(t) – S2(t)

tmaxI
                                                          (15)

where, ke (min) is the first-order decay rate for insulin in plasma, u (μU/kg) is the subcutaneous insulin infusion rate, 
VI (ml/kg) is the distribution volume of plasma insulin, tmaxI (min) is the time-to-maximum insulin absorption, and 
S1 and S2 are a two-compartment chain representing absorption of subcutaneously administered short-acting analog 
insulin (e.g., lispro).

Subcutaneous Glucagon Absorption Model
Assuming that the pharmacokinetics of subcutaneous glucagon absorption can be modeled by the same model structure 
as the one proposed for subcutaneous insulin absorption by Hovorka and coauthors,17 plasma glucagon concentration 
N (pg/ml) was estimated as

Ṅ(t) = –kNN(t) + 
Z2(t)

VNtmaxN
                                                        (16)
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Ż1(t) = w(t) + 
Z1(t)
tmaxN

                                                          (17)

Ż2 = 
Z1(t) – Z2(t)

tmaxN
                                                            (18)

where kN (min-1) is the first-order decay rate for glucagon in plasma, w (ng/kg) is the subcutaneous glucagon infusion 
rate, VN (ml/kg) is the distribution volume of plasma glucagon, tmaxN (min) is the time-to-maximum glucagon absorption, 
and Z1 and Z2 are a two-compartment chain representing absorption of subcutaneously administered glucagon.

Data
Data from a closed-loop artificial pancreas study using a bihormonal controller on T1DM subjects were employed.8  
In particular, the data sets corresponding to subjects 117-1, 126-1, and 128-1 were selected. The criterion for selecting 
these data sets was that no additional carbohydrates to the predefined protocol were provided to prevent hypoglycemia 
and that sufficient glucagon was administered in order to appreciate its effect on glucose dynamics. The duration of the 
trial was 26 h, starting at 15:00 h. Venous blood glucose, plasma insulin, and plasma glucagon were measured at intervals 
of 5, 15, and 10 min, respectively. The corresponding meal protocols (i.e., ingestion time and ingested carbohydrates)  
and the body weight of the subjects are shown in Table 1. More information about the meal protocols and details 
about the control algorithm can be found from El-Khatib and coauthors.8

Table 1.
Meal Protocols of the Selected Data Sets and Body 
Weight of the Corresponding Subjects

Data set Dinner 
(18:00 h), g

Breakfast 
(07:00 h), g

Lunch 
(12:00 h), g

Body 
weight, kg

117-1 108 80 80 85

126-1 87 64 64 68.6

128-1 144 107 107 94.8

Parameter Identification
Identification of the model parameters was performed 
following a similar methodology to the one proposed by  
Kanderian and coauthors6 and summarized in three steps:

Step 1: The known insulin (glucagon) delivery rates were 
used to estimate parameters of the insulin (glucagon) 
absorption model [Equations (13)–(15) and Equations 
(16)–(18)]. Parameters ke, tmaxI, and VI (kN, tmaxN, and VN)  
were identified in each of the three data sets by 
minimizing the sum square error between the model-predicted plasma insulin (Ip) [glucagon (N)] concentration and 
the measured concentration. Since basal plasma insulin (Ib) and basal plasma glucagon (Nb) concentrations are a priori 
unknown, they were also identified. It is important to note that both models represent increments with respect to the 
basal concentrations.

Step 2: Because no independent data of the glucose rate of appearance were available, the glucagon-extended minimal 
model was simultaneously identified with the gastrointestinal absorption model. To minimize identifiability issues 
due to the elevated number of parameters to be identified, the following assumptions were made. For the glucagon-
extended minimal model, parameters SG and V were fixed to the mean T1DM population values reported by Krudys and 
coauthors21 (i.e., SG = 0.014 min-1 and V = 1.7 dl/kg) since, as reported by Dalla Man and coauthors,22 the variability 
of these parameters is low. For the gastrointestinal absorption model, the carbohydrate bioavailability (f) was assumed 
to be 0.9, because this is a standard value for mixed meals.22 Basal glucose concentration Gb was set to the bihormonal 
controller set point (i.e., 100 mg/dl).

Plasma insulin and plasma glucagon concentration were interpolated and used as inputs to Equations (2) and (7) and 
carbohydrate content as input to Equations (10)–(12). Parameters p2, SI, p3, SN, and tmaxG were then estimated by 
minimizing the sum square error between the measured plasma glucose and model prediction [Equation (12)].

Minimization was performed considering intraday variation in the parameters (i.e., circadian rhythm). Three different 
time windows were considered for this purpose, each one containing one of the three ingested meals and sufficient 
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glucagon administration in order to appreciate its effect on glucose dynamics. In particular, the following windows 
were selected: 15:00–05:00, 05:00–12:00, and 12:00–18:00.

Step 3. Each fit (i.e., time window) from the procedures in step 2 was assessed for adequacy according to three criteria: 

1. root mean square error between the fitted glucose profile and the measured plasma glucose profile was required 
to be less than 25 mg/dl;

2. peak postprandial glucose and the peak model predicted glucose were required be within 25 mg/dl following each 
meal (ΔGpeak < 25 mg/dl), with the peak values needing to be within 30 min of each other (ΔTpeak < 30min);  
and

3. nadir glucose for excursions of plasma glucose below 80 mg/dl were required to be predicted by the model to 
within 15 mg/dl (ΔGnadir < 15 mg/dl), with the nadirs occurring within 30 min of each other (ΔTnadir < 30 min). 

All models were numerically identified by nonlinear least squares23 as implemented in lsqnonlin optimization routine 
from the Matlab Optimization Toolbox and numerically integrated using the Matlab ode45 differential equation solver 
(2010b, Matworks, Natick, MA).

Table 2.
Subcutaneous Insulin Absorption Model Estimated Parameters (Mean ± 1 Standard Deviation), Coefficient of 
Determination (R2), and Root Mean Square Error

Parameter 117-1 126-1 128-1

Ke (min-1) 0.196 ± 0.127 0.171 ± 0.126 0.217 ± 0.161

VI (ml/kg) 21.10 ± 9.39 17.33 ± 8.38 25.17 ± 13.03

tmaxI (min) 54.36 ± 1.43 57.63 ± 1.65 58.03 ± 1.31

Ib (μU/ml) 11.01 ± 0.45 19.76 ± 0.80 10.03 ± 0.25

R2 (%) 93.3 91.1 83.1

Root mean square error (μU/ml) 4.5 7.1 4.7

Results

Subcutaneous Insulin Absorption Model 
Identification
Table 2 shows the values (i.e., mean ± 1 standard deviation  
provided by the lsqnonlin routine) for the identified 
subcutaneous insulin absorption model parameters 
corresponding to the three studied subjects. Figure 3 
graphically shows the fitting of the model with the 
experimental measurements for subject 117-1. 

Subcutaneous Glucagon Absorption Model 
Identification
Table 3 shows the values for the identified subcutaneous 
glucagon absorption model parameters corresponding to 

Figure 3. Fitting of the subcutaneous insulin absorption model to the 
experimental measurements corresponding to subject 117-1. (Upper) 
Measured mean plasma insulin concentration (red dots) and estimated 
plasma insulin concentration (solid blue line). (Lower) Insulin infusion 
(blue bars).

the three studied subjects. Figure 4 graphically shows the fitting of the model with the experimental measurements 
for subject 117-1. It is important to note that data from hour 16:00 onward were discarded because of a suspicion of 
glucagon pump failure.
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Table 3.
Subcutaneous Glucagon Absorption Model Estimated Parameters (Mean ± 1 Standard Deviation),  
Coefficient of Determination (R2), and Root Mean Square Error

Parameter 117-1 126-1 128-1

KN (min-1) 0.62 ± 0.38 0.383 ± 0.130 0.735 ± 0.438

VN (ml/kg) 16.06 ± 8.83 29.20 ± 8.07 23.46 ± 12.47

tmaxN (min) 32.46 ± 0.56 15.76 ± 0.40 20.59 ± 0.45

Nb (pg/ml) 46.30 ± 0.60 48.13 ± 0.60 59.23 ± 0.33

R2 (%) 93 88 91

Root mean square error (pg/ml) 15.2 18.3 10.6

Figure 4. Fitting of the subcutaneous glucagon absorption model 
to the experimental measurements corresponding to subject 117-1. 
(Upper) Measured mean plasma glucagon concentration (red dots) 
and estimated plasma glucagon concentration (solid blue line). (Lower) 
Glucagon infusion (red bars).

Glucagon-Extended Minimal Model and 
Gastrointestinal Absorption Model Identification
Table 4 provides, for each one of the time windows, the 
values for the identified parameters of the glucagon-
extended minimal model coupled to the gastrointestinal 
absorption model, corresponding to the three studied 
subjects. Table 5 provides the results for the metrics to 
assess for adequacy of the data fitting (see Parameter 
Identification under Methods). Figure 5 shows, for each 
one of the time windows, the fitting model with the 
glucose experimental data corresponding to subject 117-1.

In Silico Testing of a Bihormonal Glucose 
Controller
To test the usability of the proposed glucagon–glucose 
composite model, a bihormonal glucose controller that  
consists of a validated bioinspired controller, based on 

Table 4.
Estimated Parameters (Mean ± 1 Standard Deviation) of the Glucagon-Extended Minimal Model Coupled to 
the Gastrointestinal Absorption

Subject Parameter 15:00–05:00 05:00–12:00 12:00–18:00

117-1 SI (min-1 per μU/ml) 7.73e-4 ± 1.22e-5 8.55e-4 ± 8.85e-5 6.82e-4 ± 7.96e-6

p2 (min-1) 0.012 ± 0.001 0.0039 ± 0.001 0.021 ± 0.001
SN (min-1 per pg/ml) 1.38e-4 ± 2.70e-6 1.96e-4  ± 1.41e-5 8.10e-5 ± 2.27e-6

p3 (min-1) 0.017 ± 0.001 0.016  ± 0.002 0.139 ± 0.024
tmaxG (min) 69.6 ± 0.1 59.9 ± 0.1 59.9 ± 0.6

126-1 SI (min-1 per μU/ml) 2.26e-4 ± 4.76e-6 1.06e-3 ± 2.46e-4 1.16e-3 ± 8.47e-5

p2 (min-1) 0.057 ± 0.006 0.002 ± 0.001 0.002 ± 0.001
SN (min-1 per pg/ml) 8.96e-5 ± 2.31e-4 1.45e-4 ± 6.53e-6 1.25e-4 ± 1.61e-6

p3 (min-1) 0.022  ± 0.001 0.164 ± 0.002 0.210 ± 0.034
tmaxG (min) 57.9 ± 0.7 55.4 ± 1.1 89.8 ± 0.8

128-1 SI (min-1 per μU/ml) 6.40e-4 ± 3.67e-5 5.13e-4 ± 3.43e-4 7.20e-4 ± 4.56e-5

p2 (min-1) 0.0048 ± 0.0003 0.0037 ± 0.0039 0.0077 ± 0.0008
SN (min-1 per pg/ml) 1.19e-4 ± 8.11e-6 1.98e-5 ± 6.01e-6 1.20e-4 ± 7.25e-6

p3 (min-1) 0.0108 ± 0.0009 0.074 ± 0.016 0.251  ± 0.098
tmaxG (min) 102.7 ± 1.9 88.5 ± 0.1 78.0 ± 3.3
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Table 5.
Results for the Metrics to Assess for Adequacy 
of the Data Fitting to the Glucagon-Extended 
Minimal Model Coupled to the Gastrointestinal 
Absorption

Subject Metric 15:00–05:00 05:00–12:00 12:00–18:00

117-1 ΔGpeak (mg/dl) 8.3 5.8 4.7

ΔTpeak (min) 1 26 4

ΔGnadir (mg/dl) 8.1 5.3 2.2

ΔTnadir (min) 23 12 0

R2 (%) 93 97 97

Root mean 
square error 

(mg/dl)
10.5 8.5 9.2

126-1 ΔGpeak (mg/dl) 14.2 25.6 11.3

ΔTpeak (min) 19 6 9

ΔGnadir (mg/dl) 10.1 0 3.9

ΔTnadir (min) 7 0 11

R2 (%) 96 95 97

Root mean 
square error 

(mg/dl)
9.7 13.6  8.2

128-1 ΔGpeak (mg/dl) 7.2 5.7 2.6

ΔTpeak (min) 1 15 13

ΔGnadir (mg/dl) 6.7 6 0.4

ΔTnadir (min) 2 0 0

R2 (%) 93 86 90

Root mean 
square error 

(mg/dl)
11.6 12.6 10.7

Figure 5. Fitting of the glucagon-extended minimal model coupled 
to the gastrointestinal absorption to the experimental measurements 
corresponding to subject 117-1 for each one of the time windows.  
(A) Time window 15:00–05:00. (B) Time window 05:00–12:00. (C) Time 
window 12:00–18:00. (Upper A–C) Measured mean plasma glucose 
concentration (red dots), estimated plasma glucose concentration 
(solid blue line) and meal (black bar). (Lower A–C) Glucagon infusion 
(positive red bars) and insulin infusion (negative blue bars).

beta-cell physiology, for insulin delivery3 combined with 
a proportional-derivative (PD) controller for glucagon 
delivery8 was employed. The bioinspired controller can 
be described by the equation

u = K · F(t, G, Gsp) + SRb – Ky · I,          (19)

where u is insulin delivery, F is insulin secretion calculated 
with the beta-cell model presented by Pedersen and 
coauthors,24 G is glucose concentration (forecasted 15 min 
ahead), Gsp is the glucose set point, SRb is basal insulin 
delivery, Kp and Ky are tuning parameters, and I is the plasma insulin estimation calculated using Equations (13)–(15).

The PD controller with glucagon feedback is described by the equation

if G < Gspw = Kp · max(0,(GNsp – G)) + Kd(–dG) – KZN, else w = 0,                           (20)
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where w is glucagon delivery; Kp, Kd, and KZ are tuning parameters; G is glucose concentration (forecasted 15 min 
ahead); GNsp is the glucagon controller glucose set point; dG is the glucose rate of change (i.e., derivative); and N is the 
plasma glucagon estimation calculated using Equations (16)–(18).

The same scenario used to identify the parameters of the glucagon–glucose composite model was employed to test the 
proposed bihormonal controller. It is important to note the parameters of the model change along the scenario.

First, the bioinspired controller was tested alone and specifically tuned (i.e., K = 3; Ky = 15) to induce hypoglycemia 
(see Figure 6). Then, for the same tuning of the bioinspired controller, the PD controller was tuned (i.e., Kp = 0.002,  
Kd = 0.02, and KZ = 30) to prevent hypoglycemia (see Figure 7). Glucose set points for the bioinspired controller and 
for the PD controller was set to Gsp = 120 mg/dl and GNsp = 90 mg/dl.

Figure 6. (Upper) Glucose concentration trace (blue solid line) resulting 
from tuning the insulin bioinspired controller to induce hypoglycemia. 
(Lower) Delivered insulin by the bioinspired controller.

Figure 7. (Upper) Glucose concentration trace (blue solid line) resulting 
from the bihormonal control. (Lower) Delivered insulin (negative blue 
bars) and glucagon (positive red bars) by the bihormonal controller.

Discussion
Although only three sets of data were used, the quality of the results suggests that they could be replicated with other 
similar experiment data. This work is currently taking place with the purpose of building a cohort of virtual subjects 
with T1DM to be incorporated within a simulation environment.

It has to be noted that, although a good fitting of the model with the experimental data was achieved and the model 
parameters were identified with good precision, the employed data were not created for this purpose. Therefore, the 
results of the performed parameter identifications may not be optimal. In order to capture the complete dynamics 
of the system to facilitate parameter identification, specifically designed clinical trials should incorporate the delivery 
of insulin and glucagon separately and the delivery of both hormones simultaneously. It should be noted that the 
identification of the presented model could be done more accurately through tracer studies. However, the realization of 
tracer studies is out of the scope of this work.

Subcutaneous glucagon pharmacokinetics are known to be simpler than that of insulin because multimers of glucagon 
are not thought to be present in the subcutaneous interstitial space.25,26 Therefore, the insulin pharmacokinetic model 
employed to represent subcutaneous glucagon pharmacokinetics may be unduly complex but sufficient for its purpose. 

Although a bihormonal controller was successfully tested on the proposed composite model, one may argue that the 
use of glucagon can increase the risk of overinsulinization, which is known to be unsuitable for subjects with T1DM, 
and the instability of the system. One easy way to avoid this problem is by introducing constraints on both insulin 
and glucagon delivery. By doing so, we guarantee that only safe amounts of both hormones are delivered.
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To make the proposed model more realistic, several improvements could be made. First of all, a model of the  
dynamics of glucose diffusion between plasma glucose and interstitial fluid glucose and a model of the subcutaneous 
continuous glucose monitoring sensor could be incorporated.27 Then, a cohort of virtual subjects with T1DM and a library 
of different mixed meals could be included in order to represent intersubject and intraday variability. This work is 
currently taking place in our group.

Conclusions
A novel glucagon–glucose composite model, which accounts for the effect of exogenous insulin and glucagon infusion 
on glucose dynamics, was successfully identified using data extracted from a published bihormonal artificial pancreas 
study. In addition, the proposed subcutaneous glucagon absorption model succeeded in accurately estimating 
experimental plasma glucose concentrations. 

The usability of the glucagon–glucose composite model was tested by means of the realization of an in silico trial using 
a bihormonal glucose controller developed by our group. The obtained results proved the ability of the bihormonal 
controller to avoid hypoglycemia when the insulin delivery controller was tuned too aggressively. We have shown that 
our new model can aid the design of bihormonal glucose controllers, which represents an incremental step toward the 
realization of an artificial pancreas.
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