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Abstract
Background:
Development of an artificial pancreas based on an automatic closed-loop algorithm that uses a subcutaneous 
insulin pump and continuous glucose sensor is a goal for biomedical engineering research. However, closing 
the loop for the artificial pancreas still presents many challenges, including model identification and design 
of a control algorithm that will keep the type 1 diabetes mellitus subject in normoglycemia for the longest 
duration and under maximal safety considerations.

Method:
An artificial pancreatic β-cell based on zone model predictive control (zone-MPC) that is tuned automatically 
has been evaluated on the University of Virginia/University of Padova Food and Drug Administration-accepted 
metabolic simulator. Zone-MPC is applied when a fixed set point is not defined and the control variable 
objective can be expressed as a zone. Because euglycemia is usually defined as a range, zone-MPC is a natural 
control strategy for the artificial pancreatic β-cell. 

Clinical data usually include discrete information about insulin delivery and meals, which can be used to generate 
personalized models. It is argued that mapping clinical insulin administration and meal history through 
two different second-order transfer functions improves the identification accuracy of these models. Moreover, 
using mapped insulin as an additional state in zone-MPC enriches information about past control moves, 
thereby reducing the probability of overdosing. In this study, zone-MPC is tested in three different modes 
using unannounced and announced meals at their nominal value and with 40% uncertainty. Ten adult  
in silico subjects were evaluated following a scenario of mixed meals with 75, 75, and 50 grams of carbohydrates 
(CHOs) consumed at 7 am, 1 pm, and 8 pm, respectively. Zone-MPC results are compared to those of the 
“optimal” open-loop preadjusted treatment.

continued  
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Introduction

Type 1 diabetes mellitus (T1DM) is characterized by 
the loss of endogenous secretion of insulin from the 
pancreatic β-cell that is crucial to maintaining euglycemia 
and, without proper treatment of exogenous insulin 
injections, causes life-threatening hyperglycemia and 
keto-acidosis. Because of the lack of insulin secretion, 
people with T1DM lose their ability to regulate their 
glycemic levels and suffer from long periods of hyper-
glycemia without proper insulin management.

Establishing a near normoglycemia control requires a 
careful balance among the person’s daily activities, diet, 
and insulin administration. However, this is not an 
easy task, and frequent blood glucose measurements 
must be taken (pre- and postprandial as well as before  
bedtime) in order to calculate insulin doses or corrective 
action. Basal–bolus insulin treatment or intense insulin 
treatment can be administered as multiple daily injections 
(MDI) or via an insulin pump.1 Different insulin schedules 
are suggested for MDI therapy based on insulin type/
duration of action, daily schedule of the patient, and 
other medical conditions. Initial doses are calculated 
based on body weight and are divided into basal and 
bolus elements. However, because insulin requirements 
differ throughout the day, and from day to day, this 
initial setting needs to be fine-tuned to prevent insulin 
overdosing, which will result in hypoglycemia, or 
underdosing, which will result in hyperglycemia.1

The quest for the development of artificial pancreatic 
β-cells started nearly 4 decades ago. These devices can 

be described as external or internal closed-loop systems 
that use continuous glucose measurements to manipulate 
insulin administration, and therefore compensate for 
the loss of natural abilities of glucoregulation of people 
with T1DM. Early attempts to generate an external 
artificial pancreatic β-cell were undertaken2,3 using both 
intravenous blood glucose measurements and intravenous 
insulin administration. Clemens and colleagues4 used a 
clamping algorithm with the Biostator glucose-controlled 
insulin-infusion system and tested it in both animals and 
humans. Later Steil and collaborators5 used proportional 
integral derivative control for insulin administration.

In recent years, model predictive control (MPC) has 
been shown to be a promising direction for an artificial 
pancreas control algorithm.6 Model predictive control is 
an optimal control algorithm that has been used in the 
chemical process industries over the last 4 decades.7 
It is based on a computer control algorithm that uses an  
explicit process model to optimize future process response 
by manipulating future control moves (CM). The MPC 
concept was developed in the early 1970s and was 
referred to as identification and control8 or as dynamic 
matrix control by engineers from the Shell Company.9 
Although MPC was originally implemented in petroleum 
refineries and power plants, it can be found these days in 
a wide variety of application areas, including aerospace, 
food, automotive, and chemical applications.10 Among the 
reasons for the popularity of MPC are its handling of 
constraints, it accommodation of nonlinearities, and its 
ability to formulate unique performance criteria.

Abstract cont.

Results:
Zone-MPC succeeds in maintaining glycemic responses closer to euglycemia compared to the “optimal” 
open-loop treatment in te three different modes with and without meal announcement. In the face of meal 
uncertainty, announced zone-MPC presented only marginally improved results over unannounced zone-MPC.  
When considering user error in CHO estimation and the need to interact with the system, unannounced zone-MPC 
is an appealing alternative.

Conclusions:
Zone-MPC reduces the variability of control moves over fixed set point control without the need to detune 
the controller. This strategy gives zone-MPC the ability to act quickly when needed and reduce unnecessary 
control moves in the euglycemic range.

J Diabetes Sci Technol 2010;4(4):961-975
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Model predictive control optimizes every control cycle 
with a cost function that includes P future process 
instants, known as prediction horizon, and M future 
CM, the control horizon. In each cycle, optimization is 
repeated using updated process data. However, only the 
first CM of each optimized sequence is implemented 
in the process. Process input constraints are included 
directly such that the optimum solution prevents future 
constraint violation.

Equation (1) describes a typical objective function used in 
the MPC format engaging three terms10: a future output 
trajectory (yk + j) deviation from desired output trajectory 
(yk + j

r ) over a prediction horizon P; a future input (  
uk+ j) 

deviation from nominal value us over control horizon 
M; and control move increments (  

Δuk+ j) over control 
horizon M.

   

J(u) = yk+ j − yk+ j
r( ) Q j

j=1

P

∑ + uk+ j − us( ) R j + Δuk+ j
j=0

M−1

∑ S j

s.t.

xk+ j = f xk+ j−1 ,uk+ j−1( )  ∀j = 1, P

yk+ j = g xk+ j ,uk+ j( )  ∀j = 1, P

umin ≤ uk+ j ≤ umax  ∀j = 1, M
Δulow ≤ Δuk+ j ≤ Δuup  ∀j = 1, M

   

J(u) = yk+ j − yk+ j
r( ) Q j

j=1

P

∑ + uk+ j − us( ) R j + Δuk+ j
j=0

M−1

∑ S j

s.t.

xk+ j = f xk+ j−1 ,uk+ j−1( )  ∀j = 1, P

yk+ j = g xk+ j ,uk+ j( )  ∀j = 1, P

umin ≤ uk+ j ≤ umax  ∀j = 1, M
Δulow ≤ Δuk+ j ≤ Δuup  ∀j = 1, M

 
(1)

The relative share of each of the three components of the 
objective function is managed by the time-dependent 
weight matrices Q, S, and R. Optimization is conducted 
under model constraints (

  
xk+ j are model state variables), 

upon constraints on maximum and minimum nominal 
input values (umin and umax), and on minimum and 
maximum CM increments ( Δulow and 

 
Δuup). The solution 

of optimization using the objective function described 
by Equation (1) for a single control variable is the vector 
   u ∈R M.

Advantages of MPC in coping with large time delays and 
constraints were tested in recent years both in simulation11 
and in clinical studies12,13 as a control strategy for the 
artificial pancreatic β-cell. Model predictive control is 
based on recursively repeated open‑loop optimizations 
that minimize a cost function by using model-based 
predictions. Hovorka and colleagues14 used a nonlinear 
model as the core of their MPC, and the controller 
showed good results with a clinical subject using 

intravenous glucose measurements and a subcutaneous 
insulin pump. However, in this study, manual insulin 
boluses are given for meals and the controller is engaged 
after the postprandial peak, leaving the feedback control  
only a minor role in restoring glycemia. Kovatchev and 
collaborators15 introduced the control-to-range concept, 
which combines a predefined basal rate and boluses 
with a closed-loop algorithm. The algorithm attempts to 
maximize the time in a predefined range by adjusting 
controller parameters instead of including the predefined 
range as an integral component of the cost function. 
Hovorka and colleagues12 have published promising 
results in vivo that described regulation of nocturnal 
hypoglycemia in children. Ellingsen and associates16 
reported on insulin-on-board (IOB)-MPC, which uses 
IOB (the residual insulin concentration from a previous 
insulin administration) as a safety constraint; the IOB‑MPC 
showed relatively robust results in silico. 

This work presents an artificial pancreatic β-cell based on 
zone‑MPC that uses mapped-input data and is adjusted 
automatically by linear difference personalized models. 
Controlling to a target zone is applied, in general, to 
controlled systems that lack a specific set point with the 
controller goal to keep the controlled variables (CV) in 
a predefined zone. Controlling to a target zone is highly 
suitable as an artificial pancreatic β-cell because of the 
absence of a natural glycemic set point rather than of a 
euglycemic zone. Moreover, an inherent benefit of control 
to zone as demonstrated by zone-MPC is limiting pump 
actuation/activity in a way that if glucose levels are 
within the zone, no extra correction shall be suggested. 
This feature of this control strategy is highly important  
in lowering power consumption of the handheld device.

Methods

Autoregression with Exogenous Input
The Zone-MPC model is based on an ARX model.17,18 
The ARX model that serves as the basis for zone-MPC is 
chosen from a pool of ARX model candidates that differ 
by the number of past data points utilized (the ARX order). 
The different ARX models are scored by their prediction 
abilities over a fixed horizon, and the ARX model that 
scores the higher prediction R2, Equation (2), over a 
fixed horizon is then estimated again to improve its 
prediction abilities.

Equation (2) presents the R2 index, where    y ∈R N is a 
vector of collected data points,  y is the mean of collected 
data points, and     ŷ ∈R Nis the predicted value.
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R2 = 1 −

yk − ŷk( )2

k=1

n

∑

yk − y( )2

k=1

n

∑
 (2)

The R2 index approaches 1 for perfect model predictions 
and 0 for models that do not predict better than a 
constant mean value.

Autoregression with exogenous input equations use 
past input/output discrete records to generate a future 
discrete prediction. For example, Equation (3) describes 
the connection between predicted output   ŷ at instant k 
and past p and q output and input records, respectively.

ŷk = a1yk – 1 +...+ apyk – p + b1uk – 1 +...+ bquk – q

ŷk = f · qT

     where

f = [yk – 1 ... yk – p uk – 1 ... uk – q]

     and

q = [a1 ... ap b1 ... bq]

         (3)

In the presence of observed data    y ∈R N, where N is the 
number of collected data points, linear regression can 
be performed to establish regression vector q values by 
minimizing the sum squares of errors between N data 
records y and predicted values   ŷ as it is formulated in 
Equation (4).

 

   
min

q

1
N

yk − f ⋅qT( )2

k =1

N

∑
⎧
⎨
⎩

⎫
⎬
⎭

f · qT
q

 (4)

Regression on past output regressors, [a1 . . . ap], is defined 
as autoregression, and the model is referred to as an 
ARX model.

Determination of ARX model output order, input order, 
and delay is subject to data validation and complexity 
considerations. Autoregression with exogenous input 

model identification is initialized by the researcher’s 
decision based on reasonable orders and delays. A  pool 
of ARX models is then generated by the different 
combinatory combinations of orders and delays, and 
each ARX model is evaluated by its prediction abilities 
on calibration data and on validation data. Some trade- 
off can be formulated between model prediction 
abilities and ARX model complexity, for example, the 
Akaike information criterion.18 However, the quality of 
collected data for identification will eventually govern 
identification.

In order to best simulate an in vivo experiment, a data‑
collecting protocol (Figure 1) introduced by Dassau 
and collaborators19 was applied to the Food and Drug 
Administration (FDA)-accepted University of Virginia 
(UVa)\University of Padova (Padova) metabolic simulator.20 
In the data-collecting protocol, no adjustments to the 
daily routine were prescribed in day 1. Both days 2 and 
3 started at 7 am with a 25-gram carbohydrate (CHO) 
breakfast with no insulin bolus, followed by a correction 
bolus at 9 am; at 1 pm a 50-gram CHO lunch was taken 
together with a correction bolus. A  15-gram CHO snack 
without a correction bolus was given at 5 pm, and a 
75-gram CHO dinner accompanied by an insulin bolus 
was given at 8 pm. Days 4 and 5 started at 7 am with 
a 25-gram CHO breakfast accompanied by an insulin bolus, 
then a 50-gram lunch was consumed at 12 pm, and an 
insulin bolus was given at 2 pm. At 8 pm a 75-gram CHO 
dinner accompanied by an insulin bolus was given, and 
at 10 pm an insulin bolus was administered. On the 
6th day the response to a pure bolus from fasting conditions 
was tested by bolus administration at 9 am.

In this work, data of meal and insulin inputs were mapped 
through second-order transfer functions [Equation (5)] 
to overcome a major identification problem: a large gain 
uncertainty was caused by the opposite effects of meal 
and insulin that are delivered frequently in close time 
instants. Losing the ability to distinguish between meal 
and insulin gains can produce poor models for control. 
However, mapping input data using two different 
second-order transfer functions (Figure 2) separated and 
spread input data, providing better terms to regress for 
the model. Clinical observations and pharmacokinetic/
pharmacodynamic data suggest that, on average, the 
effect of insulin on blood glucose is observed 30  minutes 
after injection and that the effect of meals on blood 
glucose is observed after 20 minutes. This a priori 
knowledge has been used to design the following 
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Figure 1. Proposed protocol that facilitates the separation of meal and insulin effects on blood glucose.19

second-order transfer functions:

  

Imap (s) =
1

(30s + 1)(25s + 1)
I(s)

Mmap (s) =
1

(10s + 1)(45s + 1)
M(s)

 (5)

Equation (5) describes transfer functions used to map 
measured insulin and meal, I and M, respectively, into 
new states Imap and Mmap. Transfer functions in the 
Laplace transform21 provide the engineer with a powerful 
method for the analytical solution of differential 
equations. The Laplace transform is often interpreted 
as a transformation from the time domain to the  
frequency domain. The four constants (30, 25, 10, and 45) 
are in units of minutes.

Horizon Prediction Optimization 
The ARX model regressors are normally set by a one  
step shift of output/input data, such that each prediction 
at time instant k is evaluated by recorded output/input 

data up to the time instant k – 1. However, predicted 
output at instant k is highly correlated to the output 
measurement at instant k – 1, especially when the sampling 
time is relatively short. This can lead to ARX models 
that lose their predictive capabilities.

A novel improvement was suggested to parametric 
identification of the ARX model as follows: Data are 
divided into groups of the length of   ↓ N /PH( ) ⋅ PH, 
where N is the number of data points, PH is the 
prediction horizon, and “↓” is the round down operator. 
Next, a parametric optimization is carried out in an 
attempt to find the set of parameters that maximize 
the prediction in each group. Each group is recursively 
predicted: the first term of each group is predicted by 
measured data; then the first term is used to predict 
the second term in each group; and the predicted terms, 
first and second, are used to predict the third term.  
This procedure is repeated for all data points in each 
group, and the ability to predict all groups is used as a 
cost function for optimization, Equation (6).
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f · qT

f

q = [a1 ... ap b1 ... bq1
 g1 ... gq2

]

q

 
(6)

Horizon prediction optimization [Equation (6)] attempts 
to minimize normalized sum squares of errors between 
output recorded data, y, and the recursive prediction in 
each data group, yrec. mod(k, PH) is the modulus after the
division of 

 
k

PH. Imap and Mmap are mapped insulin and
meal data records, respectively. p, q1, and q2 are the order 
of output (glycemia), insulin, and meal, respectively, and 
d1 and d2 are insulin and meal delays in sampling time, 
respectively. ak, bk, and gk are regressors of glucose, 
insulin, and meal, respectively.

The following five constraints were applied to the 
optimization to prevent models from being unstable, 
having nonphysical gains, or having inverse responses 
and so that they may be suitable for predictive control:

1. For stability, roots of the following of the characteristic 
polynomial, zP – a1zP–1 – a2zP–2... – a2, are all inside the 
unit circle.

2. Negative insulin gain requirement, 
S

q1

i = 1
b1

S
p1

j = 1
1 –      aj

< 0.

3. Positive meal gain requirement, 
S

q2

i = 1
gi

S
p

j = 1
1 –      aj

> 0.

4. No inverse response in insulin, 
  
Sg β1βq1

⎡
⎣

⎤
⎦( ) = 0b b , 

where  Sg x( ) is defined by Equation (7).

No inverse response in meal, 
  
Sg g 1g q2

⎡
⎣

⎤
⎦( ) = 0g g .

   
Sg x( ) =

0 For x that contains all components on only one side of 0
1 For x that contains two component from different sides of 0

⎧
⎨
⎪

⎩⎪
 (7)

Equation (7) describes a Boolean function that results 
in 0 if provided with a vector that has elements on only 
one side of the origin (i.e., all positive or all negative).  
The function results in 1 if provided with a vector that 
has at least two elements from different sides of the 
origin.

Zone Model Predictive Control
The different MPC algorithms can be classified into 
four approaches to specify future process response:10 
fixed set point, zone, reference trajectory, and funnel. 
Using a fixed set point for the future process response 
can lead to large input adjustments unless settings of  
the controller are changed in detriment of performance. 
A zone control is designed to keep the CV in a zone 

Figure 2. Insulin and meal inputs are mapped through second-
order transfer functions and, as a result, are spread and separated.  
(A) Typical input data collected from T1DM subjects: meals and 
insulin are assigned as pulses over relatively close discrete time 
instances. (B) Result of transformed inputs, where each pulse becomes 
a prolonged time response.
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defined by upper and lower boundaries that are usually 
defined as soft constraints. Some MPC algorithms 
define a desired response path for CV, called reference 
trajectory. The reference trajectory usually describes a 
defined path from the current CV state to a desired set 
point. The reference trajectory control returns to a fixed 
set point control when the CV approaches the defined 
set point. Robust Multivariable Predictive Control 
Technology (Honeywell Inc., 1995) attempts to keep the 
CV in a defined zone; however, when the CV is out of 
the zone, a funnel is defined to bring the CV back into 
the zone. Kovatchev and colleagues15 presented the 
concept of control to range for diabetes that optimizes 
glucose control to a certain glucose control range.  
The control-to-range concept is focused on CV performances 
rather than on controller architecture.

Zone-MPC is applied when the specific set point value 
of a CV is of low relevancy compared to a zone that 
is defined by upper and lower boundaries. Moreover, 
in the presence of noise and model mismatch there 
is no practical value using a fixed set point. A general 
description of MPC with output objectives defined as a 
zone can be found in Maciejowski.22 Our zone-MPC is 
implemented by defining fixed upper and lower bounds 
(Figure 3) as soft constraints by letting optimization 
weights switch between zero and some final values 
when predicted CVs are in or out of the desired zone, 
respectively. Predicted residuals are generally defined as 
the difference between the CV that is out of the desired 
zone and the nearest bound.

The core of zone-MPC lies in its cost function formulation. 
Zone-MPC, like any other form of MPC, predicts the 
future     ŷ ∈R P output by an explicit model using past P 
input/output records and future input    u ∈R M moves 
that need to be optimized. However, instead of driving 
to a specific fixed set point, the optimization attempts to 
keep or move the predicted outputs into a zone that is 
defined by upper and lower bounds.

Figure 3 depicts zone-MPC applied to glycemia 
regulation. Fixed upper and lower glycemic bounds are 
predefined. Using a linear difference model, glycemic 
dynamics are predicted and optimization reduces future 
glycemic excursions from the zone under constraints and 
weights defined in its cost function.

The zone-MPC cost function used in the presented work 
is defined as follows:

   

J(u) = y k + j
range Q

j=1

P

∑ + u k + j − us( ) R
j= 0

M −1

∑

s.t.

y k + j = f y k + j−1 , u k + j−1( )  ∀j = 1, P

0 ≤ u k + j ≤ umax  ∀j = 1, M

 (8)

where Q and R are constant optimization weights on 
predicted outputs and future inputs, respectively, and 
yrange is a superposition of all the predicted outputs states 
that exceed the permitted range:

   
yk + j

range = [yk + j
lower -lower bound,  yk + j

upper − upper bound]  (9)

   y
lower ∈R P collects all predicted points below the lower 

bound by setting all other predicted values to zero:

   

y lower = yk + j ⋅Cj
1

j=1

P

∑

where

Cj
1 =

1  for  all yk + j < lower  bound j = 1, P
0 for  all yk + j ≥ lower  bound j = 1, P

⎧
⎨
⎪

⎩⎪

 (10)

   y
upper ∈R P

 collects all predicted points above the upper 
bound by setting all other predicted values to zero:

Figure 3. Illustration of zone-MPC in the context of diabetes; zone-
MPC is typically divided into three different zones. The permitted 
range is the control target and is defined by upper and lower 
bounds. For example, green dots indicate predicted glycemic values 
in the permitted range. The upper zone represents undesirable high 
predicted glycemic values, which are represented by orange dots. The 
lower zone represents undesirable low predicted glycemic values that 
represent the hypoglycemic zone or a prehypoglycemic protective area 
that is a low alarm zone. Zone-MPC optimizes predicted glycemia 
by manipulating insulin CM to stay in the permitted zone under 
specified constrains.
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S
p

j = 1
yupper =      yk + j · Cj

	 where

Cj = 

2

1  for all yk + j > upper bound j = 1, P
0  for all yk + j ≤ upper bound j = 1, P

2 ⎧
⎨
⎩

                (11)

Future CM are constrained, set by the ability of the 
insulin pump to deliver a maximum rate of insulin 
and the inability to deliver negative insulin values. 
The  objective function [Equation (8)] neglects the control 
move increments component to enable fast control 
movements.

Input-Transformed Zone-MPC
Second-order input transfer functions described by 
Equation (5) are used to generate an artificial input 
memory in zone-MPC schema to prevent insulin 
overdosing and, as a result, hypoglycemia. In order 
to avoid overdelivery of insulin, the evaluation of any 
sequential insulin delivery must take into consideration 
the past administered insulin against the length of the 
insulin action. However, a one-state linear difference 
model with a relative low order uses output (glycemia) 
as the main source of past administered input (insulin) 

“memory.” In the face of model mismatch, noise, or 
change in the subject’s insulin sensitivity, this may 
result in under- or overdelivery of insulin. This can be 
mitigated by adding two additional states for mapped 
insulin and meal inputs.

As discussed earlier, ARX models are identified using 
mapped inputs. Insulin and meal measurements 
and transfer functions used for identification can be 
embedded into one ARX model with one state (glucose) 
and two inputs (insulin and meal), as illustrated in 
Equation (12).

Gk + 1 = a1Gk + ··· + apGk – p + b11Ik – d1 – 1 + ··· 

+ b1q1
Ik – d1 – q1

 + ··· + b21Mk – d2 – 1 + ··· + b2q2
Mk – d2 – q2

(12)

where G, I, and M represent glucose blood concentration, 
insulin administration, and meals, respectively.   a i ,  β1 i , 
and   β2 i are model coefficients; d1 and d2 are insulin and 
meal time delays, respectively; and p, q1, and q2 are 
orders of glucose, insulin, and meal, respectively.

In order to generate a prediction using Equation (12), 
we need p past measurements of G and d1 + q1 and d2 
+ q2 past insulin and meal measurements, respectively. 
However, while G has infinite memory, which is the 
outcome of the deterministic difference equation, the 
inputs memory is restricted to past inputs of a restricted 
order. For example, if delay in insulin, d1, is equal to two 
sample times and the order of insulin in the model is 
equal to three sample times, then the model captured 
the insulin administration of only five previous sample 
times. In perfect conditions where there is no model 
mismatch, no noise, or change in insulin sensitivity, past 
inputs will be contained into the G dynamics; however, 
in reality, these conditions are unlikely to be achieved.

An alternative formulation of the model, which provides 
a full reliable input memory to the system, is described 
in Equation (13):

Gk + 1 = a1Gk + ··· + apGk – p + b11Imap, k – d1 – 1 + ··· 

          + b1q1
Imap, k – d1 – q1

 + ··· + b21Mmap, k – d2 – 1 

          + ··· + b2q2
Mk – d2 – q2

Imap, k + 1 = g1Imap, k + g2Imap, k – 1 + g3Ik + g4Ik – 1

Mmap, k + 1 = d1Mmap, k + d2Mmap, k – 1 + d3Mk + d4Mk – 1

(13)

where Imap and Mmap are new states representing mapped 
insulin and meal values, respectively.  g i and  d i are new 
additions to the set of coefficients. These new states 
represent the insulin and meal after being absorbed into 
the blood.

Equation (13) describes an improved formulation to 
Equation (12) that uses mapped insulin and meal 
inputs (Imap and Mmap, respectively) as additional states 
(Figure 4). The two new states are evaluated using the 
two past state records as well as two past input records. 
Keeping past new state records enables an infinite 
input memory that is independent of G measurements. 
The states are updated after each zone-MPC cycle and 
thereby maintain the influence of all past inputs.

Automatic Controller Tuning
Four main tuning parameters are available for MPC. First, 
the prediction horizon, P, is a fixed integer indicating 
the number of prediction samples that will be used 
by the MPC cost function. P should be on the order of 
the settling time (ST). Choosing P that is too small will 
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cause the loss of a valuable dynamic response. However, 
choosing P that is too large will reduce the influence of 
dynamics over steady state. Second, the control horizon, 
M, is an integer indicative of the CM that are optimized. 
A large M will create a sluggish control response; 
however, choosing M = 1 will cause highly aggressive 
control. The other two parameters are Q and R, as 
described earlier. When applying zone-MPC, in addition 
to the four MPC tuning parameters, zone dimensions 
can be treated as another tuning variable.

The most dominant dynamic property found to influence 
zone-MPC tuning was the ST of the ARX model. Settling 
time is defined as the time it takes for a dynamic 
system to accomplish 95% of a response to a step input. 
The prediction horizon  P is set to correspond to the 
individual subject model ST. However, when the ratio 
between P and M is changed [Equation (8)], then the 
relative cost between output and input deviations is 
changed as well.

It should be noted that glucose predictions based on 
ARX models are limited to approximately 3 hours. Hence, 
to compensate correctly for prolonged settling times, the 
weight upon the CM (R) is a function of the ST. In  this 
way we also conserve the balance between weights 
of the output and input in Equation (8). Moreover, 
model fitness based on 3 hours of prediction is used as 
additional penalty upon

  
R =

ST
FIT3 h( )1.5  (14)

Equation (14) describes the adjusted cost weight upon 
the CM. The ST is defined by sampling times, and   FIT3 h 
is assumed to have a value greater than 0 and lower 
than 1 and is calculated by Equation (15):

   

FIT3 h = 1 −

y 3 h,k − y k
k = p+1

N − PH

∑

y j − y
j= p+1

N − PH

∑

3h,k

                        (15)

where     y3 h ∈R N − ( p+ PH ) is a vector containing the collection 
of ARX model predictions over 3 hours, PH is the 
number of sampling times contained in 3 hours, and p is 
the order of autoregressors. N is the total number of data 
values,    y ∈R N is the vector of data values, and  y is the 
mean of data values. Q and M were used as fixed values 
of 1 and 5, respectively.

Nine control experiments were conducted on 10 in 
silico adult subjects following a three-meal scenario 
of 75, 75, and 50 grams of CHO at 7 am, 1 pm, and 8 
pm, respectively, using the FDA-accepted UVa\Padova 
metabolic simulator. In all MPC experiments, the weight 
upon predicted outputs, Q, is set to 1, while the weight 
upon future CM, R, is set automatically by Equation (14).

List of Experiments
The zone-MPC model was compared to patient‑direct, 
open-loop control in order to have an objective 
comparison to other researchers’ work.23,24 Nine 
experiments were conducted as follows:

Experiment 1: Built-in open-loop preadjusted treatment is 
applied with nominal meals values.

Experiment 2: Zone-MPC bounds are set between 80 and 
140 mg/dl and meals are unannounced.

Experiment 3: Zone-MPC bounds are set between 100 
and 120 mg/dl and meals are unannounced.

Experiment 4: Model predictive control with set point at 
110 mg/dl and meals are unannounced.

Experiment 5: Zone-MPC bounds are set between 80 and 
140 mg/dl and nominal meals are announced.

Experiment 6: Zone-MPC bounds are set between 100 
and 120 mg/dl and nominal meals are announced.

Experiment 7: Model predictive control with set point at 
110 mg/dl and nominal meals are announced.

Experiment 8: Built-in open-loop preadjusted treatment is 
tested with meals announced with –40% mismatch with 
consumed meals value.

Figure 4. Model prediction structure in zone-MPC includes two 
parts. First is second-order transfer function that is unvaried over the 
different subjects. Second is an individualized discrete model that 
predicts glycemia given mapped input data. The overall prediction 
is a result of raw data containing past outputs, inputs, and future 
manipulated CM going through transfer functions and mapped into 
new states (Imap, Mmap) into the individualized discrete model to give 
the glycemia prediction.
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Experiment 9: Zone-MPC bounds are set between 80 and 
140 mg/dl with meals announced with –40% mismatch 
with consumed meals value.

Results and Discussion

Unannounced Zone-MPC 
Figure 5 depicts the result of a test conducted on 
subject #5 of the UVa\Padova simulator. In Figure 5, 
experiments 1 to 4 are represented by gray triangles 
and red, blue, and black circles, respectively. Figure 5 
shows that, the tighter the range of the zone-MPC is, the 
more variable the CM become. In Figure 5, experiment 1 
shows some advantage over MPC experiments on the 
first meal. This advantage is merely an artifact that 
resulted from the initial condition (steady state) and the 
unannounced meal scenario. The controller reacts to the 
glucose change due to the unannounced meal, compared 
with the injection treatment where insulin bolus is 
administered at mealtime. As shown from the dynamic 
responses, closed-loop control outperforms the manual 
bolus regimen and provides a better starting point for 
the following controlled day, as can be seen in the lower 
glucose value.

Figure 6 presents a population result of experiments 
1 to 4, (a) to (d), respectively, on all 10 UVa\Padova 
subjects. Experiment 1, 2, 3, and 4 mean glucose values 
are 180, 171, 160, and 155 mg/dl with average standard 
deviations (SDs) of 27, 22, 23, and 23 mg/dl reaching  
maximum values of 314, 291, 280, and 274 mg/dl and 
minimum values of 110, 85, 83, and 76 mg/dl, respectively. 
Experiment 1 shows the highest mean, SD, and maximum 
value, which indicate an inferiority of the “optimal” 
open-loop treatment. For experiments 2 to 4, minimum 
and maximum values decrease as the range becomes 
narrower. However, the SD of experiment 2 is the lowest, 
which implies a decrease in control performance variability 
among the 10 subjects and indicates higher reliability.

Announced Zone-MPC
Nominal Meal. Figure 7 shows a comparison among 
experiments 1, 5, 6, and 7 on subject #5 of the UVa\
Padova simulator, which are indicated by gray triangles 
and red, blue, and black circles, respectively. As shown 
in Figure 5, the narrower the range of zone-MPC, 
the more variable the control signal becomes. When 
announcement of meals is implemented (experiments 5, 
6, and 7), zone-MPC presents superior regulation over 

Figure 5. Comparison between experiments 1 to 4 as applied to subject #5 of the UVa\Padova metabolic simulator. Experiments 1 to 4 are 
represented by gray triangles and red, blue, and black circles, respectively. Glycemic response (A) and insulin administration (B) are depicted. 
The dashed black line indicates 60 and 180 (mg/dl). Insulin administration is presented in a semilogarithmic scale to include open-loop bolus 
treatment and controller insulin administrations in a single plot.
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Figure 6. Population result of experiments 1 to 4, (A) to (D), respectively, on 10 UVa\Padova metabolic simulator subjects. Gray area bounds are 
minimum and maximum points at each given time instant, the green solid line is the mean glycemic response, and dashed red lines are mean 
glycemic ± SD at each time instant. Glucose distribution for experiments 1 to 4 is presented in the histogram plots.
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Figure 7. Comparison among experiments 1, 5, 6, and 7 when applied to subject #5 of the metabolic simulator. Experiments 1, 5, 6, and 7 are 
represented by gray triangles and red, blue, and black circles, respectively. Glycemic response (A) and insulin administration (B) are depicted. 
Insulin administration is presented in a semilogarithmic scale to include open-loop bolus treatment and controller insulin administrations in a 
single plot.
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the open-loop treatment throughout the day by a faster 
meal disturbance rejection.

Figure 8 presents a population result of experiments 1, 5, 
6, and 7, (A) to (D), respectively, on all 10 UVa\Padova 
subjects. Experiment 1, 5, 6, and 7 mean glucose values 
are 180, 152, 141, and 136 mg/dl with an average SD of 
27, 28, 29, and 29 mg/dl reaching maximum values of 
314, 267, 262, and 258 mg/dl and minimum values of 

110, 66, 62, and 59 mg/dl, respectively. It can be seen 
that the result of announced meals is the reduction 
of mean, maximum, and minimum values. However, 
reducing minimum values also increase the likelihood 
of hypoglycemic events, especially for experiment 7. 
In general, meal announcement introduces additional  
model uncertainty through the meal gain and dynamics. 
Therefore, meal announcement will generally reduce 
glucose levels but may result in a larger variability.

Figure 8. Population result of experiments 1, 5, 6, and 7 on 10 UVa\Padova subjects. Gray area bounds are minimum and maximum points at 
each given time instant, the green solid line is the mean glycemic response, and dashed red lines are mean glycemic ± SD at each time instant.  
Glucose distribution for experiments 1, 5, 6, and 7 is presented in the histogram plots.
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Forty Percent Meal Uncertainty. Figure 9 describes 
population responses on the 10 UVa\Padova subjects using 
experiments 8, 2, and 9 [Figure 9 (A) to (C), respectively]. 
Experiment 2, 8, and 9 mean glucose values are 171, 
205, and 161 mg/dl with an average SD of 22, 36, and 
24 mg/dl reaching maximum values of 291, 364, and 
274 mg/dl and minimum values of 85, 110, and 85 mg/dl, 
respectively. Experiment 8 shows the obvious disadvantage 
of using open-loop treatment in the face of uncertainties. 
Experiment 8 results in extended hyperglycemia with 
extreme glucose values over 300 mg/dl. Comparing 
experiments 2 and 9, advantages of the meal 
announcement decrease in face of uncertainties, and the 
two experiments reach similar performance indices.

Results Summary. Table 1 presents a summary of all 
UVa/Padova subjects using experiments 1 to 9. Experiment 9  
shows the highest time over 180 mg/dl (TO180) for all 
subjects. The single hypoglycemic event occurs with 
subject #5 during experiment 7. Experiment 7 also presents  
the lowest time of TO180 for all subjects.

Conclusions
Zone-MPC was evaluated on the FDA‑accepted UVa\Padova 
metabolic simulator. The control is based on ARX models 
that were identified in a novel approach by mapping 
insulin and meal inputs by overdamped second-order 
transfer functions. Mapped inputs are used as additional 

Figure 9. Population result of experiments 2, 8, and 9 on 10 UVa\Padova subjects. Gray area bounds are minimum and maximum points at 
each given time instant, the green line is the mean glycemic response, and dashed red lines are mean glycemic ± SD at each time instant.  
Glucose distribution for experiments 2, 8, and 9 is presented in the histogram plots.
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Table 1. 
Summary Results of Time Spent over 180 mg/dl [TO180(min)] and Number of Hypoglycemic Events [Hypo#(–)] 
for 10 Subjects in All Nine Experiments

Subject # Exp#1 Exp#2 Exp#3 Exp#4 Exp#5 Exp#6 Exp#7 Exp#8 Exp#9

1
TO180 1107 1074 970 938 1006 947 919 1156 1018

Hypo# 0 0 0 0 0 0 0 0 0

2
TO180 993 587 412 221 487 189 156 1115 540

Hypo# 0 0 0 0 0 0 0 0 0

3
TO180 657 486 471 456 455 434 417 730 470

Hypo# 0 0 0 0 0 0 0 0 0

4
TO180 1140 587 480 466 57 0 0 1147 155

Hypo# 0 0 0 0 0 0 0 0 0

5
TO180 708 635 538 485 208 171 160 889 405

Hypo# 0 0 0 0 0 0 1 0 0

6
TO180 1149 766 596 520 635 417 259 1150 711

Hypo# 0 0 0 0 0 0 0 0 0

7
TO180 413 428 309 291 73 56 58 739 195

Hypo# 0 0 0 0 0 0 0 0 0

8
TO180 457 855 585 523 612 475 349 1098 743

Hypo# 0 0 0 0 0 0 0 0 0

9
TO180 153 385 319 269 265 181 120 477 324

Hypo# 0 0 0 0 0 0 0 0 0

10
TO180 492 596 444 421 233 119 88 885 423

Hypo# 0 0 0 0 0 0 0 0 0

a As noted, Exp#8 (Experiment #8, open-loop with 40%) meal uncertainty shows the highest time over 180 mg/dl in minutes 
for all 10 subjects. Subject #5 experienced a single hypoglycemic event following experiment 7 (Exp#7). Experiment #7 also 
presents minimal duration over 180 mg/dl for all subjects.

state variables in zone‑MPC formulation that enables a 
larger memory for insulin administration. Zone-MPC has 
shown the ability to handle announced and unannounced 
meals with meal uncertainties. Zone-MPC showed 
significant advantages over the “optimal” open-loop 
treatment. Moreover, zone-MPC reduces control move 
variability with minimal loss of performance compared to 
set point control. The ability to attenuate pump activity 
in the face of noisy CGM has been demonstrated by 
zone-MPC, which results in safer insulin delivery, as well as  
minimized power drain on the battery. An enabling 
step toward a commercial product is that the ability 
to proceed from CGM measurements directly into a 
functional controller in a fully automated fashion has 
been demonstrated. Personalized zone-MPC is a perfect 
candidate for the fully automated artificial pancreatic 
β-cell.
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