Journal of Diabetes Science and Technology Volume 4, Issue 4, July 2010 © Diabetes Technology Society

Toward an Injectable Continuous Osmotic Glucose Sensor

Erik Johannessen, Ph.D.,¹ Olga Krushinitskaya, M.Sc.,¹ Andrey Sokolov, M.D.,² Philipp Häfliger, Ph.D.,³ Arno Hoogerwerf, Ph.D.,⁴ Christian Hinderling, Ph.D.,⁵ Kari Kautio, M.Sc.,⁶ Jaakko Lenkkeri, Ph.D.,⁶ Esko Strömmer, M.Sc.,⁶ Vasily Kondratyev, Ph.D.,⁶ Tor Inge Tønnessen, M.D., Ph.D.,⁷ Tom Eirik Mollnes, M.D., Ph.D.,² Henrik Jakobsen, M.Sc.,¹ Even Zimmer, M.Sc.,⁸ and Bengt Akselsen, M.Sc.⁸

Abstract

Background:

The growing pandemic of diabetes mellitus places a stringent social and economic burden on the society. A tight glycemic control circumvents the detrimental effects, but the prerogative is the development of new more effective tools capable of longterm tracking of blood glucose (BG) *in vivo*. Such discontinuous sensor technologies will benefit from an unprecedented marked potential as well as reducing the current life expectancy gap of eight years as part of a therapeutic regime.

Method:

A sensor technology based on osmotic pressure incorporates a reversible competitive affinity assay performing glucose-specific recognition. An absolute change in particles generates a pressure that is proportional to the glucose concentration. An integrated pressure transducer and components developed from the silicon micro- and nanofabrication industry translate this pressure into BG data.

Results:

An *in vitro* model based on a 3.6×8.7 mm large pill-shaped implant is equipped with a nanoporous membrane holding 4–6 nm large pores. The affinity assay offers a dynamic range of 36–720 mg/dl with a resolution of $\pm 16 \text{ mg/dl}$. An integrated $1 \times 1 \text{ mm}^2$ large control chip samples the sensor signals for data processing and transmission back to the reader at a total power consumption of 76 μ W.

 $continued \rightarrow$

Author Affiliations: ¹Vestfold University College, Tønsberg, Norway; ²Institute of Immunology, Oslo University Hospital, Oslo, Norway; ³Institute of Informatics, University of Oslo, Oslo, Norway; ⁴Swiss Center for Electronics and Microtechnology, Neuchâtel, Switzerland; ⁵Zurich University of Applied Sciences, Wädenswil, Switzerland; ⁶VTT Electronics, Oulu, Finland; ⁷Department of Anesthesia and Intensive Care, Oslo University Hospital, Oslo, Norway; and ⁸Lifecare AS, Bergen, Norway

Abbreviations: (aSi) amorphous silicon, (AAO) anodic aluminum oxide, (ASIC) application-specific integrated circuit, (BG) blood glucose, (BGM) blood glucose meter, (CaCl₂) calcium chloride, (CGM) continuous glucose monitoring, (Con A) concanavalin A, (ISO) International Organization for Standardization, (LTCC) low temperature cofired ceramic, (MnCl₂) manganese chloride, (MWCO) molecular weight cut-off, (NaCl) sodium chloride, (NC) negative control, (Q) quality, (Si) silicon, (SiO₂) silicon dioxide, (TCC) terminal complement complex, (o) standard deviation

Keywords: CGM, injectable, microtechnology, nanotechnology, osmotic, pressure

Corresponding Author: Erik Johannessen, Vestfold University College, P.O. Box 2231, N-3103 Tønsberg, Norway; email address eaj@hive.no

Abstract cont.

Conclusions:

Current studies have demonstrated the design, layout, and performance of a prototype osmotic sensor *in vitro* using an affinity assay solution for up to four weeks. The small physical size conforms to an injectable device, forming the basis of a conceptual monitor that offers a tight glycemic control of BG.

J Diabetes Sci Technol 2010;4(4):882-892