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Abstract

Background:
Hyperglycemia and diabetes result in vascular complications, most notably diabetic retinopathy (DR). The 
prevalence of DR is growing and is a leading cause of blindness and/or visual impairment in developed 
countries. Current methods of detecting, screening, and monitoring DR are based on subjective human 
evaluation, which is also slow and time-consuming. As a result, initiation and progress monitoring of DR is 
clinically hard.

Methods:
Computer vision methods are developed to isolate and detect two of the most common DR dysfunctions—
dot hemorrhages (DH) and exudates. The algorithms use specific color channels and segmentation methods  
to separate these DR manifestations from physiological features in digital fundus images. The algorithms are  
tested on the first 100 images from a published database. The diagnostic outcome and the resulting positive 
and negative prediction values (PPV and NPV) are reported. The first 50 images are marked with specialist 
determined ground truth for each individual exudate and/or DH, which are also compared to algorithm 
identification.

Results:
Exudate identification had 96.7% sensitivity and 94.9% specificity for diagnosis (PPV = 97%, NPV = 95%). Dot 
hemorrhage identification had 98.7% sensitivity and 100% specificity (PPV = 100%, NPV = 96%). Greater than 
95% of ground truth identified exudates, and DHs were found by the algorithm in the marked first 50 images, 
with less than 0.5% false positives.

Conclusions:
A direct computer vision approach enabled high-quality identification of exudates and DHs in an independent  
data set of fundus images. The methods are readily generalizable to other clinical manifestations of DR. The results 
justify a blinded clinical trial of the system to prove its capability to detect, diagnose, and, over the long term,  
monitor the state of DR in individuals with diabetes.
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Introduction

Diabetic retinopathy (DR) is one of the main causes 
of blindness and visual impairment in developed 
countries.1–2 In the United States the prevalence rates 
of retinopathy and vision-threatening retinopathy are 
estimated to be 40.3 and 8.2%, respectively, for diabetic 
adults 40 years or older.3 Within the next 15 to 30 years 
the number of people with diabetes is expected to double 
due to factors such as obesity, an aging population, 
and inactive lifestyles.4 Studies have shown that early 
detection, combined with appropriate treatment and 
management, can prevent the loss of vision in up to 95%  
of cases.2,5–7 DR is the manifestation of systemic disease, 
which affects up to 80% of all patients who have had 
diabetes for 10 years or more.8 The high prevalence of 
diabetes therefore makes mass screening an expensive  
and time-consuming process.

It has been shown that an automated system could 
greatly reduce the workload by filtering out 50% of 
the screening population.9 A large retrospective analysis 
of 10,000 consecutive patient visits has been performed,10  
but it was concluded that automated detection of DR 
using published algorithms cannot yet be recommended  
for clinical practice. In addition, it was also concluded10  
that if the algorithms can be improved, such a system 
may lead to improved prevention of blindness and vision 
loss in patients with diabetes.

Diabetic retinopathy results from the leakage of small 
vessels in the retina correlated to a prolonged period of 
hyperglycemia. In the early stages of the disease, known  
as nonproliferative retinopathy, there may be hemorrhages 
due to bleeding of the capillaries or exudates resulting 
from protein deposits in the retina. There is usually no 
vision loss unless there is a build-up of fluid in the center  
of the eye. As the disease progresses, new abnormal 
vessels grow in the retina, known as neovascularization. 
These vessels frequently leak into the vitreous. This stage  
of the disease is called proliferative retinopathy and may 
cause severe visual problems. The goal of the screening 
system is to detect the nonproliferative stage of DR 
so that the disease can be managed appropriately to 
decrease the chances of vision impairment.

The use of seven-field stereo fundus photography 
reviewed by a trained reader to diagnose DR is the 
current, noninvasive gold standard. DR grading using 
fundus images is significantly more sensitive than 

standard opthalmoscopy, which can miss approximately 
50% of subjects with only microaneurysms, resulting in 
underreporting of DR prevalence rates by approximately 
10%.11,12 Research has demonstrated combining fundus 
photography and computer algorithms to automatically 
grade DR (e.g., see Abramoff and colleagues10). These 
algorithms search for bad lesions in the fundus images, 
which define the severity of DR. The lesions are 
categorized into microaneurysms, hemorrhages, and 
exudates based on their location, morphology, and 
color. However, most rely on training sets that are 
human marked or graded, thus introducing subjective 
evaluation.

Thus, a method developed by Sanchez and colleagues13 
to detect hard exudates produced a sensitivity of 88%  
with an average of 4.83 false positives per image. Walter 
and associates14 developed a method to detect micro-
aneurysms and obtained a sensitivity of 88.5% with an 
average of 2.13 false positives per image. For the problem 
of just detecting DR, the method of Sinthnayothin and 
colleagues15 correctly identified 90.1% of patients with 
retinopathy and 81.3% of patients without retinopathy. 
Therefore, Sinthnayothin and associates15 identified 18.7% 
false positives, which is quite large and is a typical 
problem in most methods. As noted, the most common 
current approaches to automating DR screening are 
statistical classifying methods9,13–15 and/or neural networks 
and similar methods.16,17

This article takes an alternative, more analytical approach 
by focusing on direct identification using accurate geometric 
models at the preprocessing stage. Two independent 
algorithms were developed to detect exudates and dot 
hemorrhages (DHs). Information from color, morphology, 
and intensity gradients of the fundus photograph provides 
the means to detect the number of exudates and DHs, 
thus determining the presence of DR. It uses additional 
standard computer vision algorithms to identify and 
eliminate false positives, without reducing true positive 
results. Overall, this article thus focuses on the problem  
of detecting DR accurately, rather than just grading 
images, which is a salient difference from most prior 
work. In addition, it focuses on identifying lesions or 
diseases independently, rather than all at once, even 
though only one image is used. Finally, it is thus based 
on directly identifying physiologically observed states 
and uses that information directly, which some other 
approaches ignore in whole or part.
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Methodology
Two separate algorithms are written for automatically 
detecting exudates and dot hemorrhages. The algorithms 
were developed based on fundus images from the  
Diaret dbO_v_1_1 database.19,20 The images were captured 
using a 50 degree field of view and resolution of 1.5 
megapixels. Imaging noise, optical aberrations, and 
accuracy of the photometric information are unknown 
for the photographs. Note that the images from the 
database do not correspond to any typical population, 
but were selected dedicatedly so that the sample is 
biased.20 The types of DR present in the images were 
dot hemorrhages, exudates, microaneurysms, and 
neovascularization. A non-DR related lesion is drusen. 
Drusen are bright lesions associated especially with age-
related macular degeneration, which can have a similar 
appearance to exudates.21 However, because no drusen 
were reported in the ground truths of the database, it  
was not possible to develop an algorithm to differentiate 
between drusen and exudates. Future work will address 
this issue. The two methods used to test the images for 
DHs and exudates are outlined in separate sections with 
a summary at the end.

Exudate Detection
Exudates are common abnormalities in the retina of 
diabetic patients. Exudates are bright lipids leaked from 
a blood vessel. The leaked fluid tends to stay close to the 
lesion, giving a generally well-defined edge suitable for 
computer analysis (e.g., see Ege and colleagues18).

Figure 1 gives an example of exudates on a fundus image, 
which show up as small, light yellow regions. In practice, 
the “light” part of the image shows up as a high number 
in terms of the intensities that represent the image. 
Intensities are always numbers between 0 and 255 with 
0 being the darkest pixel and 255 the lightest. There are 
three channels—red, green, and blue— each of which 
has a matrix of numbers between 0 and 255. The matrix 
covers the whole image and its size depends on the 
resolution of the camera. Note that since the intensities  
are a unitless representation of how “light” a pixel is, no 
units are given in all the figures in this article.

The optic disk, which can be seen in Figure 1, is also 
a light yellow region. Therefore, before searching for 
exudates based on their yellow color, an algorithm is 
developed for automatic detection of the optic disk to 
eliminate this physiologically valid, yet similar appearing 
structure. The yellow color corresponds to a high intensity 
on the green channel, and typically the optic disk 

contains the majority of the highest green intensities 
on a given image. Therefore, an initial approximation to 
the optic disk is obtained by sorting the green intensities  
from the lowest to the highest and choosing all pixels in  
the top 0.5% of intensities. This method may also capture 
some other bright yellow regions such as exudates, but 
the majority will lie on the optic disk. Figure 2A shows 
results after zooming in on the region containing all 
detected pixels.

Note in Figure 2A that the largest connected region 
(LCR) lies on one-half of the optic disk. In standardized 
macula photographs the LCR is always on the side of 
the largest distance between the center of the optic disk 
and the vertical edge of the image. For the example 
in Figures 1 and 2A, the largest distance corresponds to  
the right half of the disk. Therefore the LCR lies to the 
right of the disk center. However, in a reasonable number 
of images the center of the optic disk lies in the right 
half of the whole image in Figure 1. In this case, the 
LCR lies to the left of the center of the optic disk, but 
is easily accommodated in the algorithm. This property 
was found to be consistent over all 100 images in the 
database considered,19,20 with no exceptions. Note that 
the algorithm is equally applicable to both left and right  
eyes.

Hence, a simple and robust way of locating the optic  
disk is to place a rectangle precisely containing the 
LCR and define a circle with the center at the left  
edge midpoint and radius the horizontal width of the 
rectangle. To ensure that this computed circle always 

Figure 1. Exudates and optic disk.
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slow gradients over the image and is sometimes referred  
to as “shade correction.”21

Figure 3 gives an example from the database before 
contrast equalization was applied. A vertical (blue) line  
is shown through the pixel position x = 153. Figure 4A 
shows the green intensities plotted along the vertical line  
in Figure 3.

In Figure 3 it is clear that there is an exudate at  
(x,y) = (153,684), which is pointed out with an arrow. 
This point shows up as a sharp peak in Figure 4A.  
The result after performing contrast equalization is  
shown in Figure 4B. Note that the jumps at the beginning 
and ending of Figure 4A are removed. These jumps 
correspond to the transition between the light (orange 
colored) and the dark (due to fundus mask) regions of 
Figure 3. The slight increasing trend from y = 200 to 800 
is also removed, but the major peak still remains in Figure 
4B to identify the exudate. This approach ensures that 
exudates will stand out more equally in dark or light 
areas.

Based on several darker images in the database where 
exudates had a lower contrast to the background, a 
threshold of 10 was chosen to guarantee finding an 
exudate when it exists. The same procedure described 
earlier is applied to horizontal lines of constant y value, 
similar to the vertical line in Figure 3. The union of the 

Figure 3. Image 029 from the database with a blue line through x = 153  
and an exudate pointed out with an arrow.

bounds the optic disk, the radius is increased by 50%. 
Figure 2B shows the LCR and the resulting circular 
bound containing the optic disk.

The next step is to approximately equalize the contrast  
in the green channel to allow an initial sweep of the 
image to find potential candidates for exudates. The contrast 
is equalized by first computing a 50 pixel median filter 
in the horizontal and vertical directions. The value of 
50 pixels refers to the number of pixels on each side 
of a given pixel over which the median is computed.  
The minimum of the median in each direction is then 
subtracted from each pixel intensity in the image. 
Median filtering is a well-known method used to remove 

Figure 2. (A) Result of choosing the top 0.5% of the green intensities. 
(B) Locating the optic disk based on the largest connected region.  
The region is surrounded by a circle.
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selected pixels for potential exudates in both horizontal 
and vertical directions is chosen as potential exudate 
locations. Thus, every pixel is also examined in this 
approach across both dimensions of the image.

The next part of the method then removes any pixels 
that are clearly not exudates. For example, any pixels 
that lie inside the optic disk or have very low intensities 

corresponding to the very dark regions of Figure 3 are 
removed. If the number of pixels in a connected region 
is less than a given tolerance, it is considered too small  
to be an exudate and is likely a small spot in the image  
that may occur for any number of reasons. Thus, this 
small region is removed as well.

The algorithm then adds pixels to each of the remaining 
potential exudate regions that may have been missed by 
the initial sweep. For example, Figure 5A is the result of 
detected exudates after applying the median filter method 
(Figure 4B). The method detects the presence of exudates, 
but several areas that are part of an exudate are not 
covered. To add more pixels, all the connected regions in 
Figure 5A that have a sufficiently high maximum green 
intensity and contain pixels with a contrast equalized 
intensity greater than 30 are added. This test ensures that 
any extra pixels added are always onto an actual exudate. 
The threshold of 30 was determined by trial and error 
and ensures that pixels will not be added to exudates in 
lower contrast and darker regions of the image. However, 
the main purpose of this method is to better cover cases 
where there are very clear exudates, such as those shown 
in Figure 1. Furthermore, by adding pixels, large, more  
obvious exudates can be removed to save computational 
time when more sophisticated methods are used to 
confirm smaller exudates in the lower contrast regions.

For each chosen connected pixel region, all the red/green 
intensity ratios are ordered from lowest to highest.  
Two intensities, Ilow and Ihigh, are chosen. The first 
intensity, Ilow, corresponds to the intensity such that only 
5% of all intensities are smaller than Ilow. Mathematically,  
Ilow denotes the lower 5th percentile and can be computed 
readily in MATLAB (The Mathworks, Natick, MA) 
using a built-in statistical software package. Similarly, 
the second intensity, Ihigh, is chosen such that 5% of all 
intensities are greater than Ihigh and is denoted the 95th 
percentile. Note that the red/green ratio was used instead  
of the green channel alone, as it gave significantly better 
results.

For a given defined neighborhood of the pixel region, 
all pixels that have a red/green intensity ratio lying in 
[Ilow, Ihigh] were selected. Out of this selection, all pixels 

“connected” to the current exudate region of interest 
were added. A pixel is “connected” to the given region 
if either the x distance or the y distance to a pixel in 
that region is precisely equal to one pixel. The result of 
this method is given in Figure 5B, which shows that a  
significant amount of the exudates have been captured.  

Figure 4. (A) Plotting the green intensity along the line shown in 
Figure 3. (B) Result of subtracting the 50-pixel median from each 
intensity.



824

Screening for Diabetic Retinopathy Using Computer Vision and Physiological Markers Hann

www.journalofdst.orgJ Diabetes Sci Technol Vol 3, Issue 4, July 2009

Figure 5. (A) Example of applying median filter method of Figure 4 
and (B) result after adding pixels.

In particular, Figure 5B shows that larger exudates 
identified as several smaller regions are conglomerated 
into single identified exudate areas. Thus, where  
Figure 5A shows four potential exudates but identifies 
eight separate regions, Figure 5B has aggregated them 
into four exudates.

The final part of the algorithm uses a geometric image 
property of an exudate to rule out any remaining false 
exudates. The key property used to confirm the exudate is: 

Property 1—Consider a neighborhood of the potential 
exudate. The contour of the red/green intensity surface, 
which has the largest mean absolute image gradient, 
is within a specified tolerance of the boundary of the 
exudate.

The neighborhood of an exudate is defined as the 
rectangle with a boundary 40 pixels from the unique 
rectangle precisely surrounding the identified exudate. 
Within the exudate neighborhood, the contours of the 
red/green intensity surface are computed in steps of  
0.05 ± 0.5 around the mean red/green ratio of the exudate. 
Contours of sufficient length and “nearby” the exudate 
are selected for further processing. These contours are 
considered “nearby” based on the distance from the 
center of the unique circle, with radius rexudate precisely 
surrounding the exudate. Specifically, if any part of the 
contour is within a radius of 1.5*rexudate, the contour is 
selected as a candidate for the boundary of the exudate. 
Once all the “nearby” contours are selected, the contour 
with the largest mean absolute image gradient is chosen.  
In addition, the contour must have a length of greater 
than 20 pixels.

Note that since the image gradient requires numerical 
differentiation, the image is first smoothed by a 6 × 6 
median filter before taking the gradient. For example, 
Figure 6A shows all selected candidate contours as 
dashed lines, the exudate is denoted by circles, and the blue 
solid line denotes the final chosen contour. In contrast, 
Figure 6B gives an example of the contours surrounding  
a false exudate. Note that all the contours are very complex 
shapes and most are quite a distance away from the 
exudate. In this case, the solid blue contour corresponding 
to the largest mean absolute gradient is along a vein, 
yielding a long tubular shape that is also a considerable 
distance away from the exudate. Therefore, the false 
exudate can be ruled out using a distance metric between 
the contour and the exudate.

The distance metric is defined based on the closest 
distance to an exudate point, for each point in the 
contour. Define:

 C ≡ {(x(i), y(i), i = 1,...,N}                 (1)

Dc = 75th percentile of {dexudate,i, i = 1,...,N}     (2)

dexudate,i = closest distance to exudate point
from (x(i), y(i).                       (3)
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Any exudate that has a contour with Dc greater than four 
pixels in Equation (2) is removed, leaving only the true 
exudates.

For the cases of Figures 6A and 6B, the distances are  
Dc = 1.00 and Dc = 13.03, respectively. Hence, Figure 6A  
is kept as a true exudate and Figure 6B is removed.

Figure 6. (A) Selecting contours of the red/green surface for a true 
exudate. Candidate contours are dashed lines, exudate is denoted by 
circles, and blue solid line is the final chosen contour. (B) Contours of 
red/green surface for false exudate.

Summary of Exudate Detection Algorithm

Figure 7. Algorithm for detecting exudates.
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Dot Hemorrhage Detection
Hemorrhages are a secondary sign of DR resulting from 
ruptured microaneurysms, capillaries, and venules. The 
classification of hemorrhages depends on their location 
within the retinal layers. DHs are located within the outer 
plexiform and inner nuclear layer. The loose arrangement 
of cells in these regions allows hemorrhages to assume 
the extracellular space. The roundish shape and distinct 
borders of DHs are due to intraretinal compression 
confining the hemorrhage to a specific location.

As can be seen in Figure 8, DHs have a similar red color 
to the vessels and are close to circular with reasonably 
well-defined boundaries. This circularity is one of the 
physiological characteristics that can be used readily 
to segment hemorrhages from other features in the 
image. The similarity in the color between the DHs and 
the vessels makes it necessary to accurately detect the 
vessels from the image before checking for DH. However,  
here again, physiological differences in shape can be an 
important and readily used classifier.

ratio is given in Figure 9, which is the same image as  
in Figure 8, but processed. The significant brightening 
of the DHs and vessels significantly simplifies the choice of 
threshold to select the desired regions.

Figure 8. Fundus image with dot hemorrhage and fovea identified.

Segmentation is achieved in five main steps: (1) scaling 
and filtering, (2) thresholding, (3) shape selection,  
(4) vessel checking, and (5) contour checking. The ratio 
of red-to-green intensities in the red/green/blue image 
gives the best definition of the red features and also 
has the added advantage of being more resistant to 
lighting changes between images. The spatial plot of the  
red/green ratio results in brightening of the vasculature, 
hemorrhages, and fovea pixels, which are predominantly 
red in color, and dulls the optic disk and exudates, which 
are mostly yellow. An example image of the red/green 

Figure 9. Image of red/green ratio intensities.

However, before choosing a threshold, the image contrast 
is approximately equalized using a similar method to 
detecting exudates in the algorithm of Figure 7. Contrast 
equalization is achieved by first computing a 50-pixel 
median filter in the horizontal and vertical directions. 
The minimum of the median in each direction is then 
subtracted from the pixel intensity. This process is repeated 
for each pixel in the image. An example of the effect of 
this scaling on the intensities in the vertical direction 
is shown in Figure 10. The top 7% of the red-to-green 
intensities is then selected, which is shown in Figure 11. 
The value of 7% was based on experimental efforts 
with selected images, but quite accurately captures the 
majority of red features in all 100 fundus photographs 
in the database used here,20 including vessels and DHs. 
Therefore, at this stage there is no separation between 
the DHs and the vasculature.

Note that the ratios in Figure 10 are much smaller than 
those in Figure 4, as the values in Figure 4 are the green 
intensities that can theoretically vary from 0 to 255.  
In most cases, because the red and green intensities are 
of a similar order of magnitude, their ratio is typically 
well less than 10 and thus an order of magnitude smaller 
than the values in Figure 4.

The next step is to label all the connected regions in 
Figure 11. The circular connected regions correspond 
to DHs. Therefore, any noncircular regions, such as blood 
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pixels in the horizontal or vertical direction, and the area 
is the number of pixels, Npixel, that make up the shape. 
Therefore Ns in Equation (4) is redefined:

Fs = 
Npixel

max[{max(xpixel) – min(xpixel)},{max(ypixel) – min(ypixel)}]2
. (5)

Equation (5) slightly changes Fs for the square and 
rectangle examples given in Moss and colleagues.12  

The adjusted values are shown in Figure 13. The shape 
factor of a DH compared to a vessel and the fovea is 
shown in Figure 14. A shape factor threshold of 0.54 is 
used to segment the circular features from the unwanted 
red regions. The value of 0.54 was conservatively chosen  
to avoid false negatives.

Figure 10. Scaling using a median filter on the red/green ratio in the 
vertical direction for one column of the image in Figure 9. No units 
are given as the y axis is a ratio, which cancels out the units.

Figure 11. Binary image after thresholding.

vessels, are deleted from the image. The criterion 
for deleting a region is based on the shape factor, Fs, 
defined as

 Fs = A
Lmax

2
                          (4)

where A is the area of the shape and Lmax is the maximum 
distance between two pixels in a labeled region. Figure 12 
shows three examples of the metric of Equation (4).

Note that the maximum value of Fs = 0.78, as expected, 
occurs for a circle. For simplicity in implementation, 
Lmax is approximated as the maximum distance between  

Figure 12. Illustration of calculating the shape number for a connected 
region.

Figure 13. Simplified calculation of the shape number for a connected 
region.

Figure 14. Calculating the shape number for (A) a vessel, (B) a dot 
hemorrhage, and (C) the fovea.
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A given region in Figure 11 is deemed not to be a DH 
if the shape number of Equation (5) is less than 0.54. 
However, the remaining regions are still not necessarily 
a DH, as seen in Figure 15. The binary image of  
Figure 11 shows that the vasculature can be broken, or 
appear to be broken in the image, in places where it is 
clear a vessel should lie. In some cases the broken vessel 
segment appears to be circular and is above the shape 
factor threshold. For example, the selected pixels in the 
region labeled “B” in Figure 15 are clearly part of a blood 
vessel that is thus identified, where the region labeled 
“A” is clearly a DH. To rectify this problem, a method 
of checking if the selected regions are on vessels is used.

Figure 15. Selection of round regions.

Vessel checking is done by finding the lines of minimum 
distance from the perimeter of a labeled region to the 
perimeter of its largest neighboring region, as seen in 
Figure 16. The slope of the red-to-green ratio is then 
investigated along the line connecting the regions, as 
shown in Figure 17. If there is a sufficiently small 
difference in the red-to-green ratio along the line 
then the region is assumed to be part of a vessel and 
is deleted from Figure 15. As illustrated in Figure 17,  
there is little change in the intensity of the red-to-green 
ratio along line 2 so the blue region in section B in  
Figure 15 can be said to be part of the blood vessel. 
However, there is a large dip in intensity along line 1, 
indicating that the blue region in section A is separate 
and not a part of a blood vessel.

The same contour method shown in Figures 6 and 
7 is then used to remove regions that are not DHs.  
The final result is shown in Figure 18, which is the fully 

Figure 16. Results of minimum distance lines found from Delaunay 
triangulation.

Figure 17. Red/green ratio intensity along lines 1 and 2.

Figure 18. Dot hemorrhage segmentation from the fundus image.
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processed version of the original Figure 8. Figure 18 
reveals the required DHs. Figure 19 summarizes the 
overall DH detection algorithm. Note that this algorithm 
does not separate out microaneurysms, but their smaller  
size means that a minimum size threshold could be used 
to potentially distinguish them from DHs. Future work  
will investigate the ability to detect smaller micro-
aneurysms accurately.

Summary of Dot Hemorrhage Detection Algorithm

Analysis and Validation
The methods are all implemented in MATLAB, a widely 
used numerical computing program. The algorithms 
of Figures 7 and 19 are tested on 100 images from the 
DiaretdbO_v_1_1 database.19,20 Results of the methods 
are evaluated using ground truths, which were provided  
by clinical experts from this Finnish study.19 Diagnostic 
results are measured in terms of specificity, sensitivity, 
positive predictive value (PPV), and negative predictive 
value (NPV).

Clinically, diagnoses for these tests are based on  
existence, which only captures whether (or not) these 
phenomena are present, but not the number or size.  
The number and size might well have particular 
importance clinically over time, but are not currently 
utilized with any resolution in clinical practice. Thus, R1  
and M1 diagnoses indicate the existence of one or more 
DHs (R1) or exudates (M1). The absence of DHs and 
exudates are diagnosed R0 and M0, respectively. Thus, if  
the images are considered as being sequential over time,  
they could also be used to diagnose the occurrence (or not) 
of new exudates and/or DHs by highlighting changes  
in the patient’s DR status from the prior imaging.

Results and Discussion

Exudate Results and Discussion
The algorithm of Figure 7 accurately detected the 
presence of exudates according to the diagnosis given 
elsewhere19,20 with a sensitivity of 96.7% and a specificity  
of 94.9%. Results are summarized in Table 1.

Figure 19. Summary of dot hemorrhage detection algorithm.

Table 1.
Sensitivity and Specificity of Algorithm

Observed diagnosis

M1 M0

Algorithm
M1 59 2 PPV 0.97

M0 2 37 NPV 0.95

Sensitivity
96.7%

Specificity
94.9%

Figure 20A gives an example of an image that contains 
exudates that are hard to see and are in a dark part of 
the image, but the algorithm still detects the presence of 
exudates accurately. Figure 20B shows that as well as 
detecting the presence of exudates, the actual number of 
exudates is closely captured.

The accuracy shown in Figure 20B is typical over all 
images with the number of exudates found agreeing 
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well visually. This result shows the potential for tracking 
the progress of DR. For example, the percentage of 
pixels covering exudates could be used as a metric for  
the degree of the disease, but this application requires 
further clinical validation with specialists in the future.

One of the reasons for the significant accuracy of the 
method is the use of the contour finding routine as 
illustrated earlier in Figures 6A and 6B. Figure 22 gives 
an example of the result of the algorithm of Figure 7 on 
image 005 in Figure 21A without the contour checker, 
which shows that quite a number of false exudates are 
found. Note that most of these false exudates lay along  
a vein. One potentially simple way of removing these is 
to check that it is within a specified tolerance of a vein. 
There are two problems with this. The first problem is 

Figure 20. (A) Image 002, a darker image. (B)  Results of the algorithm 
of Figure 7.

that quite often an exudate can appear close to a vein,  
as is the case in Figure 21. The second problem is that 
any developed vein detector may miss lighter veins. 
Hence, it is a nontrivial problem to remove these points 
without removing other true exudates. The end result is 
that for this image the algorithm would have counted 
more than double the number of exudates actually 
present. However, with the addition of the contour 
checker, all the false exudates are removed easily; final 
results are given in Figure 21B.

Figure 22B gives an example of the algorithm of Figure 7 
without the contour checker applied to image 099, which 
is clear of exudates. Because a number of false exudates 
are found, a false positive would have occurred in this 

Figure 21. (A) Image 005. (B) Results of the algorithm of Figure 7 on 
image 005 showing that the actual number of exudates is captured 
accurately.
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example. With the addition of the contour checker all the 
false examples are removed (results not shown), leaving  
a clear image as required.

very difficult to see exactly where these exudates are. 
Unfortunately, these images were not in the group of 
the first 50 images that had marked exudates and dot 
hemorrhages. This latter result does show the potential 
efficacy or drawbacks of this approach, in that it is 
consistent without subjectivity. Thus, if image 71 has no 
exudates, as stated by the system, then it is showing the 
potential to avoid false positives, and vice versa.

Figure 22. (A) An example of applying the algorithm of Figure 7 to 
image 005 in Figure 21 without the contour checker. (B) Figure 7 
applied to image 099 without the contour checker.

Note that two false positives and two false negatives 
were found by the algorithm. Two examples of the images 
corresponding to a false positive and false negative are 
shown in Figures 23A and 23B. To the human eye, the 
yellow dot in Figure 23A looks like an exudate, and the 
fact that dot hemorrhages are also present confirms this 
possibility. However, the image was pronounced clear  
by the diagnosis given previously.19,20

In contrast, it was claimed that image 71 contained 
exudates. However, as can be seen in Figure 23B it is 

Figure 23. (A) A false positive (pointed to by an arrow) found by 
the algorithm of Figure 7 in image 64. However, a potential exudate 
can be seen. (B) A false negative corresponding to image 71. Dot 
hemorrhages can be seen, but it is hard to determine the existence of 
exudates visually.

Similar results occurred (not shown) for the other 
false positive and false negatives. Hence, in the very  
small number of cases where the algorithm was wrong 
according to Kauppi and colleagues,19,20 the results are 
demonstrably arguable, demonstrating the inherent 
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subjectivity involved in DR screening. Thus, no computer 
algorithm should be expected to fully agree with every 
ophthalmologist’s observation in these types of cases, but 
does provide a consistent measure without subjectivity.

Dot Hemorrhage Results and Discussion
For the first 100 images from the DIARETDB0 database,19,20 
the algorithm of Figure 7 detected the presence of DHs 
accurately with no false positives and one false negative,  
as summarized in Table 2. The baseline for diagnosis 
was determined previously.19,20

The algorithm produced a sensitivity of 98.7% and a 
specificity of 100% when using DHs to diagnose DR on 
a DH basis. The algorithm failed to correctly diagnose 
one image that contained a DH, as seen in Figure 24. 
However, the DH is seen to lie in a dark region of the 
image shown by the labeled section “C.” As the DH lies 
in this dark region, the boundaries of the hemorrhage are 
not well defined. Therefore, when the fundus photograph 
is converted into a binary image, the shape of the DH 
becomes distorted and the shape factor of Equation (2)  
rules the DH out. However, note that this DH is, in fact, 
likely a blot hemorrhage, which is typically abnormally 
shaped.

Without the contour checker, the algorithm found 
five false positives. But in a similar way in the case 
of exudates, the contour method as illustrated in  
Figures 6A and 6B removed these false points easily. 
However, because the contour method presently only 
works on regions that have been identified, it does not 
get rid of the false negative. However, simulations have 
shown that the contour method does not exclude these 
regions missed by the algorithm. Therefore, future 
work should include the contour method in the initial 
identification part of the algorithm.

Note that although there appears to be more than one 
DH in Figure 24, the other dark spots are not DH.  
These dark dots appear in most of the images in the 
database at the same location and are assumed to be 
associated with dust on the camera lens. Therefore, these 
spots are ignored when processing the results of the 
algorithm. In practice, the quality of the lens could be 
checked, for example, by taking a picture of a white page.

In summary, both methods of Figures 7 and 19 show good 
potential for detecting exudates and dot hemorrhages. 
The main weaknesses at this stage include making no 
distinction between drusen and exudates and between 
microaneurysms and dot hemorrhages. In addition, the 

focus was on developing the algorithms to recognize 
the presence or absence of DR. Although most exudates 
and/or DHs agreed well with the first 50 marked images 
and looked reasonable visually for the final 50 images,  
further validation is needed. In particular, the techniques 
presented may be required to be adapted to ensure 
accurate tracking of DR over time, which is a completely 
different scenario. For example, previous history and 
knowledge of the patient could be introduced into the 
algorithms to improve results. Other improvements to  
the algorithms would include utilizing more than one 
image per eye. However, the main advantages of the 
algorithms are that they are flexible and present a set 
of powerful analytical tools that could be adapted to  
different circumstances and be used to integrate more 
information on patients as it becomes available.

Finally, speed and computational time are important.  
Each image in the 100 image database was processed 
with this algorithm in approximately 40–80 seconds. 
Each image had 2 megapixels of data, where current 
fundus images can be much larger if required. However, 
the algorithm was also not optimized for speed. 
Thus a 1-minute, on average, processing time occurs. 

Table 2.
Processed Results of Algorithm for DHs

Observed diagnosis

R1 R0

Algorithm 
diagnosis

R1 1 24 PPV 96.0%

R0 75 0 NPV 100%

Sensitivity
98.7%

Specificity
100%

Figure 24. Fundus image of false negative.
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With optimization or the use of C, a more powerful 
programming language instead of the user-friendly 
MATLAB program, this time would be on the order of  
1–10 seconds. Clinically, such turnaround times would 
enable the images to be taken and results provided to 
the clinician and expressed to the patient, in real time 
while still in the office, if desired.

Conclusions
Automatic methods for screening exudates and DHs have 
been developed based on image processing methods 
that utilize color, morphology, and intensity gradients 
in fundus photographs. One hundred images from a 
standard database were used to test the methods. For 
exudate detection, the clinical diagnostic sensitivity was 
96.7% and specificity was 94.9%. For dot hemorrhage 
clinical diagnosis, the sensitivity was 98.7% and the 
specificity was 100%. From visual checks of the first 50 
ground truth graded images, >95% of exudates/DHs  
were detected with virtually no false positives (<0.5%), 
which suggests that the method could be used to 
accurately track changes over time. However, these 
results need to be validated in future clinical trials.

The reasons for the very high sensitivity with no false 
positives are the use of the red/green ratio combined with 
a contour finding method and the image gradient after 
median filtering. The red/green ratio has the advantage of 
helping normalize out changes in light across the images 
and improves the contrast of DR features relative to 
the background. Additional filtering, using physiological 
and morphological details, reduced false positives without 
reducing true positive results. Furthermore, no statistical 
classifying methods were required. The methods demonstrate 
a significant improvement over other algorithms in the 
literature and show potential for practical, clinical DR 
screening. The use of color channels to identify DR 
lesions directly allows clinical expertise and observation  
to be incorporated directly into the algorithm, providing  
a potentially far superior result.

Finally, it is also obvious that further clinical testing 
and trials will be required to prove the algorithm in 
practice. However, the same approach can be generalized 
to other manifestations of DR. The ability to detect the 
number and size of these manifestations implies that 
further clinical outcomes will become available in terms 
of tracking or monitoring the patient-specific evolution of  
DR accurately.
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