Technologies for Diabetes Genomics

Patricia W. Mueller, Ph.D.

Abstract

The genetic risk for diabetes largely depends on the type of diabetes and the penetrance and severity of the effect of the contributing genes. This ranges from the high-risk mutations of neonatal diabetes and maturityonset diabetes of the young to the lower, but still significant, risk conferred by common human leukocyte antigen alleles in type 1 diabetes to the still-lower risk conferred by the common variants associated with type 2 diabetes. There are many new molecular technologies, each with their own set of methodological issues, that have been used for genome-wide association studies and that can be used for determining the genetic risk for these various types of diabetes. These technologies include whole genome single nucleotide polymorphism microarrays, high-throughput polymorphism analyzers, next-generation sequencers, and copy-number variant technologies.

J Diabetes Sci Technol 2009;3(4):735-738

Author Affiliation: Centers for Disease Control and Prevention, Atlanta, Georgia

Abbreviations: (BMI) body mass index, (HLA) human leukocyte antigen, (MODY) maturity-onset diabetes of the young, (PCR) polymerase chain reaction, (ROC) receiver operating characteristic, (SNP) single nucleotide polymorphism, (SUR1) sulfonylurea receptor

Keywords: diabetes, genetics, genomics, neonatal diabetes, technology, type 1 diabetes, type 2 diabetes

Corresponding Author: Patricia W. Mueller, Ph.D., Centers for Disease Control and Prevention, 4770 Buford Highway NE, Atlanta, GA 30041; email address pwm2@cdc.gov