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Abstract
A large body of epidemiologic evidence has demonstrated that the combination of a Western diet and lifestyle is 
primarily responsible for the increased metabolic disease risk, such as obesity, type 2 diabetes mellitus (T2DM),  
and metabolic syndrome, noted in society today. Thus finding optimal intervention strategies to combat these growing 
epidemics is imperative. Despite some controversy, a growing body of literature indicates that one aspect of 
diet that likely affects phenotypic outcomes and metabolic disease risk is the glycemic load (GL). This brief  
review will provide an overview of the GL concept, discuss epidemiologic work investigating relationships between 
both GL and metabolic risk factors, as well as intervention studies that have assessed the impact of GL on 
phenotypic outcomes related to T2DM and cardiovascular disease. Overall, a low dietary GL may be protective 
against metabolic disease and should be considered as a healthful dietary component.
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SYMPOSIUM

Introduction

Obesity, type 2 diabetes mellitus (T2DM), and 
metabolic syndrome are major health care concerns,1–4 
so finding optimal intervention strategies to combat 
these growing epidemics is imperative. A large body 
of epidemiologic evidence has demonstrated that the 
combination of a Western diet and lifestyle is primarily 
responsible for increased metabolic disease risk, such as 
T2DM.5,6 For example, ecological studies have documented 

that people who migrate to countries with a more 
sedentary lifestyle and “Westernized” diet have greater risk 
of developing T2DM than their counterparts who remain 
in their native countries.7 Also, populations undergoing 
Westernization in the absence of migration, as found 
in the North American Indians8 and Western Samoans,9  
have experienced dramatic increases in T2DM prevalence. 
In prospective cohort studies, it has been estimated that 
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The Development of the Glycemic-Load 
Concept

From a historical perspective, the development of GI and 
glycemic load (GL) can be viewed as an extension of the 
original fiber hypothesis, suggesting that slow digestion 
and absorption of plant-based foods may have an impact 
on metabolic profiles and ultimately affect the risk of 
metabolic disease. The aforementioned GI measures 
the blood glucose response to carbohydrate ingestion 
by summing the incremental area under the curve for 
blood glucose, measured at specific times, following intake 
of a standard weight of carbohydrate.20,21 Each unit of GI 
represents the equivalent of 1 g of carbohydrate from 
glucose or white bread. Several factors influence the GI  
of a food, including organic acids, tannins, fiber content, ratio 
of amylose to amylopectin, amount of processing, and 
physical nature of dietary starch.22 Overall, the higher  
the GI value, the greater the blood glucose response per 
standard weight of carbohydrate. Typically, foods with  
a low degree of starch gelatinization, such as pasta, and 
those containing a high level of viscous soluble fiber, 
such as whole grain, oats, barley, and rye, have slower 
rates of digestion and lower GI values. For foods that 
contain a mix of carbohydrates and other components,  
GI is calculated as a weighted mean of GI values for 
each of the components.23–25 One of the strengths of GI is  
that it is a relative measure; a person’s glycemic response to a 
test food is a percentage of that same person’s response to 
the standard carbohydrate. Averaging this relative measure 
across hundreds of individuals reduces the effects of 
interindividual variation. Thus GI values predict the 
ranking of blood glucose responses of any one individual 
to a range of foods, as shown for groups that vary by 
weight and insulin resistance.20 However, the concept 
and utilization of GI has not gone without controversy, 
particularly with regard to the utility of values for mixed 
meals. Nevertheless, studies have shown that fat and 
protein intakes do not greatly affect relative differences 
between foods and that the correlation between GI for 
mixed meals and average GI for individual component 
foods range from 0.84 to 0.99.20,26,27

Although the GI measures the quality of a carbohydrate, 
it does not account for quantity of carbohydrate and 
thus cannot capture the entire glucose-raising potential of 
dietary carbohydrate. The GL28 adjusts the GI value of 
foods for the amount of carbohydrates contained in the 
food. Glycemic load, a concept validated by Brand-Miller 
and associates,29 is calculated as the product of GI and 
the amount of dietary carbohydrate. For an individual 

80–90% of the total risk of T2DM could be eliminated 
by the adoption of a healthier diet and lifestyle.10  
Several randomized clinical trials, including the Daqing 
Diabetes Study,11 the Finnish Diabetes Prevention Study,12  
and the Diabetes Prevention Program13 have demonstrated 
that T2DM is largely preventable through diet and 
lifestyle modifications. Nevertheless, much controversy 
exists regarding nutritional intervention strategies needed  
to ameliorate metabolic disease risk.

Early on, it was established that fat intake,14 and later, 
specifically saturated fat,15 contributed to coronary heart 
disease (CHD), while carbohydrates appeared to be a 

“safe” nutrient to consume. What followed was a greater 
focus on research examining the roles of dietary fat in 
the development of a host of metabolic diseases, including 
T2DM and CHD, and led to population-wide increases in 
carbohydrate consumption. However, dietary guidelines 
failed to acknowledge differences in carbohydrate quality, 
and much of the increase in carbohydrate intake in 
the United States over the past few decades16 may be 
attributable to refined-carbohydrate products.

Traditionally, dietary carbohydrates have been categorized 
as simple or complex based on the number of simple sugar 
units per molecule, and there is a general perception 
that complex carbohydrates have smaller effects on blood 
glucose than do simple carbohydrates. However, this is 
not true; in fact, some complex carbohydrates raise blood 
glucose more than simple ones. An appreciation for 
differences in the effects of natural state versus refined  
plant carbohydrates began to emerge in the 1970s with 
Burkitt and Trowell’s17 attribution of differences in disease 
patterns to loss of plant-cell walls (i.e., “dietary fibers”) 
in the Western world. A few years later, Jenkins and 
colleagues18 pioneered the glycemic index (GI) concept, 
which acknowledged that because of the differences in 
chemical structure, physical form, fiber content, degree of 
processing (refining and gelatinization), and other factors, 
different carbohydrates are likely to have heterogeneous 
biological functions and health effects (discussed in 
detail elsewhere19), such as their abilities to induce plasma  
glucose and insulin responses. At a population level, the 
increasing intake of dietary carbohydrates with high GI, 
including refined grains, has been associated with increased 
risks for obesity, T2DM, CHD, and other diseases. 
Moreover, individual responses to the adverse metabolic 
effects of a high-GI diet are influenced by the degree 
of underlying insulin resistance, which, in turn, is 
determined primarily by physical activity, genetics, 
degree of adiposity, as well as other dietary factors.
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noted that an ad libitum low-GI diet led to reductions 
in both fasting and postglucose load insulin, a decrease 
in TG, and an increase in low-density lipoprotein (LDL) 
particle diameter, all while spontaneously decreasing 
energy intake and hunger and increasing satiety relative to  
an energy-matched American Heart Association phase 1 diet.  
Frost and colleagues37 noted improved in vivo as well 
as both subcutaneous and omental adipocyte insulin 
sensitivity after consumption of a low-GI diet versus a 
high-GI diet.

Many of the changes noted with low-GI/GL diets may 
be independent of body weight. For example, a low-GL 
diet given to obese young adults for 12 months led to 
lower TG and plasminogen activator inhibitor 1 (PAI-1)  
independent of body weight change compared to 
conventional energy restriction.38 McMillan-Price and 
associates39 noted that, despite similar weight loss, a low-GI  
diet elicited greater reduction in fat mass compared to 
a high-GI diet. Furthermore, Pereira and coworkers40 
noted that, compared to a conventional energy-restricted 
low-fat diet, a low-GL diet led to smaller reductions in 
resting metabolic rate and hunger and greater reductions 
in insulin resistance, TG, C-reactive protein (CRP), and 
mean arterial pressure, independent of changes in body 
composition. Additionally, sedentary, insulin resistant 
individuals may be particularly prone to the adverse 
effects of high dietary GL and hence may benefit more 
from a low-GL diet. For example, in the CALERIE  
Trial,41 greater weight loss was noted with a low-
GL diet in overweight subjects with high insulin  
secretion as compared with low insulin secretion. This may 
be explained, in part, by differences in postprandial 
substrate use.42 Dietary GI was also associated with a 
6-year change in weight loss in women, but not men, 
suggesting that gender differences may exist.43

High dietary GL is also associated with increased 
concentrations of inflammatory cytokines. Liu and 
colleagues44,45 demonstrated that dietary GL was directly 
related to plasma levels of CRP, independent of BMI,  
total energy intake, and other known coronary risk 
factors, and the association was stronger among women 
with BMI > 25 kg/m2. In the Women’s Health Initiative, 
lower plasma levels of interleukin-6 (IL-6) and tumor 
necrosis factor-alpha receptor-2, but not CRP, were 
associated with lower dietary GL.46 Other groups have 
noted that dietary GI or GL is associated with lower 
CRP, tumor necrosis factor receptor-2 (TNF-R2),47 and 
adiponectin.48,49 Lopez-Garcia and associates50 noted 
in the NHS that a prudent as compared to a Western 
dietary pattern was associated with CRP and IL-6 levels. 

food, the GL is therefore more relevant than the GI.  
For example, in some popular diets, although some  
fruits and vegetables like beets have been disparaged 
because of their high GI values, the amount of carbohydrate 
is low in these foods and has little effect on blood 
glucose or insulin concentrations, leading to a very low GL. 
It should be acknowledged that for the GL, glycemia 
is measured for only 2 h, which does not take into 
consideration metabolic effects that may occur during the 
late postprandial phase, i.e., 4 to 6 h after meal ingestion.

Glycemic Load and Metabolic Risk Factors
Since 2000, the GL of foods has been incorporated into the 
assessment of long-term dietary GL for each participant 
in several large epidemiologic studies. For example, a 
strong positive association was noted between dietary  
GL and fasting triglyceride (TG) levels in a random 
sample of 280 women who participated in the Nurses’ 
Health Study (NHS),30 and the direct relation between 
dietary GL and fasting TG levels appeared to differ 
significantly by body mass index (BMI) categories, 
suggesting that differential dietary effects may occur 
based on current obesity and/or health status. Dietary GL  
was also inversely associated with high-density lipo-
protein (HDL)-cholesterol levels. A similar analysis of 
National Health and Nutrition Examination Survey-III 
data showed a significant inverse association between 
dietary GL and HDL.31 Healthy women from the NHS 
subjects in the highest quintile of dietary GL had 14.1% 

and 16.1% higher C-peptide than did subjects in the 
lowest quintile after further adjustment for total fat or  
carbohydrate intake, respectively. In contrast, subjects with 
high intakes of cereal fiber had 15.6% lower C-peptide 
after control for other covariates.32 Dietary GL was 
independently negatively associated with HDL-cholesterol 
and positively associated with fasting TG and fasting 
glucose in a female Japanese population, in which white 
rice was a major contributor to the diet.33 Additionally, 
the Framingham Offspring Study noted that intakes of 
dietary fiber and whole grains were inversely associated, 
whereas dietary GI and GL were positively associated 
with homeostasis-model assessment for insulin resistance 
(HOMA-IR).34 It should be acknowledged that not all  
have noted that dietary GL is related to metabolic factors, 
as in a Dutch population; dietary GI but not GL was  
related to metabolic risk factors, likely due to the high 
correlation between GL and carbohydrate intake.35

Several studies have noted improved metabolic and 
cardiovascular risk factors with low-GI/GL diet 
interventions. For example, Dumesnil and coworkers36 
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These effects may be mediated, in part, by diet-induced 
hyperglycemia, which may stimulate macrophages and  
lymphocytes to secrete cytokines.51 On the other hand, 
both low- and high-GI meals induced monocyte activation 
in overweight women.52 Prior studies noted elevated 
concentrations of nuclear-factor kappa-B (NF-κB) after 
high-GI carbohydrate consumption, whereas the anti-
diabetes drug, acarbose (an α-glucosidase inhibitor), 
reduced postprandial mononuclear NF-κB activation.53 
These data suggest that exacerbation of pro-inflammatory 
processes may be yet another mechanism whereby a high 
intake of rapidly digested and absorbed carbohydrates 
increases the risk of CHD and T2DM, particularly  
among overweight individuals who are prone to insulin 
resistance. Along these lines, Pittas and coworkers54 
noted in a 6-month intervention study that a low-GL 
diet tended to decrease CRP more in overweight young 
adults.

Population studies have noted that markers of endothelial 
function (i.e., E-selectin, soluble-intracellular adhesion 
molecule-1, and soluble-vascular cell adhesion molecule-1)  
are associated with dietary patterns.50 However, endothelial 
function has not been assessed directly, and intervention 
studies have not tested this, although cursory work has 
indicated low-GI diets have produced better cardio-
vascular-related outcomes.55 It is plausible that a conventional 
high-GL diet may induce endothelial dysfunction 
since hyperglycemia induces oxidative stress.56 In support 
of this hypothesis, oral glucose induces endothelial 
dysfunction,57,58 and malondialdehyde and F2-isoprostanes 
are positively associated with dietary GL.59 Additionally, 
recent data indicate that, acutely, a high-fiber meal may 
improve endothelial function,60 leading to the possibility 
that a low-GL diet may improve endothelial function.

Glycemic Load, Type 2 Diabetes Mellitus, 
and Coronary Heart Disease
Early on, it was noted in the NHS that dietary GL was 
positively associated with the risk of T2DM61 and that 
women with the combination of high dietary GL and low 
cereal fiber intake were at an even higher risk of T2DM 
(relative risk = 2.50, 95% confidence interval, 1.14–5.51). 
Similar findings have also been observed in men in 
the Health Professionals Follow-Up Study (HPFS).62 In a 
subsequent related study, dietary GI and cereal fiber 
were significantly associated with an increased and 
decreased risk of T2DM, respectively, but dietary GL 
was not significantly associated with risk in the overall 
cohort.63 In the Shanghai Women’s Health Study64 and 
the Black Women’s Health Study, dietary GI and GL 

were positively (as well as cereal fiber, inversely for 
the latter) associated with T2DM. In the latter, stronger 
associations were noted among women with a BMI < 25, 
with incident risk ratios for the highest versus lowest 
quintile being 1.91, 1.54, and 0.41 for dietary GI, GL, 
and cereal fiber, respectively.65 However, others, such 
as the Atherosclerosis Risk in Communities (ARIC) 
Study66 and the Health, Aging, and Body Composition  
(Health ABC) Study,67 noted no significant associations 
of intake of total dietary fiber, dietary GI, or GL with 
incident T2DM. However, the ARIC Study66 did note 
borderline significance when dietary GL was treated  
as a continuous variable and adjusting for cereal fiber, 
and the Health ABC Study67 had a somewhat shorter 
duration and smaller sample size than the earlier studies 
that found an association. Two other studies did not note 
an association, but only a single dietary measurement 
was obtained. In the Melbourne Collaborative Cohort 
Study,68 the authors mentioned that the reproducibility 
of the dietary questionnaire used was only fair, and 
in the Iowa Women’s Health Study,69 ascertainment of 
T2DM outcome was documented to be poor. Analysis of 
the entire NHS database also indicated that dietary GL 
was significantly associated with CHD risk independent 
of other CHD risk factors,70 and the adverse effect of a  
high-GL diet on CHD risk was more evident in women 
with BMIs > 23 kg/m2, whereas no association was found 
among women with BMIs < 23 kg/m2.

One of the major likely contributors to the improvements 
associated with a low-GL diet is whole grain consumption. 
Processing whole grains into white flour actually increases 
the caloric density by ~10%, reduces the amount of 
dietary fiber by ~80%, and reduces the amount of dietary 
protein by ~30%, leaving nearly pure starchy carbohydrate 
with fewer nutrients.16 Qi and associates71 noted that, in 
women with T2DM, higher intakes of whole grains, bran, 
and cereal fiber were associated with decreasing trends 
of CRP and TNF-R2.47 In the HPFS, high whole grain, 
but not refined grain, intake was associated with a 42% 
relative risk reduction in T2DM risk after confounder 
adjustment. Intake of refined grains was not significantly 
associated with risk of T2DM. After further adjustment 
for cereal fiber intake and dietary GL, the association 
between whole grains and T2DM was attenuated and the 
trend no longer significant.72 Several randomized feeding 
trials provide some causal explanations by linking the 
intake of high-fiber whole grain foods to favorable 
metabolic intermediates (including smaller postprandial 
responses of glucose and insulin, improved serum lipid 
profiles, and lower oxidative stress73–76) and lower risk of 
T2DM (as reviewed by Liu77) and CHD.78
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Intervention studies have documented beneficial effects 
of low-GI or GL diets in patients with T2DM. In 
T2DM patients treated with a low-GI diet (GI = 60) 
compared to a high-GI diet (GI = 87) for 2 weeks, area  
under the curve for glucose after a standard breakfast 
was reduced by 29%, urinary C-peptide was reduced 
by 30%, and plasma fructosamine was significantly 
reduced.79 In randomized crossover studies in subjects 
with T2DM, Jarvi and coworkers80 noted reduced serum 
total cholesterol, LDL-cholesterol, apolipoprotein B, and 
PAI-1 after a low-GI diet, independent of body weight, 
and Jimenez-Cruz and colleagues81 noted improved 
hemoglobin A1c (HbA1c) on a low-GL compared with 
a high-GL, high-fiber diet. Later, in T2DM patients fed 
a low-GI diet for 1 year, CRP was 30% lower, and 2 h 
postload glucose was lower in the low-GI group than 
in a low-carbohydrate diet group, despite no significant 
weight difference between the groups.82 This group went 
on to note increased disposition index, an index of β-cell 
function,83 replicating the group’s earlier findings in 
subjects with impaired glucose tolerance.84 Additionally, 
Jenkins and associates85 noted a modest reduction in 
HbA1c and an increase in HDL-cholesterol in subjects 
with T2DM being treated with hypoglycemic agents with 
a low-GI diet as compared with a high cereal fiber diet.

Despite the aforementioned data, some have questioned  
the clinical utility of the concepts of GI and GL because of 
lack of evidence that they are reliable and predictable 
measures of the glycemic effect and insulin demand 
of different diets.86–88 The extent to which different  
dietary carbohydrates can modify many metabolic risk 
factors such as adipokines, endothelial function, and 
inflammation is largely unknown and requires further 
study.

Summary

The U.S. food supply has become reliant on highly 
refined carbohydrates as significant sources of energy 
since these carbohydrate-dense foods are economical and 
easily consumed in fast-food restaurants or otherwise 
highly processed and prepackaged foods. The quality 
of these carbohydrates is considerably different from those 
consumed before the beginning of the 20th century 
since the refining process has altered their compositions.  
The public health campaign to lower fat in the 
United States unfortunately has been translated by food 
manufacturers and consumers into a potentially harmful 
set of food choices. Consequently, instead of replacing 
high-fat foods with fruits, vegetables, legumes, and 
whole grain foods, consumers have often increased their 

consumption of low-fat or fat-free varieties of naturally 
high-fat foods, as well as refined-sugar-laden products.  
The result has been an increase in refined carbohydrate 
and sugar consumption, leading to a U.S. dietary pattern 
early in the 21st century, consisting largely of refined 
products such as white bread, white rice, processed 
cereals, soda, and other sugary beverages and snacks.

A large body of evidence now indicates that dietary 
carbohydrates low in GL, i.e., from fruits, vegetables, 
and whole grains, are preferable for long-term health. 
Without any drastic change in regular dietary habits, for 
example, one can simply replace high-GI grains with  
low-GI grains and starchy vegetables with less starchy 
ones and cut down on sugary beverages that are often 
nutrient poor and high in GL. We should encourage the 
use of GI and GL concepts in conjunction with caloric 
density and nutrient composition since the classification 
of carbohydrates incorporating GI is more accurate than  
the “simple versus complex” classification for predicting 
glucose and insulin responses. Even without consideration 
of its effects on weight changes, a low-GL diet can create 
a more favorable glucose and insulin profile as well 
as a variety of metabolic and cardiovascular risk factors 
in overweight and T2DM individuals. Unfortunately,  
long-term studies in humans are lacking, and exact dietary 
recommendations will, in the future, be best approached 
in an individualized fashion, based on diet–gene 
interactions that are likely critical for understanding the 
relationships between dietary GL and risk of metabolic 
diseases such as T2DM.
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