Journal of Diabetes Science and Technology Volume 2, Issue 4, July 2008 © Diabetes Technology Society

Intra-Individual Variability of the Metabolic Effect of a Novel Rapid-Acting Insulin (VIAjectTM) in Comparison to Regular Human Insulin

Marcus Hompesch, M.D.¹, Laura McManus¹, Roderike Pohl, Ph.D.², Patrick Simms, B.A.², Andreas Pfützner, M.D., Ph.D.³, Elena Bülow, M.A.², Frank Flacke, Ph.D.², Lutz Heinemann, Ph.D.⁴, and Solomon S. Steiner, Ph.D.²

Abstract

Background:

The variability of the metabolic action of insulin after subcutaneous (sc) injection hampers optimal insulin therapy. Insulin formulations with a reduced tendency to form hexamers might exhibit a reduced variability of absorption from the sc insulin depot into the blood stream.

Methods:

We investigated the within-subject variability of pharmacodynamic and pharmacokinetic properties of an ultra-fast insulin (UFI) formulation and regular human insulin (RHI) in patients with type 1 diabetes. Fourteen patients participated in six 10-hour euglycemic glucose clamp experiments. In this double-blind, crossover study, subjects were randomly assigned to a sequence of two experimental blocks: each block consisted of three doses of 0.1 IU/kg UFI or RHI, respectively, administered on separate days by abdominal sc injection.

Results:

Ultra-fast insulin has an earlier onset of action and shorter time to maximal plasma insulin concentration when compared to RHI (tGIR_{max} 99 ± 36 min vs. 154 ± 74 min, p = 0.002; tC_{max} 33 ± 16 min vs. 97 ± 39 min, p = 0.00001). The within-subject variability of plasma insulin tC_{max} (p = 0.027) and of tGIR_{max} (p = 0.022) was less for UFI than for RHI.

Conclusions:

In patients with type 1 diabetes, this UFI showed reduced within-subject variability when compared with RHI.

J Diabetes Sci Technol 2008;2(4):568-571

Author Affiliations: ¹Profil Institute for Clinical Research, San Diego, California; ²Biodel Inc., Danbury, Connecticut; ³Institut für Klinische Forschung und Entwicklung, Mainz, Germany; and ⁴Profil Institut für Stoffwechselforschung, Neuss, Germany

Abbreviations: (PD) pharmacodynamic, (PK) pharmacokinetic, (RHI) regular human insulin, (sc) subcutaneous, (UFI) ultra fast insulin

Keywords: human insulin, insulin therapy, prandial insulin, rapid-acting insulin analogs, variability, Viaject

Corresponding Author: Prof. Dr. Solomon Steiner, Biodel Inc., Danbury, CT 06810; email address ssteiner@biodel.com