A Pocket-size Device to Detect Autonomic Neuropathy

Niels Ejskjaer, M.D., Ph.D.,1 Jesper Fleischer, M.Sc., BME,2 Jacob Fleischer, M.D.,3 Poul Erik Jacobsen, M.D.,4 Per Logstrup Poulsen, M.D., DMSci,1 Hans Nygaard, DMSci5

Abstract

Background:
Diabetic autonomic neuropathy (DAN) is a very frequent complication in the diabetic population (type 1 and type 2 diabetes), and patients may suffer debilitating symptoms from various organ systems. In the less symptomatic and even in the asymptomatic condition it severely impacts health. Testing for DAN is currently time-consuming and costly due to the technical setups available today, therefore the examination may not be offered regularly. The purpose of this study was to evaluate the clinical performance of a pocket-size device for detecting DAN by measuring heart rate variability (HRV).

Method:
Ten healthy young males and eight type 1 diabetes patients suffering symptomatic DAN were selected. The standardized spectral analysis equipment VariaPulse TF3® (Sima Media, Olomouc, Czechoslovakia) was used as a reference method for evaluating a prototype of the pocket-size device according to a specified protocol. HRV, inhalation/exhalation ratio (E:I) (deep breathing test), and 30:15 ratio (response going from lying to standing) were measured using both methods. Statistical calculations were performed.

Results:
The correlation between the two devices was $R^2 = 0.98$ and $R^2 = 0.81$ when 30:15 ratio and E:I were measured, respectively. Bland-Altman plots showed suitable agreement between the two devices, substantiated by 95% limits of agreement of the differences of ±0.014 and ±0.033 when 30:15 ratio and E:I were measured, respectively.

Conclusions:
The pocket-size device was fully interchangeable with the hitherto-used, research-based setup. It proved highly suitable for ambulatory testing of autonomic nervous function and may facilitate screening for DAN according to Danish and international recommendations.

Author Affiliations: 1 Aarhus University Hospital, Department of Medicine M (Diabetes & Endocrinology) and Clinical Research Units, Aarhus University Hospital, Aarhus, Denmark, 2 Medicus Engineering Ltd, The Engineering College of Aarhus, Aarhus, Denmark, 3 Soendersoe General Practice, Soendersoe, Denmark, 4 Department of Endocrinology, Aarhus University Hospital, Aalborg, Denmark, 5 Center of Biomedical Engineering, The Engineering College of Aarhus, Aarhus, Denmark

Abbreviations: (DAN) diabetic autonomic neuropathy, (DSP) digital signal processor, (E:I) inhalation/exhalation ratio, (ECG) electrocardiogram, (HRV) heart rate variability, (SD) standard deviation

Keywords: autonomic neuropathy, cardiac, complications, diabetes, neuropathy, risk stratification

Corresponding Author: Niels Ejskjaer, M.D., Ph.D., Aarhus University Hospital, Department of Medicine M (Diabetes & Endocrinology) and Clinical Research Units, Aarhus University Hospital, Denmark, email address niels.ejskjaer@as.aaa.dk