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Abstract

Background:
Continuous glucose monitors (CGMs) collect a detailed time series of consecutive observations of the 
underlying process of glucose fluctuations. To some extent, however, the high temporal resolution of the data is 
accompanied by increased probability of error in any single data point. Due to both physiological and technical 
reasons, the structure of these errors is complex and their analysis is not straightforward. In this article, we 
describe some of the methods needed to obtain a description of the sensor error that is detailed enough for 
simulation.

Methods:
Data were provided by Abbott Diabetes Care and included two data sets collected by the FreeStyle Navigator™ 
CGM: The first set consisted of 1032 time series of glucose readings from 136 patients with type 1 diabetes 
and parallel time series of reference blood glucose (BG) collected via self-monitoring at irregular intervals. The 
average duration of a time series was 5 days; the total number of sensor-reference data pairs was approximately 
20,600. The second data set consisted of 56 time series of glucose readings from 28 patients with type 1 
diabetes and a parallel time series of reference BG measured via the YSI 2300 Stat Plus™ analyzer every 15 
minutes. The average duration of a time series was 2 days; the total number of sensor-reference data pairs was 
approximately 7000.

Results:
Three sets of results are discussed: analysis of sensor errors with respect to the BG rate of change, mathematical 
modeling of sensor error patterns and distribution, and computer simulation of sensor errors:

Sensor errors depend nonlinearly on the BG rate of change: Errors tend to be positive (high readings) when 
the BG rate of change is negative and negative (low readings) when the BG rate of change is positive, which 
is indicative of an underlying time delay. In addition, the sensor noise is non-white (non-Gaussian) and the 
consecutive sensor errors are highly interdependent.

continued 
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Introduction

Continuous glucose monitors (CGMs) provide 
detailed time series of consecutive observations on 
the underlying process of glucose fluctuations. The 
feedback of such detailed information to patients with 
diabetes has been shown to have positive influence on 
their glycemic control, including reduction in glucose 
variability, time spent in nocturnal hypoglycemia, time 
spent in hyperglycemia, and levels of glycosylated 
hemoglobin.1–4 However, a number of studies have 
concluded that, despite eight years of development, the 
CGM technology continues to face challenges in terms 
of sensitivity, stability, calibration, and the physiological 
time lag between blood glucose (BG) and interstitial 
glucose (IG) concentration.5-11 Thus, it is frequently 
concluded that the abundance of information about 
glucose fluctuations carried by the CGM data stream is 
to some extent offset by the possibility of sensor errors 
that exceed in magnitude the errors of the traditional 
self-monitored blood glucose (SMBG) devices. Such a 
conclusion, however, is only partially accurate: while the 
observed error in an isolated CGM data point is indeed 
generally larger than the error observed in a SMBG data 
point, the additional information provided by CGM 
time series allows the application of error-reduction 
techniques that are unavailable in SMBG devices. For 
example, deconvolution and other modeling techniques 
allow for mitigation of certain sensor deviations due to 
blood-to-interstitial time delay.12,13

The key to CGM error mitigation is detailed analysis 
and subsequent mathematical modeling, which allow 
the understanding of the sources and magnitude of 
sensor errors. The analytical approach proposed in 
this manuscript is based on two principles: (i) CGMs 
assess BG fluctuations indirectly—by measuring the 
concentration of IG—but are calibrated via self-monitoring 
to approximate BG; and (ii) CGM data reflect an 
underlying process in time and therefore are a time series 
consisting of ordered, in-time, highly interdependent 
data points. The first principle stipulates that calibration 
errors would be responsible for a portion of the sensor 
deviation from reference BG.13 Thus, in accuracy studies, 
the first step of the analysis should be the investigation 
of calibration errors via simulated recalibration, using 
all available reference data points. Furthermore, because 
CGMs operate in the interstitial compartment, which 
is presumably related to blood via diffusion across 
the capillary wall, the second step of modeling sensor 
deviations from BG should be the description of this 
diffusion process. Models of blood-to-interstitial glucose 
transport have been proposed and are reasonably well 
accepted by the scientific community as an approximation 
of the possible physiological time lag between BG and IG 
concentration.14–16 The second principle stipulates that the 
temporal structure of CGM data is important and should 
be taken into account by the analysis of CGM errors. 
In particular, established accuracy measures, such as 
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Thus, the modeling of sensor errors is based on a diffusion model of blood-to-interstitial glucose transport, 
which accounts for the time delay, and a time-series approach, which includes autoregressive moving 
average (ARMA) noise to account for the interdependence of consecutive sensor errors.

Based on modeling, we have developed a computer simulator of sensor errors that includes both generic and 
sensor-specific error components. A χ2 test showed that no significant difference exists between the observed 
and the simulated distribution of sensor errors and the distribution of errors of the FreeStyle Navigator (p > .46). 

Conclusions:
CGM accuracy was modeled via diffusion and additive ARMA noise, which allowed for designing a computer 
simulator of sensor errors. The simulator, a component of a larger simulation platform approved by the Food 
and Drug Administration in January 2008 for pre-clinical testing of closed-loop strategies, has been successfully 
applied to in silico testing of closed-loop control algorithms, resulting in an investigational device exemption 
for closed-loop trials at the University of Virginia.
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sites, i.e., 56 sensors. After elimination of missing data 
and non-functioning sensors, the final data set was 
composed of approximately 7000 data pairs.

A Posteriori Recalibration
To our knowledge, no model-free calibration procedures 
are available. Therefore, we used the method generally 
used by sensor producers, i.e., linear/quadratic fitting 
with time-delay compensation. A posteriori recalibration 
of the data was performed for each sensor. The major 
difference between a posteriori and real-time calibration 
is the availability of all reference BG points; therefore, for 
a fixed calibration function (the relation between sensor 
current and BG), a posteriori calibration is optimal 
in minimizing the sensor readings-reference glucose 
discrepancy. In this study, a posteriori calibration was 
performed by linear regression, matching the interpolated 
sensor readings (if the timing of the reference fell 
between two readings of the sensor) to the reference 
measurements. The sum of squares was assessed only at 
the points of reference measurement. The result of the 
linear regression was considered to be the recalibrated 
sensor trace.

Reference Sensor Density and Delay Estimation
Density estimation. Once the sensors were recalibrated, 
we used kernel density estimation to approximate the 
distribution of the sensor readings for different glucose 
references. Each sensor/reference pair is associated with 
a Gaussian kernel [see Equation (1)] centered about the 
pair and of predetermined width. More details on the 
selection of the width and kernel function can be found 
in Hastie et al.17 The density was then computed as the 
weighted sum of all kernels:

D(s,r) =             e
2πσN

1 ∑
i=1

N –((s – si)
2 + (r – ri)

2)
2σ2               (1)

Here N is the number of pairs, si is the sensor reading of 
pair i, ri is the reference measure of pair i, and σ is the 
kernel width. This estimation of the density is slightly 
biased by the fact that negative glucose values do not 
occur; the bias is reduced by choosing σ to be less than 
25% of the smallest reference value. 

Therefore the mean sensor reading (s) and the mean error 
(ε) for each reference BG was computed using Equation (2). 

s(r) = ∫ s x D(s,r)ds
s=0

600

ε(r) = s(r) – r
                      (2)

Delay estimation. The premise behind our methodology 
for delay estimation is that if the CGM measurements are 

mean absolute/relative difference, present an incomplete 
picture of sensor accuracy because these measures 
judge the proximity between sensor and reference BG at 
isolated points in time, without taking into account the 
temporal structure of the data. In other words, a random 
reshuffling of the sensor-reference data pairs in time 
will not change these accuracy estimates. Thus, in order 
to account for the dynamics of sensor errors, higher-order 
temporal properties need to be investigated. A wide 
array of modeling techniques is offered by time-series 
methods, such as autoregression, autocorrelation, and 
spectral analysis. In this paper we propose the use of an 
autoregressive moving average (ARMA) model to account 
for the time dependence of consecutive sensor errors.

Finally, the detailed understanding and modeling of  
sensor errors allows the next step, their computer 
simulation. This in turn allows the development of a 
simulated “sensor”, which is useful for in silico testing 
of diabetes treatment strategies, such as open- or closed- 
loop control, under the realistic conditions of imperfect 
CGM.

Methods
To decompose the sensor errors, we used techniques from 
linear regression, kernel density estimation, derivative 
estimation, and time series analysis, each allowing us to 
access specific characteristics of the sensor/BG discrepancy. 
We also provided examples of each analysis using data 
provided by Abbott Diabetes Care (Alameda, CA). 

Data Sets
The data used as an example in this paper comes from 
two different data sets provided by Abbott Diabetes 
Care:

The first data set is a home-use data set containing 
sensor readings from the FreeStyle Navigator™ taken 
every 10 minutes in 136 patients, for an average of 
40 days (e.g. 8 sensors, 5-day insertions). The data set 
contains 1062 sensors, totaling approximately 4000 days 
of recording, with 40,745 irregularly spaced, reference 
SMBG data points. After elimination of missing data 
segments and non-functioning sensors, the final data 
set was composed of 20,660 reference/sensor data 
pairs.

The second data set is smaller but more controlled, in that 
BG was measured every 15 minutes in clinical settings, 
using YSI instruments (coefficient of variation = 2%). 
It contains Navigator sensor readings taken every 
minute in 28 patients, 2 sensors per patient at different 

1.

2.
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Finally, based on the Johnson family of distributions,18 we 
approximated the probability distribution of the sensor 
error, using a transformation of the normal density.19

Estimation and Modeling of Sensor Error Time 
Dependency

Classical time-series techniques were applied to the 
recalibrated and synchronized sensor signal to determine 
the time dependency of sensor errors: the autocorrelation 
function and the partial autocorrelation functions.

The autocorrelation function (ACF) is fairly straight-
forward: it is computed as the correlation of an error 
at time t, with the errors at time t + h, where h = nT,  
n is an integer, and T is a fixed time interval. (Generally 
T is set to the time difference between reference 
measures.) Under weak stationary conditions (the mean 
and variance of the error do not depend on time) the 
ACF is only dependent on the lag (h) and not on t, and 
can be computed using Equation (5).

γ(h) =         n – h
n ∑

i=1

n - h

(εi – ε)(εi + h – ε)

(εi – ε)2∑
i=1

n             (5)

The partial autocorrelation function (PACF) can be best 
described as the correlation between errors at time 
t and t + h, h = nT, excluding information transmitted 
through t + T, t + 2T, t + 3T,…, t + (n - 1)T. It is similar 
to the concept of best linear predictor and is commonly 
computed using the Durbin-Levinson algorithm.20 For 
more details on PACF please refer to Brockwell et al.22

Results

Using data set 1 we studied the sensor response at 
different reference glucose levels by estimating the 
probability distribution of the reference/sensor pairs 
(recalibrated but not synchronized). The distribution 
is presented in Figure 1, where blue depicts a very 
low and red a very high probability of occurrence. We 
observed that sensors tend to read low at high reference 
values (the reference/sensor pair tends to fall below the 
diagonal when the reference is above 200 mg/dl) and 
high at low reference levels (the reference/sensor pair 
tends to fall above the diagonal when the reference is 
below 110 mg/dl). Also, the spread of reference/sensor 
pairs is positively correlated with the reference level: the 
distribution is flatter at high glucose levels compared to 
low glucose levels.

delayed, then the sensor error will be dependent on the 
rate of change of glucose. Therefore, by computing D(s,r) 
for different ranges of rates of change in glucose (bins), 
and studying the differences between bins, we can study 
the delay. To do so we needed to estimate the density in 
particular bins using Equation (3):

Dj(s,r) =             Ij(∂si)e2πσNj

1 ∑
i=1

N -((s – si)
2 + (r – ri)

2)
2σ2

Ij(∂si) = 
⎧
⎨
⎩

1  if ∂si is in binj
0  otherwise

           (3)

To compute a robust rate of change we used sliding linear 
regression computed for consecutive 20-minute windows.

Estimation and Modeling of the Sensor Error 
Distribution
As discussed above, CGMs measure glucose in the 
interstitial fluid while being used to assess BG, which 
creates a delay. Therefore, the distribution of sensor 
errors could not be computed directly by using the 
difference between reference and sensors at the same 
time points. Since the physiological delay described 
above is not constant across subjects or within a subject 
over a long period of time, we synchronized sensor and 
reference BG using a first-order diffusion model in the 
calibration equation [Equation (4)].

CGM = α.GI + β

ĠI = -   (GI – GB)τ
1                        (4)

Here GI and GB are the interstitial and the blood glucose 
concentrations, respectively; τ is the diffusion time 
constant, and α and β are the calibration parameters. 
Spanning the possible values of τ, we applied the same 
linear regression technique as before to estimate α and 
β. The final solution is the set (τ, α, β) which produces 
the smallest sum of squares. We do not claim that 
this procedure, derived from the study by Stein et al.,16 
models perfectly the transport of glucose from blood 
to interstitium nor the functional relationship between 
electrical current in the sensor and glucose values. 
However, in the absence of an identifiable model of 
such a process, we followed the parsimony principle 
in choosing the simplest available one, i.e., a linear 
transformation added to a first order, gain 1, diffusion.

Once sensor and reference data were synchronized, we 
computed the differences between sensor and reference 
and estimates, and the first four central moments of their 
empirical distribution: mean, variance, skewness, and 
kurtosis.

– –

–

–
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Effect of Rate of Change on Sensor Error and Delay 
Estimation
As presented in the introduction, it is widely believed 
that there is a delay between BG and IG. To verify this 
claim, we applied the same technique described in the 
previous section but we clustered the reference/sensor 
pairs by glucose rate of change: 8 bins of rate of change 
were selected, the number of pairs in each bin was not 
constant but was always greater than 1000, the number of 
pairs per bin was also fairly symmetric around a 0 rate 
of change, i.e. there were roughly as many pairs between 

-1.5 and -1 mg/dl/min as between 1 and 1.5 mg/dl/min. 
This distribution of pairs by rate of change corresponds 
to the usually accepted distribution of rate of change in 
the field,23 therefore indicating an absence of bias. The 
distributions for each are presented in Figure 2.

Observing the distributions in Figure 2, particularly 
the most likely reference/sensor area (red zone in 

Figure 1. Distribution of the reference glucose/sensor readings for 
data set 1.

Figure 2. Empirical distribution of the reference/sensor pairs divided in bins based on the rate of change in glucose. BG is expressed in mg/dl.
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The histogram of the sensor error is presented in  
Figure 4. The sensor error has a mean of 0.76 mg/dl and 
a standard deviation of 11 mg/dl, but its skewness and 
kurtosis show that the distribution of the error is not 
normal. To estimate its distribution we used the Johnson 
family and obtain the parameters in Table 1.

To characterize the time dependency of the sensor error 
we computed the ACF and PACF of the sensor error as 
described in the Methods section. Since the reference 
glucose measures were equally spaced at 15 minutes, the 
lags are integer multiples of 15 minutes. The results of this 
analysis are presented in Figure 5. Using a significance 
bound based on the 95% confidence interval for Gaussian 

each distribution), we saw that: (i) at a negative rate of 
change, the sensors tends to read high (red zone above 
the diagonal); (ii) at a positive rate, the sensors tend to 
read low (red zone below the diagonal); and (iii) the 
extent to which the sensor systematically reads high or 
low is correlated to the amplitude of the rate of change 
(e.g., the red zone is further above the 45° line in the 
top left distribution than the bottom left distribution). 
To verify the last observation, we computed the average 
reference/sensor discrepancy as a function of the 
reference glucose for each glucose rate of change bin (j) 
using the distribution Dj(s,r). The results of this analysis 
are presented in Figure 3A. We conclude that there 
exists a correlation between rate of change and average 
discrepancy, regardless of reference BG levels. Finally, 
computing the average reference/sensor discrepancy 
for a specific rate of change across reference values, we 
compared these averages with the average rate of change 
in each bin. The results of this analysis are presented in 
Figure 3B. The average discrepancy is linearly related 
to the rate of change (R2 = 0.995), and the slope of this 
linear relation (without offset) gives an estimate of the 
delay, which in this data set is 17 minutes.

Characterization of Recalibrated Synchronized Sensor 
Errors
In this section we study the third component of 
sensor difference from reference, which remains 
after recalibration and synchronization of sensor and 
reference data. We refer to this difference as the sensor 
error. To study more precisely the sensor error and its 
time dependency, we used data set 2, which contains YSI 
glucose measurements taken at 15-minute intervals.

Figure 4. Histogram of sensor error with the fitted normal distribution 
(green) and the fitted Johnson distribution (red).

Figure 3. (A) Effect of the glucose rate of change on the mean sensor/reference discrepancy. (B) Estimation of the sensor delay using the average 
reference/sensor discrepancy at different levels of glucose rate of change.

(mg/dl/min)
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white noise processes; we conclude that sensor noise is 
highly correlated across time up to several hours. The lag 
of autocorrelation depends on each sensor (Figure 5A),  
but, in general, sensor noise is best predicted by a linear 
combination of the sensor noise 15 minutes earlier and a 
random white noise term (PACF cutting off after lag 1 in 
Figure 5B).

Modeling of Subcutaneous Sensors
We found that the discrepancy between sensor and 
reference glucose differ from random noise by having 
substantial time-lag dependence and other non–
independent identically distributed (iid) characteristics 
(i.e., the error is independent of previous errors and 
drawn from the same time-independent probability 
distribution). The components of the discrepancy are 
therefore modeled as follows:

Blood-to-interstitium glucose transport described by 
Equation (6). Here IG is the interstitial and BG is the 
plasma glucose concentration; τ represents the time 
lag between the two fluids.

Sensor lag: the time of glucose transport from the 
interstitium to the sensor needle in Equation (6). 
Considering that these are two sequential first order 
diffusion models, we modeled them with one diffusion 
equation where the time lag is the resultant single 
diffusion process representing both the physiological 
lag and the sensor lag. Empirical estimation gives 
a time lag of 5 minutes (which produces a delay of 
approximately 15 minutes).

i.

ii.
Table 1.
Johnson Parameters of the Recalibrated and 
Synchronized Sensor Error Distribution.

Parameters Sensor error value

Family type Unbounded system

λ 15.96

ξ -5.471

δ 1.6898

γ -0.5444

⎧
⎪
⎨
⎪
⎩

∂t
∂IG

τ
1 (IG – BG)=

∂G
∂t τN

1 (G – IG)=
                      (6)

The noise of the sensor is non-white, non-Gaussian. 
We therefore used an autoregressive moving average 
(ARMA) process for its modeling. Based on the analysis 
of the empirical partial autocorrelation function 
in data set 2, we restricted this model to a simple 
autoregressive model of order 1, [see Equation (7)]. 
This is due to the apparent non-significance of any 
PACF coefficient for lags greater than 1. The sensor 
noise is εn, which is driven by the normally distributed 
time series en. The parameters ξ, λ, δ, and γ are the 
Johnson system (unbounded system) parameters 
corresponding to the empirical noise distributions, as 
shown in Table 1. Validation of these model choices 
and fits is presented in Figure 6.

iii.

Figure 5. (A) Autocorrelation function of the sensor error with lag intervals of 15 minutes. (B) Partial autocorrelation function of the sensor error 
with lag interval of 15 minutes.

Average autocorrelation function Average partial autocorrelation function

significance boundary of autocorrelation estimator
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⎧
⎨
⎩

e1 = v1

en = 0.7*(en - 1 + vn)

vn ~ Φ(0,1) iid

εn = ξ + λsinh
⎛
⎜
⎝

⎞
⎟
⎠

en – γ

δ

                 (7)

These equations were included in a glucose homeostasis 
simulator,22 implemented in Matlab Simulink®. An 
example is presented in Figure 6, along with validation 
of the modeling by comparing the sensor error 
distributions (empirical and from simulation), as well 
as the partial autocorrelation functions. No difference 
between empirical and simulated characteristics was 
apparent. Moreover, a χ2 test showed that no significant 
difference exists between the observed and the simulated 
distribution of sensor errors and the distribution of errors 
of the FreeStyle Navigator (p > .46).

Conclusions
In this paper, we presented a sequence of analytical 
techniques beginning with the decomposition of CGM 

sensor errors into errors due to calibration, blood-to-
interstitial glucose transport, and additive noise, leading 
to computer simulation and building of an in silico sensor 
based on diffusion and time series modeling. We should 
emphasize that the term sensor “error”, although well 
accepted, may not be entirely accurate because part of 
the “error” is due to physiological processes that result 
in natural deviations of sensor readings from reference 
BG levels.

Regardless of terminology, sensor deviations from 
reference BG levels are generally explained by the 
specifics of CGM technology—the measurement of 
glucose takes place in the interstitial compartment, which 
is associated with, but different from blood. However, 
CGMs are calibrated against BG, and their accuracy is 
assessed by comparing IG readings to reference BG. This 
alone creates two sources of CGM errors, or deviations: 
calibration and the BG-to-IG gradient.

During analysis, the errors due to calibration can be 
separated by recalibrating the sensor trace using all 

Figure 6. Simulated sensor trace and validation against empirical distribution and PACF.
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available reference BG readings, which is the first step 
of sensor accuracy analysis. The differences between IG 
and BG are most evident during rapid BG excursions: 
sensor errors tend to be negative (high CGM readings) 
when the BG rate of change is negative and positive (low 
CGM readings) when the BG rate of change is positive, 
which is potentially explained by the time lag between 
the two compartments. This second component of sensor 
error due to the BG-to-IG gradient can be evaluated by 
a diffusion model—a commonly accepted technique 
explaining the possible physiological time lag between 
blood and IG concentration.14-16 After recalibration and 
accounting for the BG-to-IG gradient, the residual sensor 
noise appears to be non-white (non-Gaussian) and the 
consecutive sensor errors are highly interdependent. 
Thus, the presented analysis of residual (after calibration 
and diffusion) sensor errors is based on time-series 
approaches using ARMA noise to account for the 
interdependence between consecutive sensor errors. As 
an example, we presented the autocorrelation and the 
distribution of the errors of the FreeStyle Navigator.

Based on the presented sequence of mathematical models, 
the computer simulation of sensor errors becomes possible. 
Such an in silico sensor includes both generic deviations 
due to physiology and sensor-specific errors due to 
particular sensor engineering. The generic deviations can 
be approximated reasonably well by a diffusion model. 
The sensor-specific errors appear to be generally limited 
to the order of the ARMA model and the shape of the 
sensor error distribution. Thus, both types of errors can 
be described by a few model parameters and included in 
a simulation. A specific type of error is omitted by this 
methodology: high frequency errors (period of 1 to 15 
minutes) cannot be modeled with our techniques. At this 
time no data are available to extract the characteristic 
of the error at that fine a sample frequency (we would 
need reference values every minute in a large data set). 
Nonetheless, the development of a simulated sensor 
becomes feasible and became a component of the larger 
metabolic system simulator developed at the University 
of Virginia and the University of Padova. This simulator 
was accepted by the Food and Drug Administration 
for pre-clinical testing of closed-loop glucose control 
strategies. Such in silico testing is now employed by the 
Juvenile Diabetes Research Foundation Artificial Pancreas 
Consortium, provides insights on the effectiveness of 
control algorithms during realistic conditions, and allows 
the direct transition from in silico testing to clinical 
trials.
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