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Abstract

Background:
The objective of this article was to focus on the application of harmonic decomposition to continuous glucose 
monitor (CGM) measurements. We show evidence of an attenuation of fast variations of interstitial glucose 
when compared to blood in type 1 diabetes mellitus (T1DM) and, using information theory, propose optimal 
sampling schedules associated with the use and study of CGMs.

Method: 
Using a cohort of 26 T1DM subjects, wearing two Navigator™ sensors for 1 to 3 days, we analyzed the 
frequency content of each glucose signal and derived across subject frequency cutoffs using discrete Fourier 
transform and common signal processing techniques.

Results:
We observed a significant difference in the frequency content of blood glucose compared to interstitial glucose 
in T1DM, providing evidence toward the existence of a diffusion process between blood and interstitial glucose, 
acting as a low-pass filter. Furthermore, we obtained a 15-minutes sampling schedule for optimal comparison 
of CGM values to blood reference.

Conclusion:
Blood glucose and interstitial glucose have different dynamics, as shown by harmonic analysis, and these 
differences have consequences on advisable schedules for accuracy studies of CGMS.
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Introduction

In the last decade, the emergence of subcutaneous 
continuous glucose monitors (CGMs) has radically changed 
the information available via glucose measurement.1,2 
While spot measurement blood glucose (BG) indexes are 
still widely applicable and useful,3 CGMs, on the basis 
of their frequent (1–10 minutes) and equally spaced 
measurements, opened the door to a breadth of signal 
processing methods.

These methods include, but are not limited to, 
autoregressive moving average time series analysis, 
Kalman filtering, and harmonic analysis, in particular 
discrete Fourier decomposition. All rely on the critical 
difference between spot and continuous measurement: 
the identification of time dependency between glucose 
values or the fact that values in the past can inform 
values in the present (smoothing, denoising) and in the 
future (prediction); the latter is of special interest to this 
article.

Even though it is considered a basic engineering method 
to analyze signals, discrete Fourier analysis is rather new 
in the glucose monitoring area and very few studies of 
its applicability and clinical significance can be found in 
the literature.4–8 However, as glucose variability becomes 
more recognized as an important index of diabetes control, 
linked to clinical outcomes,9,10 harmonic decomposition 
methodologies (e.g., Fourier decomposition, wavelet 
decomposition) will also become critical to the analysis of 
glucose traces as these methods provide decomposition 
of the overall glucose variability into frequency bins 
(Fourier) or into scales and locations (wavelet). Therefore, 
these methods further our understanding of the effect  
of variability on clinical outcomes.

In discrete Fourier analysis, the signal is represented 
by the strength of each of its frequencies; in optimal 
conditions, this alternate representation does not suffer 
from any loss of information. The Fourier transform, in 
short, identifies recurring patterns of particular cycle 
lengths (periods) and quantifies how important each cycle 
length is in the glucose trace: if an event or pattern occurs 
repeatedly and consistently, the corresponding period 
will be considered important. For example, a 24-hour 
pattern repetition will most likely be much more 
important than a 1-hour pattern repetition due to the 
circadian nature of glucose control4 (see Figure 1 for an 
example).

Because of the pulsatile nature of some glyco-regulatory 
hormones and the very fast action of these hormones on 
BG levels, it is likely that fast (on the scale of minutes) 
physiologic variations of BG could be observed in health. 
Fourier analysis can address the following questions: Are 
these variations still present in type 1 diabetes mellitus 
(T1DM), despite the lack of endogenous insulin production 
and therefore lack of feedback glucose control? Are there 
specific frequencies that can be correlated to diabetes 
or to diabetes types? Is insulin sensitivity periodic? The 
discrete Fourier transform is an ideal tool to answer these 
questions: by comparing the strength of each periodic 
component (cycles), we can determine what cycles are of 
importance and eventually link them to clinical outcomes, 
as demonstrated by Miller and Strange.4 This could lead 
to the use of Fourier coefficients in the assessment of 
clinically relevant components of glucose variability.

Another type of information can be gained from 
frequency decompositions: the maximum significant 
frequency of a glucose trace. This relates to the well-
known Shannon theorem,11 but is generally referred to 
as Nyquist frequency and Nyquist rate; the difference 
between these two quantities will be made clear in the 
following sections. 

This type of analysis becomes critical when two different 
fluids (blood and interstitial fluid) are sampled for the 
assessment of glucose concentration. Indeed, mounting 
evidence shows12–14 that blood and interstitial glucose 
(IG), although interrelated, have different dynamics. The 
most common hypothesis is that IG is the result of a 
diffusion process of blood BG into the interstitial fluid, 
therefore eliminating, or at least attenuating, some of the 
information contained in BG.

Figure 1. An example of a periodogram showing frequency content of 
3 days of CGMs.
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This article focuses on the difference between BG and 
IG and on the ways of using Fourier decomposition to 
determine minimal sampling periods and/or maximum 
information to be expected from a specific sampling 
schedule of the interstitial fluid. As stated previously, 
this relates to the application of the Shannon sampling 
theorem, to continuous glucose monitoring, providing 
the opportunity for optimal sampling schemes to be 
determined in accuracy trials and everyday clinical use.

Methods

Discrete Fourier Transform
The discrete Fourier transform is based on a mathematical 
transformation: the initial signal (glucose trace in mg/dl 
or mmol/liter) is projected onto a base of sine and cosine 
functions of different periodicity, which leads to the 
following representation:

G(t) = a0 + a1 x cos  2π       + b1 x sin  2π

          + a2 x cos  2π       + b2 x sin  2π

          + aN x cos  2π        + bN x sin  2π
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Therefore, the glucose signal is decomposed into periodic 
elements (sine and cosine waves) of different periods (the 
coefficient within these waves controls their periodicity). 
The importance, or strength, of each periodic component 
is represented by the ai and bi coefficients (for each 

i x t
T

2π  frequency the strength is ai
2 + bi

2). The set of 
frequency strength (ai

2 + bi
2) is called the spectrum of the 

glucose trace (much like the spectrum of a light ray is 
the strength of each color within that light). A common 
way to represent it is the periodogram, or the plot of 
estimated strength as a function of frequencies (Figure 1). 
In this particular example we observe the predominant 
four cycles (1/24, 1/8, 1/6, and 1/4.5 hours), as well as 
a rapid decay of strength in patterns of periods shorter 
than about 2 hours. This article focuses on this decay 
as it pertains to the optimal sampling frequency of the 
glucose concentration.

The significance of frequencies is determined using the 
signal-to-noise ratio, e.g., by comparing the power of a 
specific frequency to the frequency signature of signal 
noise. Because signal noise is assumed white at high 
frequency (period shorter than 5 minutes), its frequency 
signature is flat. The noise level is determined by 
analyzing the first- and second-order derivatives of the 

frequency spectrum to determine the frequency onset of 
the flat spectrum and its characteristics. The white noise 
assumption is generally inaccurate across the whole 
spectrum, but is very likely at high frequencies. Nonwhite 
characteristics of the noise are likely to generate higher 
peaks at medium frequencies (15- to 30-minute periods),15 
which would inflate the spectrum power at medium 
frequency and move the cutoff frequency to a higher 
value, therefore strengthening the conclusions of this 
article rather than confounding them. Nonetheless, in the 
absence of a known noise signature, this effect cannot be 
compensated.

Implication of Sample Frequency in Glucose 
Monitoring
Fourier analysis can also be used in an information theoretic 
way, i.e., to determine what information is available in a 
glucose concentration trace, based on how often glucose 
was measured. This particular application of harmonic 
representation is summarized in the Shannon theorem 
and its corollaries.

The Shannon Theorem
The Shannon theorem11 states that if a function, f(t), 
contains no frequencies higher than W cycles per second 
(used instead of the more modern hertz), it is completely 
determined by giving its ordinates at a series of points 
spaced 1/(2W) seconds apart.

Therefore, this theorem links the sampling frequency of a 
discrete signal to the maximum frequency observable in 
that signal and then, by inference, the optimal sampling 
frequency of a continuously defined signal (e.g., glucose 
concentration) to the maximum observed frequency.

Application to Maximum Information with Fixed 
Sampling Frequency (Nyquist Frequency)
A very common corollary to the aforementioned theorem 
is that the sampling frequency of a protocol fixes limits to 
what can be said about a glucose trace. More precisely, no 
phenomenon faster than half the sampling frequency can 
be fully characterized. This upper bound on the frequency 
of observable patterns is called the Nyquist frequency. 

Application to Maximum Sampling Frequency 
(Nyquist Rate)
This is the direct application of the theorem: if we know 
the maximum significant frequency in a subcutaneously 
measured glucose concentration, ω, then all interstitial 
glucose characteristics will be accessible by sampling 
faster than every 1/2ω seconds. For example, if the 
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highest significant frequency is 1.7 × 10-3 Hz, we only 
need to measure glucose every 5 minutes. This sampling 
frequency threshold is called the Nyquist rate.

The difficulty here lies in determining the maximum 
significant frequency in glucose concentration. This can 
be done by studying the frequency characteristics of a 
very frequently sampled glucose trace (therefore making 
sure that the Nyquist frequency is much higher than the 
expected Nyquist rate).

Data
We used a data set of 26 diabetic subjects wearing 
two Navigator™ sensors on different sites and in field 
conditions for periods varying from 21 hours to 3 days. 
Subcutaneous glucose was recorded every minute. 
Data were cleaned by selecting the longest segment of 
uninterrupted data for each subject and trimming each 
segment to the length of the smallest (this ensures 
discrete Fourier transform coefficients at the same exact 
frequencies for all subjects with maximum data retention); 
we therefore obtained 52 glucose traces, 17 hours long. 
Each segment was then a posteriori recalibrated (least-
square fit using a linear calibration function) to capillary 
glucose using reference finger sticks (15 ± 5 per day); this 
recalibration is made necessary by the large potential 
error caused by online calibration: up to 80% of the 
error as shown in King et al.16 As this transformation is 
linear, it has no bearing on the frequency content of the 
signal. The spectrum of the first-order difference of each 
recalibrated segment was then estimated using the fast 
Fourier transform algorithm. Spectra were then averaged 
across subjects and analyzed; the maximum significant 
frequency was computed as the last frequency with 
power significantly different from the base noise.

Results
Difference between Blood Glucose Dynamics and 
Interstitial Glucose Dynamics 
Continuous glucose monitors, as stated previously, 
measure the glucose concentration in the interstitial fluid 
(a few millimeters below the skin), but seek to inform about 
blood glucose concentration. The sensors are calibrated 
based on capillary blood. This discrepancy, a source of 
many debates on accuracy and delays,12–14 also leads to 
the following question: are blood glucose dynamics completely 
accessible from the interstitium? It is commonly accepted 
that glucose is transported from one compartment to the 
other, although the exact model of transport is still being 
discussed.16,17 The diffusion of glucose from blood to the 
interstitium has interesting predicted consequences on 

the spectrum of the glucose trace. This diffusion process, 
very often modeled by Equation (2), can be seen as a low-
pass filter, i.e., a process that emphasizes low-frequency 
patterns and attenuates high frequencies, the theoretical 
cutoff frequency is ωc in Equation (2).

∂GI

∂t
= -αGI + βGB

ΓI =
ρΓB

s
ωc

+ 1
where ωc = α and ρ = β

α
⇒

         (2)

Therefore, an attenuation of high frequencies in sub-
cutaneously measured glucose would not only indicate 
that diffusion is indeed taking place, but also, and most 
importantly, show an important difference in glucose 
concentration dynamics between blood and interstitial 
fluid.

Using data described earlier, we produced an average 
spectrum of the interstitial glucose, presented in Figure 2. 

Figure 2. Spectrum of the first-order difference of subcutaneous 
glucose.

Only a few articles have been published on the subject of 
glucose spectrum, and none provide a definite answer on 
the frequency mix of the blood glucose concentration.4,7,8 
Nevertheless, some interesting information has been 
presented: (i) in healthy individuals, glucose variations are 
present at fairly high frequencies,7 periods <5 minutes; this 
is not surprising as all feedback loops are present and 
some endogenous glycoregulatory hormones (e.g., insulin) 
have very fast pulsatile secretion.18,19 (ii) Diabetic subjects 
of both types differ from healthy subjects in terms 
of BG spectrum, as shown in Gough et al.5; some high 
frequencies are cut off, resulting in glucose patterns of at 
least 15–20 minutes.

Our data show the next step in this analysis: the 
spectrum of interstitial glucose in T1DM presents an 
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even lower frequency cutoff; the spectrum in Figure 2 
becomes insignificant (the red dotted line represents the 
significance to background noise) between periods of 20 
and 30 minutes (a more precise determination is presented 
in the next section). This indicates that subcutaneous 
glucose does not display high-frequency characteristics 
observed in blood: frequencies corresponding to a pattern 
between 15 and 30 minutes have mostly disappeared. 
Therefore, a low-pass filter exists between the two fluids, 
and the most likely candidate is the transfer of glucose 
from blood to interstitium.

Optimal Sampling Schedule for IG Dynamics 
Estimation
Using the spectrum in Figure 2, periods shorter than 
30 minutes appear to be insignificantly represented in 
the interstitial glucose signal, but the cutoff point is 
unclear because of the closeness of the power of periods 
between 20 and 30 minutes and the noise background. 
To enhance the visibility of the cutoff point (at which 
point the spectrum variations are not significant, i.e., 
it is considered flat), we propose using the first-order 
difference of the spectrum, presented in Figure 3. Again 
assessing background noise using very high frequencies 
(period shorter than 5 minutes), this time a very clear 
cutoff point is seen at a period of approximately  
36 minutes.

Discussion
As continuous subcutaneous sensors become more 
available and more precise, harmonic analysis of glucose 
will take a more important place in diabetes technology 
studies. Identification of clinically relevant harmonic 
decomposition, by the association of a specific bandwidth 
to clinical outcome or the comparison of different 
harmonic methods, should open a new and exciting field 
in glucose monitoring. Harmonic analysis is a natural 
extension of the rising variability analysis, offering 
clinicians powerful, computationally tractable, tools to 
decompose variability and identify clinically important 
variations in glucose concentration.

Following the groundbreaking work of Miller and  
Strange,4 we demonstrated the versatility of tools such 
as the Fourier transform, which can be used not only 
directly to link to clinical outcomes, but also as tools to 
optimize sampling schedules and identify physiological 
processes, such as diffusion of glucose from blood. 

We showed evidence that the transfer of glucose from the 
blood to the interstitial fluid has important consequences 
on the information contained in interstitial glucose and 
concluded that this process is equivalent to a low-pass 
filter, attenuating fast variations in the interstitium. These 
results strengthen the case for a significant difference 
between blood and interstitial glucose and for the need of 
a thorough investigation of the relationship between the 
two fluids. A model, even empirical of BG/IG dynamics 
could be used to improve the accuracy of CGMs and to 
optimize calibration procedures and sampling schedules.

Finally, we obtained evidence for the absence of 
significant variations faster than 36 minutes in interstitial 
glucose and, using information theory, determined that 
18 minutes of sampling (or 15 minutes for ease of use) 
was the maximum sampling frequency needed to fully 
register the fluctuations of interstitial glucose. This has 
a critical importance in accuracy studies: indeed as 
most CGMs report glucose every 1 to 10 minutes, the 
Nyquist rate does not apply to the collection of CGM 
data. It shows, however, that accuracy studies should 
have reference blood measures every 15 minutes in order 
to both capture the variability of IG and not introduce 
additional error due to the faster (but not reflected by IG) 
blood glucose fluctuations. Indeed, if we compared CGM 
readings to blood measures, it would be detrimental to 
observe blood glucose more often: we have proven that 
dynamics that would be observed because of a faster 
blood draws schedule are not present in interstitial 

Figure 3. First-order difference of the subcutaneous spectrum.

We therefore conclude that no patterns of a period 
shorter than 36 minutes are observed in subcutaneously 
measured glucose. Thus, using the Shannon theorem we 
can conclude that interstitial glucose levels, as measured 
by modern subcutaneous continuous sensors, can be 
perfectly characterized using an 18-minute sampling 
period. 
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glucose. Similarly, we also showed that a slower blood 
draws schedule, by skipping some significant dynamics, 
would not capture some of the CGMs characteristics 
and therefore could ignore some potentially harmful 
deviations of CGMs from BG.
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