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Abstract

Background:
Advancements in subcutaneous continuous glucose monitoring and subcutaneous insulin delivery are 
stimulating the development of a minimally invasive artificial pancreas that facilitates optimal glycemic 
regulation in diabetes. The key component of such a system is the blood glucose controller for which different 
design strategies have been investigated in the literature. In order to evaluate and compare the efficacy of the 
various algorithms, several performance indices have been proposed.

Methods:
A new tool—control-variability grid analysis (CVGA)—for measuring the quality of closed-loop glucose control 
on a group of subjects is introduced. It is a method for visualization of the extreme glucose excursions caused 
by a control algorithm in a group of subjects, with each subject presented by one data point for any given 
observation period. A numeric assessment of the overall level of glucose regulation in the population is given 
by the summary outcome of the CVGA.

Results:
It has been shown that CVGA has multiple uses: comparison of different patients over a given time period, 
of the same patient over different time periods, of different control laws, and of different tuning of the same 
controller on the same population.

Conclusions:
Control-variability grid analysis provides a summary of the quality of glycemic regulation for a population of 
subjects and is complementary to measures such as area under the curve or low/high blood glucose indices, 
which characterize a single glucose trajectory for a single subject.
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Introduction

Closed-loop glucose regulation for maintaining 
normoglycemia in type 1 diabetes mellitus has been 
investigated and discussed since the 1970s.1–3 Recent 
technological advancements in subcutaneous continuous 
glucose monitoring (CGM) allowed the observation of 
temporal glucose fluctuations in real time and the use 
of these data for feedback control of blood glucose (BG) 
fluctuations via subcutaneous insulin delivery systems.4-8 

However, the availability of innovative sensors and 
actuators, although essential, does not guarantee the 
achievement of optimal glycemic regulation under 
all conditions—closed-loop control of blood glucose 
levels poses significant technological challenges to the 
automatic control expert.

Several outcome measures have been proposed to judge 
the effectiveness of closed-loop control in a single 
patient.9–12 However, there are no instruments able to 
assess the overall performance in a group of patients, 
e.g., to compare the performances of different closed-loop 
controllers and/or different tuning choices for a given 
controller.

The necessity of a population index stems from 
the increase of the number of closed-loop clinical 
experiments along with the availability of large-scale 
simulation models (see, e.g., Dalla Man and colleagues13,14) 
that allow the generation of hundreds of virtual patients. 
In fact, in silico trials are perhaps the best way to 
address the robustness of the artificial pancreas against 
interindividual variability prior to conducting in vivo 
clinical trials. The availability of realistic individual 
models is the basis for conducting an in silico trial: the 
control can be individually tuned and then tested on 
each virtual patient, possibly injecting disturbances and 
uncertainties in order to assess the robustness of closed-
loop control.

In this article, a new tool for measuring the quality of 
closed-loop glucose control on a group of subjects is 
proposed: the control-variability grid analysis (CVGA). 
It is a method for visualization of the extreme glucose 
excursions caused by a control algorithm in a group of 
subjects, with each subject presented by one data point 
for any given observation period. This differentiates the 
analysis from any other standard statistics, such as mean 
and standard deviation, which do not provide population-
based visualization of data. Following the ideas of 
traditional Clarke error-grid analysis used for evaluation 

of the accuracy of self-monitoring15 or CGM devices,16 
nine rectangular zones are introduced in order to classify 
subjects into categories. The use of CVGA is illustrated 
by comparing the performances of the model predictive 
control (MPC) scheme and the proportional–integral–
derivative (PID) controller described in Magni et al.17 

Control-Variability Grid Analysis
Control variability grid analysis is a graphical 
representation of minimum/maximum glucose values 
in a population of patients either real or virtual. CVGA 
provides a simultaneous visual and numerical assessment 
of the overall quality of glycemic regulation in the entire 
population of (simulated or real) patients. As such, it 
may play an important role in the tuning of closed-loop 
glucose control algorithms and also in the comparison of 
their performance.

Assuming that for each subject a time series of measured 
BG values over a specified time period (e.g., 1 day) is 
available, CVGA is obtained as follows: For each subject 
a point is plotted with an X coordinate—minimum 
BG—and a Y coordinate—maximum BG—within the 
considered time period (see Figure 1). Note that the 
X axis is reversed as it goes from 110 mg/dl (left) to  
50 mg/dl (right) so that optimal regulation is located in 
the lower left corner. The appearance of the overall plot 
is a cloud of points located in different regions of the 
X–Y plane that can be associated with different qualities 
of glycemic regulation. In order to classify subjects into 
categories, nine rectangular zones are defined as follows:

A Accurate control:
X range 110–90 mg/dl and Y range 110–180 mg/dl

Lower B Benign deviations into hypoglycemia:
X = 90–70 mg/dl, Y = 110–180 mg/dl

B Benign control deviations:
X = 90–70 mg/dl and Y = 180–300 mg/dl

Upper B Benign deviations into hyperglycemia:
X = 110–90 mg/dl, Y = 180–300 mg/dl

Lower C Over-Correction of hyperglycemia:
X < 70 mg/dl, Y = 110–180 mg/dl

Upper C Over-Correction of hypoglycemia:
X = 110–90 mg/dl, Y > 300 mg/dl

Lower D Failure to Deal with hypoglycemia:
X < 70 mg/dl, Y = 180–300 mg/dl

Upper D Failure to Deal with hyperglycemia:
X = 90–70 mg/dl, Y > 300 mg/dl

E Erroneous control: X < 70 mg/dl and Y > 300 mg/dl.
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The boundaries of the zones were chosen as follows:  
70–180 mg/dl are the commonly accepted limits of a 
target range, with readings below 70 mg/dl identified 
as hypoglycemia and readings above 180 mg/dl defined 
as hyperglycemia. The lower value of 90 mg/dl for zone 
A is selected as a minimal safe value that a controller 
can maintain to avoid risking induced hypoglycemia;  
300 mg/dl is the upper value of permissible hyperglycemic 
excursions derived from discussions with physicians. 
As indicated by established methods for risk analysis 
of glucose data, zone A is the safest region of CVGA. 
Various aspects of this notion are discussed elsewhere.9–12 

Three main uses of CVGA are possible. First, one could 
plot points corresponding to different patients over a 
given time period, typically 24 hours (see Figure 1). In 
this way, a visually effective global characterization of 
the population is obtained. A second use of CVGA is to 
plot points but under different conditions. For instance, 
in a several day study, each point could correspond to a 
single day, allowing the tracking of a subject over time. 
Another example is comparison of the performances of 
different closed-loop controllers and/or different tuning 
choices for a given controller. Finally, it is also possible 
to consider CVGA plots with several points for each 
patient; see, e.g., Figures 3 and 4, where different tuning 
choices (Figure 3) and different controllers (Figure 4) are 
compared on the same population.

In Silico Trial Evaluated by CVGA

Simulator and Virtual Patient Generation
A major problem for the artificial pancreas is guaranteeing 
satisfactory performance under conditions of metabolic 
disturbance and inter- and intraindividual variability. 
In that regard, in silico testing via large-scale computer 
simulation models is very useful. The drawback of 
such models is the difficulty of identifying all relevant 
parameters from plasma concentration measurements. 
A triple tracer meal protocol18 on 204 nondiabetic 
individuals and several other experiments in different 
age groups allowed the development of a new generation 
in silico model of the glucose–insulin system.13,14 Using 
data from these experiments it was possible not only to 
identify the mean values but also the joint distribution 
of the model parameters. As a result, individual models 
of virtual patients have been extracted and implemented 
in a comprehensive simulation environment.

Virtual Protocol
The performance of closed-loop glucose control is tested 
on a 4-day virtual protocol:

the simulation starts at basal value and the first 
meal is dinner at 7:30 p.m. of day 1; the patient has 
breakfast at 9:30 a.m. with 45 grams of carbohydrate, 
lunch at 1:30 p.m. with 75 grams of glucose, and 
dinner at 7:30 p.m. with 85 grams of carbohydrate;

in the first part of the simulation, the virtual “patient” 
receives a subcutaneous bolus based on an open-
loop strategy. At 9:30 p.m. of day 2 the controller is 
initiated. Thereafter, the piecewise constant insulin 
delivery is governed by the closed-loop controller and 
no further bolus is administrated.

•

•

Figure 1. Control variability grid analysis: each point represents the 
extreme value of a patient over the considered time period.

A numeric assessment of the overall level of glucose 
regulation in the population is given by the summary 
outcome of CVGA (see Figure 1), which provides the 
percentage of points falling in the three macrozones: 
(1) A-one, (2) A+B zones, and (3) C+D+E zones. The 
percentage of points falling in a particular zone can be 
provided in order to distinguish between overcorrection 
of hyperglycemia and hypoglycemia. Note that if a linear 
scale was used for both X and Y axes, the zones would 
be rectangular. In order to obtain square zones of equal 
size, a simple nonlinear transformation is used. 

Being based on the minimum and the maximum 
among noisy samples, CVGA may be sensitive to noise 
and statistical outliers. Thus, if sensor noise (observed 
or computer simulated) is present in data submitted 
to CVGA, it is recommended that the lower bound 
of CVGA be at 2.5% of the distribution of data and 
the upper bound be at 97.5%. This way, the difference 
Y–X coordinates of each data point would be the 95% 
confidence interval of a patient’s data. Having lower/
upper bounds fixed at distribution percentiles instead 
at the absolute minimum/maximum of data reduces the 
vulnerability of the analysis to outliers.
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The virtual protocol has been designed to approximate 
a realistic clinical trial conducted on real patients. 
In particular, the first open-loop phase serves as an 
observation window during which individual patient 
information may be collected. The insulin delivery 
during closed-loop control is piecewise constant and is 
updated every 30 minutes. Shorter sampling intervals 
are technologically feasible, but would require overly 
intensive medical supervision in the first clinical trials.

In order not to consider the transition from open- to 
closed-loop regulation, the indices are computed after 
8:00 a.m. of day 3.

Control Laws
Closed-loop control has been designed accordingly to 
the linear model predictive control law described in  
Magni et al.17 The MPC control law is based on the 
solution of a finite horizon optimal control problem, 
where a cost function is minimized with respect to the 
external insulin rate depending on the state dynamics of 
a model of the system.

The MPC, in general, has several independent tuning 
parameters: control and prediction horizon, output 
and input weights, and terminal penalty. However, as 
discussed elsewhere,17 the main advantage of the proposed 
algorithm is the possibility of achieving satisfactory 
results by tuning only one parameter (the output weight q)  
in a quite straightforward and intuitive way. In order to 
obtain an automatic tuning procedure, we introduce cost 
on the CVGA grid (see Figure 2). With a trial-and-error 
procedure, the CVGA costs corresponding to different 
values of the parameter q are compared and the value 
associated with the lowest cost is chosen. Herein, the 
MPC control law is compared with a PID control law 
with a feed-forward action as described in Magni et al.17 
In this case, most of the parameters have been chosen in 
a standard way based on the mean linearized model and 
only the gain has been adapted to each virtual patient. 
The value of the gain has been obtained using a trial-
and-error procedure similar to the optimization of the 
parameter q of the MPC.

In Silico Trial Results
The trial was conducted on 100 virtual subjects.

Optimal tuning. An MPC control law was synthesized 
with an individually tuned q. CVGA is reported in 
Figure 3 (dots). The CVGA summary outcome is A = 33%,  
A+B = 100%, of which 9% is in upper B, 49% is in B, and 
9% is in lower B. 

Overcorrection of hypoglycemia. In order to show the utility 
of CVGA to compare different choices of the parameter q, 
the trial was repeated with q’ = 0.4q. CVGA is reported in 
Figure 3 (open circles). The CVGA summary outcome is  
A = 12%, A+B = 98%, of which 71% is in upper B, 15% is in 
B, and C+D+E = 2%. This shows a general overcorrection 
of hypoglycemia that is due to a less aggressive control 
law using a lower insulin infusion rate.

Overcorrection of hyperglycemia. The CVGA obtained with 
a more aggressive controller with q’’ = 1.8q is reported 
in Figure 3 (pluses). The CVGA summary outcome is 
A = 4%, A+B = 73%, C+D+E = 27%, of which 23% is in 
lower D, 2% is in lower C, and 1% is in E. This shows a 
general overcorrection of hyperglycemia due to a more 
aggressive control law that uses higher insulin infusion 
rates.

Figure 2. Cost associated with each point of CVGA. The level lines are 
squared following the shape of the CVGA zones.

Figure 3. CVGA for MPC control with output weight q (dots), output 
weight 0.4q (open circles), and output weight 1.8q (pluses).
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Comparison of different control strategies. In Figure 4,  
CVGA is used to compare the performances of MPC 
vs PID control described in Magni et al.17 The CVGA 
summary outcome for MPC is A = 33%, A+B = 100%, 
of which 9% is in upper B, 49% is in B, and 9% is in  
lower B. The CVGA summary outcome for PID is A = 5%, 
A+B = 96%, of which 5% is in upper B, 77% is in B,  
9% is in lower B, and C+D+E = 4%. In this example,  
CVGA provides an easy and immediate visual comparison 
of the effectiveness of two control strategies applied on a 
population.

Figure 4. CVGA for patients controlled by means of MPC (dots) and 
PID control (open circles); see Magni et al.17 for details.

Conclusions
In silico and clinical trials produce a wealth of data, 
whose analysis and interpretation pose nontrivial 
challenges. CVGA provides a summary of the quality of 
glycemic regulation for a population of subjects and is 
complementary to measures such as area under the curve 
or low/high BG indices, which characterize a single 
glucose trajectory for a single subject. An advantage of 
the proposed tool is that, in addition to being visually 
effective, it also gives appropriate numerical indices. 
As a result, CVGA could be extremely useful in the 
development of tuning procedures for the parameters of 
closed-loop controllers.
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Appendix:

Herein, the MATLAB19 commands to generate control variability grid analysis are given.
Suppose that G is a matrix containing glucose profile data of a different patient in each row.

Percentile calculation and polynomial transformation for each patient
for i=1: size(G,1)
   Min_gli(i) = prctile(G(i,:),2.5);
   Max_gli(i) = prctile(G(i,:),97.5);
end
p=polyfit([110 180 300 400],[0 20 40 60],3);
Max_gli = polyval(p,Max_gli);

CVGA plot
figure
hold on
%fill zone C-
X_pcmeno = [40 60 60 40]; Y_pcmeno = [0 0 20 20]; fill(X_pcmeno,Y_pcmeno,[1 1 0]);
%fill zone D-
X_pdmeno = [40 60 60 40]; Y_pdmeno = [20 20 40 40]; fill(X_pdmeno,Y_pdmeno,[1 0.6 0]);
%fill zone E
X_pe = [40 60 60 40]; Y_pe = [40 40 60 60]; fill(X_pe,Y_pe,[1 0 0]);
%fill zone B-
X_pbmeno = [20 40 40 20]; Y_pbmeno = [0 0 20 20]; fill(X_pbmeno,Y_pbmeno,[7/255 135/255 0/255]);
%fill zone C
X_pc = [20 40 40 20]; Y_pc = [20 20 40 40]; fill(X_pc,Y_pc,[7/255 135/255 0/255]);
%fill zone D+
X_pdpiu = [20 40 40 20]; Y_pdpiu = [40 40 60 60]; fill(X_pdpiu,Y_pdpiu,[1 0.6 0]);
%fill zone A
X_pa = [0 20 20 0]; Y_pa = [0 0 20 20]; fill(X_pa,Y_pa,[0 1 0]);
%fill zone B+
X_pbpiu = [0 20 20 0]; Y_pbpiu = [20 20 40 40]; fill(X_pbpiu,Y_pbpiu,[7/255 135/255 0/255]);
%fill zone C+
X_pcpiu = [0 20 20 0]; Y_pcpiu = [40 40 60 60]; fill(X_pcpiu,Y_pcpiu,[1 1 0]);

text(10,10,’\textbf{A}’,’HorizontalAlignment’,’center’,’Interpreter’,’Latex’,’Fontsize’,15);
text(10,30,’\textbf{Upper B}’,’HorizontalAlignment’,’center’,’Interpreter’,’Latex’ ,’Fontsize’,15);
text(10,50,’\textbf{Upper C}’,’HorizontalAlignment’,’center’,’Interpreter’,’Latex’ ,’Fontsize’,15);
text(30,10,’\textbf{Lower B}’,’HorizontalAlignment’,’center’,’Interpreter’,’Latex’ ,’Fontsize’,15);
text(30,30,’\textbf{B}’,’HorizontalAlignment’,’center’,’Interpreter’,’Latex’ ,’Fontsize’,15);
text(30,50,’\textbf{Upper D}’,’HorizontalAlignment’,’center’,’Interpreter’,’Latex’ ,’Fontsize’,15);
text(50,10,’\textbf{Lower C}’,’HorizontalAlignment’,’center’,’Interpreter’,’Latex’ ,’Fontsize’,15);
text(50,30,’\textbf{Lower D}’,’HorizontalAlignment’,’center’,’Interpreter’,’Latex’ ,’Fontsize’,15);
text(50,50,’\textbf{E}’,’HorizontalAlignment’,’center’,’Interpreter’,’Latex’ ,’Fontsize’,15);
set(gca,’YTick’,[0 20 40 60])
set(gca,’XTick’,[0 20 40 60])
set(gca,’XTickLabel’,{‘>110’ ‘90’ ‘70’ ‘<50’})
set(gca,’YTickLabel’,{‘<110’ ‘180’ ‘300’ ‘>400’})

scatter(min(max(110 - Min_gli,0),60),min(max(Max_gli,0),60),’ow’,’filled’);
xlabel(‘Minimum BG’),ylabel(‘Maximum BG’)
grid on
box on


