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Abstract

Introduction:
Tight glycemic control (TGC) has shown benefits but has been difficult to achieve consistently. STAR (Stochastic 
TARgeted) is a flexible, model-based TGC approach that directly accounts for intra- and interpatient variability 
with a stochastically derived maximum 5% risk of blood glucose (BG) below 72 mg/dl. This research assesses 
the safety, efficacy, and clinical burden of a STAR TGC controller modulating both insulin and nutrition inputs  
in virtual and clinical pilot trials.

Methods:
Clinically validated virtual trials using data from 370 patients in the SPRINT (Specialized Relative Insulin and 
Nutrition Titration) study were used to design the STAR protocol and test its safety, performance, and required 
clinical effort prior to clinical pilot trials. Insulin and nutrition interventions were given every 1–3 h as chosen 
by the nurse to allow them to manage workload.

Interventions were designed to maximize the overlap of the model-predicted (5–95th percentile) range of BG 
outcomes with the 72–117 mg/dl band and thus provide a maximum 5% risk of BG <72 mg/dl. Interventions 
were calculated using clinically validated computer models of human metabolism and its variability in critical 
illness. Carbohydrate intake (all sources) was selected to maximize intake up to 100% of the American College 
of Chest Physicians/Society of Critical Care Medicine (ACCP/SCCM) goal (25 kg/kcal/h). Insulin doses were 
limited (8 U/h maximum), with limited increases based on current rate (0.5–2.0 U/h). Initial clinical pilot trials 
involved 3 patients covering ~450 h. Approval was granted by the Upper South A Regional Ethics Committee.

continued 
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Introduction

Critically ill patients often experience stress-induced 
hyperglycemia and high levels of insulin resistance.1–7 
The occurrence of hyperglycemia, particularly severe 
hyperglycemia, is associated with increased morbidity 
and mortality in this group of patients.1,3 Glycemic 
variability, and thus poor control, are also independently 
associated with increased mortality.8,9 It has been shown 
that tight glycemic control (TGC) can significantly 
reduce the rate of negative outcomes associated with 
poor control by modulating nutrition and/or insulin 
administration,7,10,11 and can also reduce the rate 
and severity of organ failure12 and cost.13,14 However, 
consistent, effective TGC remains elusive with several 
studies achieving positive, negative, and inconclusive 
outcomes.15–18 In addition, there is little agreement on 
what constitutes desirable glycemic performance,19–21 
particularly with regard to how TGC affects outcome.

The SPRINT protocol was successful at reducing organ 
failure and mortality10,12 with a patient-specific approach 
that directly considered carbohydrate administration 
along with insulin. It provided the tightest control across  
all patients of several large studies22,23 via its patient-
specific approach to accounting for inter- and intrapatient 
variability. However, the protocol was also relatively 
inflexible, and the clinical burden, while acceptable, was 
higher than desired.

In particular, SPRINT had a fixed, implicit target glycemia 
of 90–110 mg/dl that could not be altered for specific 
clinical needs or more dynamic patients. Equally, the 
approach to control was fixed, titrating both insulin 
and nutrition with respect to the overall patient-specific 
insulin sensitivity evidenced in their glycemic response  
to the prior intervention. Thus, approaches that preferred 
greater or lesser carbohydrate or insulin administration 
than SPRINT would recommend, or different combinations 
of parenteral vs enteral nutrition administration routes, 
were not possible because of its model-derived, paper-
based implementation.24–26 In addition, its inability to 
forecast a range of outcomes to an intervention required 
more frequent 1–2 hour measurement intervals to ensure 
tight control when it was not always necessary.24 The choice 
of measurement interval was not free and was specified 
as part of the protocol increasing perceived effort 
because of its inflexible approach.

This article presents a model-based TGC protocol that 
ameliorates or eliminates all these issues. Model-based 
uses stochastic models27,28 to forecast the range of glycemic 
outcomes for a given intervention, providing greater 
certainty over longer measurement intervals. It can thus 
target a desired range and, unique to this Stochastic 
TARgeted (STAR) approach, provide a guaranteed, cohort-
wide level of risk for hypo- or hyperglycemia to enhance 

Abstract cont.

Results:
Virtual trials indicate that STAR provides similar glycemic control performance to SPRINT with 2–3 h 
(maximum) measurement intervals. Time in the 72–126 mg/dl and 72–145 mg/dl bands was equivalent for all 
controllers, indicating that glycemic outcome differences between protocols were only shifted in this range. 
Safety from hypoglycemia was improved. Importantly, STAR using 2–3 h (maximum) intervention intervals 
reduced clinical burden up to 30%, which is clinically very significant. Initial clinical trials showed glycemic 
performance, safety, and management of inter- and intrapatient variability that matched or exceeded the virtual 
trial results.

Conclusions:
In virtual trials, STAR TGC provided tight control that maximized the likelihood of BG in a clinically specified 
glycemic band and reduced hypoglycemia with a maximum 5% (or lower) expected risk of light hypoglycemia 
(BG <72 mg/dl) via model-based management of intra- and interpatient variability. Clinical workload was self-
managed and reduced up to 30% compared with SPRINT. Initial pilot clinical trials matched or exceeded these 
virtual results.
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control and optimize risk. This risk level can be clinically 
set and thus provide a much better measure of clinical 
control over the risk of hypo- and/or hyperglycemia.29 
The STAR framework presented is also more flexible 
as glycemic target ranges and risk of hypo- or hyper-
glycemia can all be clinically specified to meet local 
criteria without adjusting the overall STAR approach. 
This research presents the (clinically validated)30 virtual 
trials protocol design and optimization for an adult 
intensive care unit (ICU) cohort, its comparison with 
SPRINT clinical data, and three initial clinical pilot trial 
results covering ~450 h of TGC.

Methods

Model and Virtual Trials 
Virtual trials enable testing of new TGC protocols before 
clinical implementation. It is a safe means of optimizing 
glycemic control performance, safety from hypoglycemia, 
clinical burden, and ability to handle dynamic changes 
in a patient’s metabolic state or other unanticipated 
errors or effects prior to clinical implementation.24,30,31 

Table 1.
Variable Definitions and Values for the Glucose-Insulin System Model of Equations (1)–(6)
Variable Description Values

G Blood glucose level (mmol/liter)

Q Interstitial insulin concentration (mU/liter)

I Plasma insulin concentration (mU/liter)

P2 Glucose level in gut (mmol)

P1 Glucose level in stomach (mmol)

Parameter Description Values

pG
Insulin independent glucose removal (excluding central nervous system uptake) and the suppression of 
EGP from EGPb with respect to G 0.006 (min−1)

αG Saturation parameter for insulin-mediated glucose removal 1/65 (liter/mU)

SI Insulin-mediated glucose removal and the suppression of EGP from EGPb with respect to G and Q (liter/mU/min)

P(t) Glucose appearance in plasma from dextrose intake (mmol/min)

EGP Endogenous glucose production 1.16 (mmol/min)

CNS Central nervous system glucose uptake 0.3 (mmol/min)

VG Plasma glucose distribution volume 13.3 (liter)

k Interstitial insulin transport rate - ln(0.5)/35 (min−1)

n Plasma insulin decay rate 0.16 (min-1) (min−1)

αI Saturation parameter for plasma insulin clearance 1.7 x 10-3 (liter/mU)

uex(t) Exogenous insulin (mU/min)

VI Plasma insulin distribution volume 3.15 (liter)

d2 Glucose absorption rate from gut -ln(0.5)/100 (min−1)

Pmax Maximal glucose flux from gut to plasma 6.11 (mmol/min)

d1 Glucose absorption rate from stomach -ln(0.5)/20 (min−1)

D(t) Dextrose intake (mmol/min)

The metabolic system model used is defined as follows:

Ġ = –pGG – SIG 
Q

1 + aGQ
 + 

p(t) + EGP – CNS
VG

    (1)

Q
.
 = –kQ + kI                         (2)

Ị = –
nI

1 + aII
 + 

uex(t)
VI

 + 3e–(uex(t)∗VI)          (3)

where

P(t) = min (d2P2,Pmax)                  (4)

Ṗ2 = –min (d2P2,Pmax) + d1P1              (5)

Ṗ1 = – d1P1 + D(t)                    (6)

where all model parameters are described in Table 1, 
including values for the population constants employed.
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Time-varying insulin sensitivity profiles [SI(t)] created 
from patient data32 are used as the critical marker of 
a patient’s metabolic state28,30,31 and identified hourly 
from clinical data.32 This model-based insulin sensitivity 
metric has been shown to be independent of both the 
insulin and nutrition inputs used to derive it, and has 
been clinically validated in its ability to predict the 
median and variability of both cohorts and individual 
patients on matched cohorts treated with different  
TGC protocols.30

Hence, these virtual patients can be used to accurately 
predict the outcome of new protocol designs and 
intervention strategies prior to clinical implementation. 
This approach allows more robust protocols to be designed 
and rigorously tested, which can improve patient safety 
when implemented as well as minimize the need for 
protocol alterations after implementation to account for 
unforeseen uses or effects.

Virtual Patients and Clinical Data
Clinical data from 370 patients reported in SPRINT10 were 
used to create virtual patients. They thus represented the 
SPRINT cohort, as reported, with which STAR protocol 
results were compared. Table 2 summarizes these patients’ 
clinical data; much more specific information is available 
in the studies by Chase and colleagues.10,12

Stochastic Model and Glycemic Control
The STAR TGC protocol recommends insulin and nutrition 
interventions based on recent patient data, and predicts 
blood glucose (BG) response to a particular intervention 
and a stochastic model27,28 of the potential variability 
in SI(t) over the following 1–3 h. The stochastic models 
and their use in TGC are presented in detail in 
elsewhere.27,28,33,34 However, these models capture the 
potential variation of (patient-specific) insulin sensitivity 
[SI(t)] over the next 1, 2, or 3 h based on a cohort model. 
While the median and most likely variation is no 
significant change from the prior hour, the interquartile 
range (IQR) and (5th, 95th) percentile variations can result in 
significant changes in BG for a given insulin intervention. 
Figure 1 shows this stochastic model and its impact, 
schematically, on BG outcome for a given intervention.

STAR Approach: Maximum Likelihood, Target to 
Range, and Maximum Risk
The STAR approach explicitly targets the (5th–95th) 
percentile outcomes shown in Figure 1 to specific, clinically 
chosen target levels. Thus, it targets ranges rather than 
any specific value, a “target to range” approach. The 5th 

Table 2.
SPRINT Patient Cohort Clinical Data and Glycemic 
Control Summary. Further Details Are in Chase 
and Colleagues10,12

Patient dataa

Total patients 370

Age (years) 65 [49–74]

% Male 63.6%

APACHE II score 18 [15–24]

APACHE II risk of death 25.7% [13.1–49.4%]

Diabetic history 62 (16.7%)

LoS [median, IQR] (days) 4.1 [1.7–10.4]

APACHE III diagnosis

Operative Number of 
patients %

Cardiovascular 76 20%

Respiratory 9 2%

Gastrointestinal 60 16%

Neurological 7 2%

Trauma 14 4%

Other (renal, metabolic, orthopaedic) 4 1%

Nonoperative Number of 
patients %

Cardiovascular 39 11%

Respiratory 66 18%

Gastrointestinal 10 3%

Neurological 20 5%

Trauma 32 9%

Sepsis 17 5%

Other (renal, metabolic, orthopaedic) 17 5%
a APACHE, Acute Physiology And Chronic Health Evaluation; 

LoS, length of stay; IQR, interquartile range.

percentile is never allowed to be lower than 72–80 mg/dl,  
providing a cohort-wide guaranteed (maximum) risk 
of 5% for BG below these values for any intervention. 
Importantly, this level can be clinically specified and be 
different for different measurement intervals.

For every intervention, the nurses have a free choice of 
measurement interval of 1, 2, or 3 h when BG is in the  
72–117 mg/dl range, provided there is no forecasted 
risk of low BG. Outside this range, targeting and 
measurement interval are restricted to 1 h for patient 
safety. Table 3 shows the target-to-range approach 
clinically specified in this case. The overall goal is a 
target range of 72–120 mg/dl with most measurements 
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desired in the 80–120 mg/dl range. Safety is preferred 
with a maximum expected risk of 5% for low BG rising 
from a threshold of 72 mg/dl at 1 h measurement to  
80 mg/dl at 2–3 h intervals.

Specific insulin and nutrition interventions are optimized 
using the system model of Equations (1)–(6) and the 
stochastic models. More specifically, they are dosed in 
increments with a maximum allowed change from the 
prior intervention, defined as follows:

Insulin: 0.0–6.0 U/h in increments of 0.5 U excluding 
0.5 U/h. Maximum change: +3 U/h or down to 0 U/h.

Nutrition: 30–100% of American College of Chest Physicians/
Society of Critical Care Medicine (ACCP/SCCM) goal feed 
of 25 kcal/kg/day35,36 in increments of 5%, using a low 

carbohydrate enteral nutrition formula (local clinical 
standard) of 35–40% carbohydrate content. Nutrition may 
be turned off for other clinical reasons (0%) leaving only 
insulin as an intervention. Maximum change: ±20% for 
a given intervention interval, typically altered every 3–5 h  
to reduce workload.

The maximum changes of ±20% (of goal feed) in nutrition 
rate, and +3 U/h increase in insulin are set with an 
unlimited insulin decrease to 0 U/h allowed for any given 
intervention period. These limits provide robustness to 
clinically observed sensor assay errors or failure. Thus, 
any sudden hyperglycemia will only be gradually reduced. 
If parenteral nutrition is specified, the value is set by the 
clinician and taken into account during all calculations. 
Thus, nutrition is modulated in the same percentages 
based on all sources of administration.

Figure 1. Stochastic model (left) can be used with an identified current level of SI(t) to provide a forecast range of SI(t) values over the next 1–3 h
interval. This forecast range of values can be used with a given insulin intervention and the system model of Equations (1)–(6) to yield a range of
BG outcomes of differing likelihood. Note that the stochastic model shown is for a 1 h interval; the 2–3 h interval models are very similar but not 
shown here. More details are in the studies by Lin and colleagues.27,28

Table 3.
STAR BG Target Ranges and Approach for BG in the 72–135 mg/dl Range

Measurement 
interval

BG percentile and target BG for that 
measurement interval Goal and outcome

1 hour

95th percentile is targeted equal to 117 mg/dl 
unless 5th percentile BG <72 mg/dl

Else 5th percentile targeted at 72 mg/dl 

Ensures 95% of outcome BGs are in 72–117 mg/dl target range and 
risk of light hypoglycemia BG <72 mg/dl does not exceed 5%.

2 hour 5th percentile targeted at 80 mg/dl

Ensures most likely BG values are in 80–120 mg/dl range and a 
maximum risk of 5% for BG <80 mg/dl. It also accepts a potentially 
greater likelihood of exceeding 120 mg/dl at end of interval as 
preferable to being lower than 80 mg/dl.

3 hour 5th percentile targeted at 80 mg/dl

Ensures most likely BG values are in 80–120 mg/dl range and a 
maximum risk of 5% for BG <80 mg/dl. It also accepts a potentially 
greater likelihood of exceeding 120 mg/dl at end of interval as 
preferable to being lower than 80 mg/dl.
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More specifically, at each measurement, the algorithm 
searches over all feasible solutions within these 
intervention constraints. If no feasible solution is available 
for a 2–3 h interval, the 5th percentile is set on a value over 
80 mg/dl within these limits. If both interventions are 
changing, then the protocol selects the feasible option 
with greatest nutrition administration, a choice that was 
clinically specified.

An additional 1 U/h insulin infusion is recommended if 
the limits of nutrition and insulin are unable to adequately 
ensure avoidance of hyperglycemia, based on meeting 
the following conditions:

• Insulin was administered at a rate of ≥5 U/h for 
the past 3 h

• At least 4 h has elapsed since the last time the 
enteral feed was turned off.

The infusion is sustained for 6 h and accounted in all 
subsequent calculations unless enteral or parenteral feed 
is stopped or BG is decreasing rapidly. 

Finally, there are three special cases for which measure-
ment intervals are restricted to every 1 and/or 2 h and 
interventions modified, defined as follows:

Gradual reduction of hyperglycemia: BG >135 mg/dl (level 
set by clinician).

Rapid decrease in BG: BG is more than 18 mg/dl lower 
than the predicted 5th percentile BG output, signifying 
very rapid change outside of forecast ranges and toward 
hypoglycemia.

Nutrition suspension: When nutrition administration is 
turned off for clinical reasons, the risk of hypoglycemia 
can rise for a given insulin dose.

Table 4.
Special Cases Definitions and Outcome Impact on Interventions and Measurement Interval

Case Condition Outcome Maximum measurement 
interval (hours)

Gradual reduction of 
hyperglycemia BGi > 135 

Percentile used for targeting 50th

1
Target value 0.85 × BGi

Rapid decrease in glucose 
levels BGi < BGi-1 (5th) – 1

BGi < 90 Background insulin infusions stopped
1

BGi ≥ 90 Background insulin infusions stopped

Nutrition suspension Feed turned off by clinician Use only insulin intervention
Stop all extra insulin infusions 2

Each case represents a significant risk to patient safety 
where insulin can be dosed excessively in other protocols. 
The computerized system detects these situations 
automatically and offers only the relevant options.  
Table 4 summarizes these cases and the resulting 
intervention and measurement interval.

Analyses
Results from virtual trials of STAR were compared 
with clinical data from patients treated with SPRINT in 
the Christchurch ICU. Statistics were collated for three 
versions or clinical uses of STAR:

Best case: Measurement interval limited to 1 h.

Intermediate case: Measurement interval limited to 2 h 
(when available).

Minimum clinical effort case: Measurement interval not 
limited (up to 3 h) and longest available selected.

The 2 h limited interval (intermediate) case is the best 
comparator to the clinical SPRINT data10 given similar 
measurement intervals. Table 5 defines the performance 
metrics used to assess performance, safety, and  
clinical effort.

In addition, SPRINT and STAR are compared by the 
distributions, across the same cohort, of insulin and 
nutrition interventions to assess how differently the 
outcomes are achieved by each protocol.

Clinical Implementation
Clinical implementation of STAR is straightforward and 
illustrated in Figure 2. In particular, a BG measurement 
is taken and that value is input into a table computer, 
laptop, or other device. The model then computes 1-, 2-, 
and 3-h interval treatment options as defined in earlier 
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sections. Finally, the nurse must input the chosen 
recommendation to the insulin and nutrition pumps, 
as necessary. This semiautomated, human-in-the-loop 
approach improves safety, as advice can be examined 
or changed if desired and regulated equipment will 
not have to be modified for full automation. The user 
interface and human factors are described by Ward  
and colleagues.37,38

Clinical Pilot Trials 
Initial pilot clinical trials results are presented from  
three initial patients (479 h) in a larger pilot trial as a 
proof of concept. These patients were recruited under 
informed consent based on treatment using SPRINT, the 
standard of care at Christchurch Hospital, Christchurch, 
New Zealand. Ethics approval for this pilot study 
was granted by the Upper South A Regional Ethics 
Committee.

Results

Performance
Table 6 shows STAR has similar or better performance 
than SPRINT. All BG results are resampled hourly with 
linear interpolation to provide a consistent timing basis 
across protocols with different prescribed measurement 
rates. The comparatively higher rate of measurements 
in the 90–117 mg/dl band reflects the higher range of  
117 mg/dl versus 110 mg/dl in SPRINT. The percentage of 
measurements recorded in the target band (72–117 mg/dl) 
decreases with longer measurement intervals as more 
flexible control is permitted. Comparing the 2 h version 
of STAR with SPRINT shows that SPRINT achieves 
slightly higher percentages in the 72–117 mg/dl range 
but that the two protocols are similar across the other 
ranges. The 3 h interval case has slightly wider control 
toward slightly higher glycemia, as expected by design. 
Notably, in the 72–145 mg/dl range, all protocols are 
largely equivalent.

These glycemic outcomes in Table 6 were obtained 
using wider ranges of per-patient insulin and nutrition 
administration rates. Higher enteral nutrition rates in STAR 
are directly proportional to the overall enteral nutrition 
given because a single, fixed composition (Glucerna, 
Abbott Labs, Colombus, OH) nutritional formula was 
used, and were offset in part by the virtual trials, such 
as SPRINT, providing no nutrition where clinically 
specified in the data. Hence, the 0% feeding over all 
patients includes several short-stay cardiovascular  
surgery patients (and others) who were not fed by clinical 

Table 5.
Metrics to Assess Performance, Safety, and Clinical 
Effort 

Descriptions

Performance

Cohort: median and IQR of BG measurements
Per-patient: median and IQR of BG measurements
Percentage of BG measurements in desired target 
ranges
Insulin and nutrition administration

Safety Number of hypoglycemic events: light (<72 mg/dl) 
and severe (<40 mg/dl)

Clinical effort Measurements per day

Figure 2. Schematic of clinical use of semiautomated and model-based STAR system on a tablet computer where the example screen shows 
the current STAR treatment and last BG measurement (right side). The arrows indicate nursing staff interaction with sensors and pumps in 
semiautomated human-in-the-loop control.
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decision. When only periods of feeding were included, 
the results were consistent. In particular, the lower 
quartile per-patient median dextrose administration rates 
(during nutrition administration) were 40–54% higher  
for STAR than for SPRINT, while the upper quartile 
value was similar to 20% higher. Note that SPRINT had a 
maximum nutrition rate of 80% of the goal ACCP/SCCM 
rate, whereas STAR was limited to 100%.

Figure 3 shows the per-patient BG cumulative distribution 
function (CDFs) for each case. STAR provided tighter 
control across all patients for each case than SPRINT.  
It did so using more insulin and a wider range of 
insulin administration rates, while also providing greater 
nutritional input. Hence, the model-based approach 
delivered better patient-specific management of intra- 
and interpatient variability. 

Safety
Table 7 indicates that STAR effectively reduces hypo-
glycemia. Absolute (relative) reductions of 1.1% (41%), 
0.7% (26%), and 0.7% (26%) can be seen in the percentage 
of light hypoglycemia assessed as percentage of BG  
<72mg/dl for STAR 1-, 2-, and 3 hmaximum measurement 
intervals, respectively. There are similar results for BG 
<80 mg/dl [range: 2.1–2.9% absolute (28–40% relative)]. 
Severe hypoglycemia (BG <40 mg/dl) was unchanged for  
the 3 h maximum interval but was significantly reduced 
by 5 patients for the best comparator 2 h case (35%) and to 
6 for the 1 h best case (57%), which, despite improvement 

with STAR, still shows a (decreased) association between 
measurement interval and hypoglycemia.

Clinical Effort
Table 8 shows measurements per day, which are a main 
source of clinical effort. STAR reduces the average per 
day by 13.3% and 30.0% for the 2- and 3 h interval cases. 
These reductions are higher in longer-stay patients.

TGC Intervention Comparisons (SPRINT vs STAR)
Figure 4 compares the intervention choices made for STAR 
every 2 h and SPRINT, the most directly comparable 
protocols, as SPRINT only offered maximum measure-
ments every 2 h based on a series of rules to determine 
patient stability.10,24,25 It is clear that STAR provides 
significantly more hours at higher goal feed rates than 
SPRINT. Equally, STAR makes far wider use of the range 
of insulin interventions. This result occurs because STAR 

Table 6.
Summary of Performance. Raw Data of SPRINT and Closest Comparator (STAR 2-Hour) Are Shaded to Show 
This Comparisona

STAR
1 h intervals

STAR
2 h intervals

STAR
3 h intervals SPRINT

BG median [IQR] (mg/dl) 97 [90–110] 99 [90–114] 106 [95–119] 104 [90–117]

%BG in 72–117 mg/dl 80.6 77.8 71.1 73.6

%BG in 72–126 mg/dl 86.0 84.4 81.2 82.4

%BG in 72–145 mg/dl 92.4 91.8 90.9 90.8

Median insulin rate [IQR] (U/h) 2.5 [1.3–4.0] 2.0 [1.0–3.3] 2.0 [1.0–3.0] 3.0 [2.0–3.0]

Nutrition over all patients:

Median dextrose rate [IQR] (g/h) 3.3 [0.0–4.5] 3.1 [0.0–4.6] 3.6 [0.0–5.2] 2.3 [0.0–4.7]

Median glucose rate [IQR] (% goal) 51% [0–70%] 48% [0–72%] 56% [0–80%] 35% [0–72%]

Nutrition only during feeding:

Median dextrose rate [IQR] (g/h) 4.0 [3.1–5.1] 3.9 [3.1–5.1] 4.7 [3.5–6.1] 3.9 [2.3–5.2]

Median glucose rate [IQR] (% goal) 63% [49–80%] 62% [48–80%] 73% [54–96%] 60% [35–80%]
a In virtual trials, patients were not given nutrition when clinically specified in the raw data to match the clinical situation in the SPRINT 

data. The nutrition is shown twice for all patients and hours and then only including times when nutrition was allowed.

Table 7.
Summary of Safety Results

STAR
1 h 

intervals

STAR
2 h 

intervals

STAR
3 h 

intervals
SPRINT

%BG <80 mg/dl 5.1 5.2 4.4 7.3

%BG <72 mg/dl 1.6 2.0 2.0 2.7

Number of 
patients with BG 
measurements 
<40 mg/dl

6 9 14 14
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Figure 3. BG cumulative distribution functions (CDFs) of median, IQR, and 5th–95th percentile patients for the SPRINT and STAR protocols. 
(A) STAR 1-hour; (B) STAR 2-hour; (C) STAR 3-hour; and (D) SPRINT.

Figure 4. Distribution of insulin and nutrition interventions for STAR every 2 h (left) and SPRINT (right), where SPRINT does not offer 0.5 U/h 
interventions (e.g., 1.5, 2.5 ... 5.5 U/h), which are shown as having zero counts of occurrence.
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tends to modulate insulin more dynamically around 
a narrower range of nutrition rates, where, in contrast, 
SPRINT tends to provide relatively constant insulin 
rates of 2–3 U/h and modulates nutrition rates more 
dynamically over the possible range. Thus, it is clear that 
STAR and SPRINT have very different approaches to 
TGC with respect to these two interventions, from which 
STAR achieves similar or improved performance, safety, 
and clinical burden outcomes as shown in Tables 6–8.

Pilot Clinical Trial Results
Figure 5 shows glycemic (top panel) and intervention 
(bottom panel) results for each of the three patients in the 
clinical pilot trial (patients A, B, and C), comprising 479 h  
of TGC. Overall median (IQR) BG is 104 (90–122) mg/dl. 
The percentage of clinical measurements in relevant bands 
are BG <72 mg/dl: 5.4%; BG in 72–117 mg/dl: 64%; and 
BG in 72–144 mg/dl: 88%. These results are comparable 
to or better than those in Table 6. The lowest BG was 
52 mg/dl. 

Discussion
STAR is a unique, model-based TGC protocol that uses 
clinically validated metabolic and stochastic models to 
optimize treatment recommendations in the context of 
possible future patient variation. It enables probabilistic 
forecasting to achieve adaptable and more optimized 
patient care. This forecasting capability in a computerized 
protocol enables increased protocol flexibility, increased 
safety, and reduced clinical effort by design.

In particular, the stochastic approach enables a unique 
targeting method. All interventions are designed based on 
maximizing the likelihood of BG in a clinically specified 
and desired range while guaranteeing a maximum (safety) 
cohort-wide risk of light hypoglycemia. The stochastic 
output range is thus overlaid with a clinically specified 
desired control range (72–117 mg/dl in this case) to 
maximize the likelihood of being in that range while also 
ensuring safety. Hence its control directly incorporates 
patient variability into control and selects treatments that 
are justified by their predicted effect on the full range of 
possible BG outcomes.

Use of stochastic forecasting and model-based control 
intrinsically avoids the risk of insulin saturation due 
to high insulin doses with minimum effect, thus 
minimizing excessive insulin dosing.39,40 In particular, 
as insulin dose increases, the stochastic bounds become 
wider making it difficult to achieve the desired targets 

shown in Table 3. Equally, additional insulin infusion 
recommendations enable consistently high insulin resistance 
to be managed while avoiding overresponse. Hence, this 
approach can provide more flexible, patient-specific care 
as compared with SPRINT; part of the results are seen in 
Figures 4 and 5.

A further impact of stochastic forecasting is evident in the 
results shown in Table 6 for insulin rates. In particular, 
while the BG levels achieved are similar, the median 
(IQR) insulin rates are slightly lower for STAR than for 
SPRINT despite similar or higher nutrition rates. In this  
case, the use of computer models and stochastic bounds 
allows STAR to be very aggressive with insulin when 
it is safe to do so. Hence, the stochastic forecasting 
available to STAR allows outlying (outside of the IQR 
or the outer 50%), aggressive insulin doses that SPRINT 
cannot use safely. This point of difference is evident also 
in Figure 4, where STAR clearly modulates insulin far 
more aggressively and frequently than SPRINT for both 
high (≥4 U/h) and low (≤1 U/h) doses that are rarely 
used in SPRINT. Therefore, similar BG outcomes are 
obtained for what appear to be, in terms of median and 
IQR, slightly lower insulin doses.

The STAR framework and approach presented allows 
(relatively) free choice of measurement interval to 
reduce real and perceived clinical burden through 
longer intervals between interventions.41,42 While longer 
intervals used different targeting in Table 3, the overall 
glycemic performance was still comparable to or better 
than SPRINT. Equally, all degradation of control was 
toward moderate hyperglycemia (BG >126 mg/dl) by 
design and the use of stochastic maximum likelihood 
targeting. This approach reflects the greater opportunity 
for variation over a longer interval and thus maximizes 
safety while also keeping the glycemic outcome 
distribution centered on the desired range to maximize 
the likelihood of being in that range.

More specifically, the virtual patient simulations show 
that STAR is effective at reducing a primary source of 

Table 8.
Summary of Clinical Effort as Measurements  
per Day

STAR
1 h 

intervals

STAR
2 h 

intervals

STAR
3 h 

intervals
SPRINT

Average 
measures/day 24 13 10.5 15
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Figure 5. Patients A (top), B (middle), and C (bottom) showing BG (upper panel of each pair), and the insulin and nutrition interventions 
(lower panel of each pair) results on similar axes. The straight lines on the BG results are at 72 and 125 mg/dl. Vertical lines show insulin boluses  
(left axis, lower panels) and nutrition is on the right axis in (g/h) of those lower panels. EN, enteral; PN, parenteral.

clinical effort and negative feedback about TGC, which 
has been a major drawback in earlier studies.19 Staff 
perception of workload is influenced by the number of 
measurements per day, actual time spent at the bedside 
performing measurements and administering treatment, 
and accuracy of control obtained.41 In particular, if a 
protocol is able to regulate glycemic levels effectively 

and achieve clinical outcomes, impressions of clinical 
staff are more positive, and perceived effort is (at least 
slightly) reduced. Although STAR is able to reduce the 
number of measurements per day, it is implemented 
through a computer, which requires time for data 
entry as well as calculation run-time. As a paper-based 
protocol, SPRINT is faster in this respect and may be 
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more transparent in its operation to users,41 which also 
affects perceived effort and compliance. Simulation 
results indicate that the accuracy of control for STAR 
is comparable to or exceeds clinical SPRINT results, so 
perceptions of effort will likely hinge on the outcome of 
clinical implementation.

Overall results highlight the trade-off between tight 
control and measurement rate (clinical effort). The clinical 
distribution functions (CDFs) of Figure 3 show that the 
best control is achieved by the 1 hversion of STAR, as 
expected, but at a consequence of 24 measurements per 
day. When the maximum interval is set at every 2 or 3 h  
with lesser measurements and clinical effort, STAR 
outperforms SPRINT with respect to hypoglycemia 
(safety) with comparably tight control (performance). 
However, there is still some dependence, although 
weaker, between measurement interval, and safety  
and performance.

In contrast, there is little degradation in performance 
between the every 2 h and 3 h versions of STAR, which 
provide significant reductions in clinical effort. For a 17% 
(relative) reduction in measurements per day between 
the 2- and 3-h versions of STAR, there is a penalty of  
9.5% (relative) reduction in measurements in the tightest 
(72–117 mg/dl) target band, which is not likely to be 
clinically significant as those measurements have only 
moved to very slightly higher BG, as seen in Table 6 
and Figure 3. Hence, STAR represents a potentially more 
optimal trade-off of clinical effort and performance.

Virtual trials are only a guideline. However, this in silico 
method has been extensively tested and validated for 
specific patients and in predicting both the median 
and variability of clinical trial outcomes. It is the only 
such model validated to this extent to date.30 Hence, it 
is expected that initial clinical results, such as those 
shown here, will be consistent with the virtual trial, in 
line with earlier studies using this virtual trials method  
and approach.30,31

The STAR glycemic control approach presented is 
fully generalizable. The clinical targets and ranges 
can be set directly by clinical staff, as can the desired 
risk of hypo- or hyperglycemia (maximum 5% for BG  
<72 mg/dl here). Hence, this approach is entirely flexible. 
The ranges and risk values used here represent those 
chosen at Christchurch Hospital.

In contrast, while the glycemic ranges used here broadly 
match those in the design of SPRINT, SPRINT was fixed  

in its implementation, did not allow flexibility, and could 
not be adjusted directly by clinical staff for different 
patients or groups, as has been done for STAR in pilot 
trials in Belgium and Hungary that use only an insulin 
intervention with fixed nutrition rates and different 
glycemic target ranges.43

One possible limitation of this overall STAR framework 
and approach is the stochastic model. Its forecasting is 
at the center of all major advantages enabled by this 
approach. It is also a cohort-based model, which means 
that it will be too conservative for some patients but 
potentially not conservative enough for others.34 Equally, 
there is no assurance that all ICU cohorts will have 
similar metabolic variability. However, these models can 
be readily created from existing clinical data for any 
reasonably similar metabolic system model.27,28,34 Equally, 
and perhaps more importantly, there was a study 
that found similar metabolic variability between New 
Zealand and Belgian ICU cohorts,23 although this specific 
result needs to be further generalized going forward.

Finally, the initial clinical results are positive. They do 
clearly show that the STAR controller implemented 
clinically for ~450 h has similar or better performance 
than the virtual trials. Equally, Patients A and B clearly 
showed different levels of metabolic variability, which 
was managed equally well with respect to glycemic 
performance and safety in both cases. Patient C showed 
a unique case worth noting, in which the controller 
recognized the relatively high insulin sensitivity of 
the patient after about half the patient’s stay and was 
able to recommend that no insulin be given. This 
recommendation was correct given the resulting good 
glycemic control within the desired target band for over 
50 subsequent hours. The correct recommendation of 
no insulin is one that many protocols find difficult to  
make as their design is implicitly based upon and biased 
toward active intervention. Hence, the STAR controller 
was able to avoid over-controlling the patient with insulin 
where necessary.

Conclusions
Clinically validated in silico virtual trials of the STAR 
TGC approach show that this approach can provide 
quality control performance while significantly reducing 
hypoglcycemia and clinical workload. The stochastic 
forecasting used is unique in this field and enables a 
maximum likelihood approach to targeting a desired 
glycemic range while also enabling the clinical risk of 
hypo- or hyperglycemia to be managed directly. It also 
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enables patients with very different metabolic (intra- 
and interpatient) variability to be managed directly 
and controlled within a single (STAR) framework. 
More specifically, the STAR approach presented is 
fully generalizable, and clinical targets and ranges can 
be set directly by clinical staff, with those used here 
representing those chosen at Christchurch Hospital. 
Initial clinical trials as part of a larger pilot trial matched 
or exceed these virtual results.
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