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Abstract

Background:
The acceptance of closed-loop blood glucose (BG) control using continuous glucose monitoring systems (CGMS)  
is likely to improve with enhanced performance of their integral hypoglycemia alarms. This article presents  
an in silico analysis (based on clinical data) of a modeled CGMS alarm system with trained thresholds on 
type 1 diabetes mellitus (T1DM) patients that is augmented by sensor fusion from a prototype hypoglycemia alarm  
system (HypoMon®). This prototype alarm system is based on largely independent autonomic nervous system 
(ANS) response features.

Methods:
Alarm performance was modeled using overnight BG profiles recorded previously on 98 T1DM volunteers. 
These data included the corresponding ANS response features detected by HypoMon (AiMedics Pty. Ltd.) systems. 
CGMS data and alarms were simulated by applying a probabilistic model to these overnight BG profiles.  
The probabilistic model developed used a mean response delay of 7.1 minutes, measurement error offsets  
on each sample of ± standard deviation (SD) = 4.5 mg/dl (0.25 mmol/liter), and vertical shifts (calibration offsets)  
of ± SD = 19.8 mg/dl (1.1 mmol/liter). Modeling produced 90 to 100 simulated measurements per patient.  
Alarm systems for all analyses were optimized on a training set of 46 patients and evaluated on the test 
set of 56 patients. The split between the sets was based on enrollment dates. Optimization was based on  
detection accuracy but not time to detection for these analyses. The contribution of this form of data fusion to 
hypoglycemia alarm performance was evaluated by comparing the performance of the trained CGMS and 
fused data algorithms on the test set under the same evaluation conditions.

continued 
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Introduction

Landmark studies have demonstrated the efficacy 
of tight glucose control in the prevention of long-
term complications of diabetes.1,2 Despite this, a high 
proportion of people suffering from type 1 diabetes mellitus 
(T1DM), do not achieve recommended glycemic targets. For 
these people, the near term fear of undetected hypoglycemia 
is a key barrier to achieving tight glucose control in 
practice. Advances in the development of continuous 
glucose monitoring systems (CGMS) have offered a 
major potential to improve diabetes care, but as yet  
have not proved accurate enough to provide a reliable 
hypoglycemia alarm. Furthermore, the implementation of  
improvements to insulin delivery such as closed-loop 
systems is limited by safety concerns such as the possible 
consequence of closed-loop systems continuing to infuse 
insulin under hypoglycemic conditions. All forms of 
insulin therapy, including closed-loop blood glucose 
(BG) control systems, could benefit from integrated hypo-
glycemia alarms that can function as key safety devices.3 
In analogous applications where available detection 
data may contain significant noise, such as alarms for 
arrhythmia, the problem of key safety alarms has been 
addressed by data fusion techniques.4 Data fusion refers 
to the combination of data from multiple sensors in order 
to gather more reliable and accurate information than 
can be achieved using a single data source. Data fusion 
is most effective when distinct and complementary 
sources of alarm confirmation are available. This article 
evaluates potential hypoglycemia alarm enhancement 

through the fusion of simulated CGMS data and alarms 
with autonomic nervous system response (ANS) features  
as detected by HypoMon® systems.

Methods

Data for this simulation were derived from overnight 
clinical studies on HypoMon systems (AiMedics Pty. Ltd., 
Sydney, Australia) conducted between August 2007 and 
November 2008. These studies were part of a larger 
HypoMon development program.5 The first of the two 
protocols for this component of the clinical study program 
of the HypoMon enabled the collection of data for the 
integrated alarm algorithms; the second enabled a 
review of real-time performance of the HypoMon on an 
independent test set of patients.6 These protocols were 
approved by the local ethics committee, and subjects  
(or, in the case of minors, their parents or guardians) 
gave informed written consent.

Subjects
Ninety-eight adolescents and young adults with T1DM 
were enrolled in these studies at Princess Margaret Hospital, 
Perth, Australia (59 males). The mean age of participants 
was 16.3  ±  2.0 years (range 12.1–20.9 years), body mass 
index was 24.3  ±  3.5 kg/m2 (range 17.2–  34.0  kg/m2), 
duration of diabetes was 7.1 ± 4.3 years (range 0.3–17.5 years), 
and hemoglobin A1c was 8.6 ± 1.5% (range 6.2–14.0%).

Abstract cont.

Results:
The simulated addition of HypoMon data produced an improvement in CGMS hypoglycemia alarm performance  
of 10% at equal specificity. Sensitivity improved from 87% (CGMS as stand-alone measurement) to 97% for 
the enhanced alarm system. Specificity was maintained constant at 85%. Positive predictive values on the test set 
improved from 61 to 66% with negative predictive values improving from 96 to 99%. These enhancements were 
stable within sensitivity analyses. Sensitivity analyses also suggested larger performance increases at lower CGMS 
alarm performance levels.

Conclusion:
Autonomic nervous system response features provide complementary information suitable for fusion with CGMS data  
to enhance nocturnal hypoglycemia alarms.
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36

Hypoglycemia Alarm Enhancement Using Data Fusion Skladnev

www.journalofdst.orgJ Diabetes Sci Technol Vol 4, Issue 1, January 2010

Of the 98 subjects monitored overnight, 36 developed a 
BG level <68.4  mg/dl (3.8  mmol/liter), 25 of these with 
BG levels <57.6  mg/dl (3.2  mmol/liter) and 19 with BG 
levels <54.0 mg/dl (3.0 mmol/liter).

Protocols
The protocols for both study phases were essentially 
identical. Volunteers in both studies were asked to continue 
with their normal diabetes management, having taken  
their usual insulin with dinner. Participant exclusions 
included previously enrolled, severe hypoglycemic episode 
in the previous 3 months, and use of any medication 
that would affect the autonomic system (e.g., β blocker). 
During these overnight studies, BG levels were monitored  
at 15- to 30-minute intervals via approximately 0.2-ml 
samples from an intravenous cannula. The venous samples 
were read on two laboratory glucose analyzers. The use 
of two analyzers enabled verification of readings and 
periodic quality checks. The frequency of blood glucose 
sampling was increased to every 15 minutes if the BG 
level fell below 90 mg/dl (5.0  mmol/liter). Subjects were 
given carbohydrates when the BG level fell below 
45  mg/dl (2.5 mmol/liter). Volunteers wore a HypoMon  
sensor belt and transmitter overnight. Transmitted ANS 
responses were monitored at 1-minute intervals by a 
bedside HypoMon receiver system.

The HypoMon
The HypoMon (AiMedics Pty. Ltd.) has been developed 
to address the problem of overnight monitoring for 
hypoglycemia. Conceptually, the system is based on 
identifying specific patterns of physiological responses 
to hypoglycemia in order to enable an appropriate alarm 
sequence. The system consists of a chest belt that non- 
invasively measures physiological parameters extracted 
from electrocardiogram and skin impedance measurements. 
A radio frequency transmitter attached to the chest belt 
transmits collected data to the receiver to complete the 
system. The receiver can be positioned at the bedside 
or in an adjacent room. It incorporates interpretation 
algorithms to recognize hypoglycemia signatures within 
transforms of the monitored physiological parameters.  
In this study, selected features within a spectrum of 
ANS responses used by the HypoMon alarms were fused 
with simulated CGMS data.

Modeling
Simulation of CGMS data involved applying probabilistic 
modeling techniques.7 The modeling process was 
implemented using the following three stages.

Stage 1. The actual measured BG profile [Yellow Springs 
Instruments (YSI)] measurements) for each patient served 
as the basis of the model. These overnight BG profiles 
were sampled at 10- to  30-minute intervals, resulting in 
an average of 19 BG samples per patient per night, with a 
standard deviation (SD) of ± 3 samples. Each patient’s 
overnight BG profile was linearly interpolated onto a 
uniform time grid of 5-minute intervals. This allowed 
for simulation of CGMS data as if it were obtained at 
5-minute intervals for the whole night (around 90–100 
samples per patient per night) as described in stage 2.

Stage 2. Overnight CGMS data traces were produced by 
adding simulated CGMS errors to the actual interpolated 
overnight YSI BG profiles of patients as determined in 
stage 1. The addition of measurement errors transformed 
the actual BG profile for each patient to a probable 
CGMS trace.

Simulated measurement errors included three different 
components relating to actual known errors of CGMS 
devices. Such errors have been reported by Wentholt 
and colleagues,8 who described a temporal delay error 
of CGMS data from the actual BG profile by mean = 
7.1  minutes ± SD = 5.5  minutes, offset error of each 
CGMS sample by ± SD = 4.5  mg/dl, and vertical shift 
(calibration error) of CGMS profile by ± SD = 19.8 mg/dl. 

To simulate CGMS traces using our actual measured 
patient BG profile, each error type was added in a 
probabilistic way. This was achieved by the addition 
of random values to the whole BG profile as well as each  
BG point. These random values were chosen from 
Gaussian probability density functions with means and 
variances given by the actual reported CGMS errors  
given earlier. Because they exhibit some degree of 
correlation, the assumption that the offset error is 
random is not generally applicable to offsets of CGMS 
data points.9 In our analysis, however, this approximation 
is justified by its relatively low contribution to CGMS 
performance degradation, compared to the effect of vertical 
shift error (calibration offset error).

Stage 3. In stage 2, all patients’ BG profiles were essentially 
converted to simulated CGMS traces. For input into  
our algorithms for hypoglycemia alarms, stage 2 was 
iterated 100 times for each patient. This meant 100 probable 
CGMS traces for each patient were used as input to 
the algorithm. In this way, the average performance of 
the detection algorithm [sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV)] 
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could be determined in a probabilistic way. We believe  
that this probabilistic method of modeling gives the most 
robust analyses of simulated CGMS data. An example 
of an overnight BG profile from a single subject with  
10 modeled CGMS traces is given in Figure 1.

Analysis
The 98 patient cohort used in this study was split on the 
basis of entry into the HypoMon clinical development 
and evaluation (validation study) programs. The training 
subset was formed from the first 46 patients, which was 
the same subset used to develop the HypoMon algorithms  
for the subsequent in-house validation study program 
that enrolled 52 patients. The rationale for continuing 
to split data in this way for this study was that the 
52 patient evaluation set was not used for any level of 
algorithm/threshold training.

The CGMS and fused data alarm algorithms were 
optimized on the training data subset. Within this 
subset, 18 patients experienced a hypoglycemia event as 
defined for training purposes. Prior training experience 
on earlier patient sets showed that a single threshold of  
<63  mg/dl (3.5  mmol/liter) produced more stable 
algorithm performance with training sets of this size. 
Parameters of CGMS data processing and ANS feature 
extraction, including alarm thresholds, were optimized 
over many iterations, with the goal of achieving maximum 
possible performance in terms of sensitivity and specificity 
but not time to alarm. Time-to-alarm optimization would 
require access to proprietary BG trend analysis methods 
not currently available. At each iteration, the performance 
vs threshold was produced by calculating an average 
performance over 25 separate runs of CGMS signal 
simulation and the optimum threshold was selected. 
During algorithm training, performance was calculated 
without using an error band, aiming to achieve a dense 
clustering of predictions near the targeted BG value of 
63 mg/dl (3.5 mmol/liter).

Fusion of the HypoMon ANS response and simulated 
CGMS data was implemented using logic “OR” conditions 
on threshold transforms of both ANS and CGMS data 
(yes/no of crossing relevant threshold). Triggering of an 
alarm using this “OR” function was only permitted to 
operate (“AND” function) at simulated CGMS values 
below 86.4 mg/dl (4.8 mmol/liter). Optimization training 
for both CGMS alarms and fused data alarms used the 
training subset of 46 subjects. Performance evaluations 
were conducted on the independent test set.

In order to structure our interpretation to reflect practical 
hypoglycemia alarm usage rather than the more usual 

multiple correlated data point analyses used for CGMS, 
analyses for all HypoMon studies were based on the first 
alarm (either true or false) each night. Test data set 
analyses for both CGMS and fused data allowed a 
common error band for all analyses of between 68.4 mg/dl  
(3.8  mmol/liter) and 54.0 mg/dl (3.0  mmol/liter) and a 
window for the true alarm period that extended from 
40 minutes before the hypoglycemia event to 40 minutes 
after the event. The metrics for establishing true positives 
and negatives and false positives and negatives for all 
test set evaluations were as follow: if an alarm was 
associated with at least one BG value below 68.4  mg/dl 
and it occurred within the allowed time window, it was 
a true positive; all other alarms were false positives. 
False negatives occurred if any BG values below 54  mg/dl 
occurred during the night without a true positive 
alarm. True negatives occurred if no other condition 
was satisfied. Fusion performance enhancements were 
analyzed further through a series of sensitivity analyses, 
which tested CGMS simulation assumptions and error 
band/true alarm time window settings.

Results
Examples of simulated CGMS hypoglycemia alarm 
performance based on in silico modeling are shown 
in Figure  2 (training set) and Figure  3 (test set). 
Plots show the sensitivity and specificity on the data sets 
as a function of alarm threshold for 25 runs of simulation. 
Table 1 provides a comparison between simulated CGMS 
alarm performance on the test data subset and three sets 
of published data from commercial systems, as well as 

Figure 1. Example of probabilistic simulation of CGMS data using 
an overnight BG level profile of a patient experiencing nocturnal 
hypoglycemia. The interpolated YSI profile is shown in red, with 10 
probable CGMS traces (cyan). CGMS traces were simulated by adding 
three error components to YSI data. Errors were realistic of CGMS 
accuracy as described by Wentholt and colleagues8: vertical shift 
(calibration bias) of BG level profile by ± SD = 19.8 mg/dl (1.1 mmol/liter),  
temporal delay of CGMS trace from BG level profile by a mean time of 
7.1 minutes ± SD = 5.5 minutes, and measurement error offsets of BG 
level data points by ± SD = 4.5 mg/dl (0.25 mmol/liter).
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Figure 2. Simulated CGMS alarm performance on training data 
showing the sensitivity and specificity of hypoglycemic alarms as 
a function of threshold of CGMS reading. Even though the error band 
was not applied during algorithm training, it was applied in this 
evaluation in order to allow comparison with the test performance 
in Figure 3. At the optimal threshold of 72 mg/dl determined during 
algorithm training, training performance with the error band applied  
was 85% in terms of sensitivity and 81% in terms of specificity.

Figure 3. Simulated CGMS alarm performance on test data showing 
the sensitivity and specificity of hypoglycemic alarms as a function 
of threshold of CGMS reading. At the optimal threshold of 72 mg/dl  
(4.0  mmol/liter) determined during algorithm training, the test 
performance was 87% in terms of sensitivity and 85% in terms of 
specificity.

Table 1.
Comparison of Simulated and Published CGMS Hypoglycemia Alarm Performance 

Data sourcea Estimated 
sensitivity (%)

Estimated 
Specificity (%)

1 Optimized CGMS alarm simulation 87 85

2
Guardian RT
 PMA number P980022/S011; Food and Drug Administration (FDA) approval: July 18, 2005

49 57

3
DexCom™ STS™ CGMS
 PMA number P050012; FDA approval: March 24, 2006

57 76

4
FreeStyle Navigator® CGMS
 PMA number P050020; FDA approval: March 12, 2008

79 60

5
HypoMon® optimized as a stand-alone alarm system
Tested on a validation data subset of 52 subjects.

73 68

a Sources 2, 3, and 4 correspond to References 10–12. Performance estimates are relative to YSI readings of venous samples and were 
derived from multiple correlated data points. Other comparable studies13,14 suggest similar performance levels. The performance of the 
HypoMon system6 as a stand-alone alarm is also shown for reference.

test set results for the HypoMon. The performance of 
the HypoMon shown in Table 1 was achieved by means 
of an algorithm designed specifically to operate as part 
of a stand-alone alarm system producing a single alarm 
per hypoglycemic episode. This algorithm is significantly 
different from the fused system algorithm evaluated in 
this article and is shown for reference purposes only.

The simulated CGMS alarm algorithm optimized on the 
available training data set produced a mean sensitivity 
of 87% at 85% specificity on the test set (see Figure 3). 
The PPV was 61% and NPV was 96% for the CGMS 

alarms alone. Comparable fused data alarm system 
performance on the test data set exhibited 97% sensitivity 
at 85% specificity (a 10% sensitivity enhancement).  
Fused data performance showed an increase of PPV to 
66% and NPV to 99%. A graphic representation of fused 
data performance is shown in Figure 4.

Sensitivity analyses confirmed the relative stability 
of these results. The primary sensitivity analysis 
assessed the impact of CGMS error assumptions on 
alarm performance and potential fusion enhancements.  
The sensitivity of enhancements attributable to our data 
fusion model as a function of assumed CGMS errors 

Optimum threshold = 72 mg/dl
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Discussion
The general question as to the validity of the developed 
CGMS model was addressed by comparing its performance 
on the test data set with public premarket approval 
(PMA) submission data on the hypoglycemia alarm 
performance of three commercial CGMS (Table 1). 
Despite the higher performance of the simulated CGMS 
hypoglycemia alarm reported in this article, the reported 
performance is still consistent with actual reported 
values, given that errors other than calibration offsets 
and drift were ignored in the simulation. While precise 
performance comparisons in Table 1 are not possible due 
to variations in study design and analysis methods,  
we believe that the similarity in results supports the 
validity of our model.

The in silico analyses described in this article were designed 
to evaluate a potential method for the enhancement of 
hypoglycemia alarms. Within the limited data set evaluated 
(52 T1DM patients), the fusion of CGMS data with ANS 
data as detected by the HypoMon produced potentially 
useful enhancements. Sensitivity studies on these enhance- 
ments suggested that higher benefits from ANS data 
fusion accrue at lower CGMS alarm performance levels, 
providing confidence in the enhancement achieved.  
These analyses did not address fusion with commercial 
CGMS alarm structures and would underestimate the 
impact of temporal dynamics due to interstitial glucose 
kinetics. Ideally, these factors would be addressed 
through further clinical studies in conjunction with 
commercially available CGMS that could provide real-
time trend and alarm data for the fusion process.  
The average timing of alarms with respect to hypo-
glycemia onset [crossing threshold of 68.4  mg/dl 
(3.8  mmol/liter)] in this in silico analysis was 1.1 hours. 
The timing of alarms was in no way optimized in this 
analysis. Further studies with real CGMS data would 
enable a fusion optimization process that could efficiently 
address time to alarm features.

Key limitations of this study are that data evaluated  
are only related to overnight use and that the  
evaluation data set may not be fully representative 
of all sufferers of T1DM. Further studies will need to 
explore if reductions in systemic glucose levels induce 
usable ANS responses in broader population groups.  
Such studies should include neuropathy and hypo-
glycemia unawareness assessments as additional study 
parameters. An expansion into studies with repeated 
patient use over multiple nights would also provide 
useful insights.

Figure 4. Alarm performance of fused data algorithm on test data 
as a function of CGMS threshold. The addition of ANS response 
features to CGMS data increases the sensitivity from 87 to 97%, which 
significantly reduces the number of missed hypoglycemic episodes 
from 13 to 3%.

was evaluated for vertical shift errors (calibration errors) 
between 27  mg/dl (1.5  mmol/liter) and 12.6  mg/dl  
(0.7  mmol/liter). At the largest assumed vertical shift 
error, retesting showed larger data fusion improvements 
at lower CGMS performance. For example, sensitivity 
improved by 13% and specificity improved by 2% (95% 
sensitivity and 83% specificity) using fused data when 
added to a CGMS (stand-alone) that was achieving 82% 
sensitivity and 81% specificity on test data. Data fusion 
benefits persisted even at very high CGMS performance 
levels, where simulated errors were set to very low  
levels (12.6  mg/dl vertical shift error). In this simulation, 
CGMS stand-alone performance on the test set was 95% 
sensitivity and 84% specificity. Data fusion showed a 
4.5% sensitivity and 3% specificity improvement on top 
of these high-performing CGMS alarms. Data fusion 
performance enhancements did not appear to be affected 
by changes to the allowed error band. Changing the 
allowed error band from 61.2  ±  7.2 to 63  ±  5.4  mg/dl 
showed similar data fusion improvements at lower 
CGMS performance. Using the smaller error band, data 
fusion produced 11% sensitivity and 1% specificity 
improvements when the CGMS performance alone was 
74% sensitivity and 85% specificity. Fusion enhancements 
were also sensitivity tested over a range of allowed true 
alarm time windows. Simulated fusion enhancements 
were larger at lower CGMS performance when no 
increase was allowed in the 69.4 mg/dl (3.8  mmol/liter) 
crossing time window. Allowed true positive window 
expansions from a hypoglycemia onset of –10 to +60 
and –10 to +90 minutes showed larger and similar fusion 
enhancements, respectively.
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Conclusion
Simulation modeling suggests that the addition of 
autonomic nervous system response features to continuous 
glucose monitoring system data has the potential to 
provide robust improvements to hypoglycemia alarm 
performance overnight. Results of this preliminary analysis 
show a reduction in the number of missed overnight 
hypoglycemic events from 13 to 3% at the same specificity. 
The positive predictive value of the simulated CGMS 
alarm system improved from 61 to 66% and the negative 
predictive value improved from 96 to 99% through the 
addition of independent data from the HypoMon.

Additional real-time clinical studies of CGMS will be 
required to substantiate the apparent benefits of this 
form of data fusion.
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