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Abstract

Background:
Knowing the statistical properties of continuous glucose monitoring (CGM) sensor errors can be important in 
several practical applications, e.g., in both open- and closed-loop control algorithms. Unfortunately, modeling  
the accuracy of CGM sensors is very difficult for both experimental and methodological reasons. It has been 
suggested that the time series of CGM sensor errors can be described as realization of the output of an 
autoregressive (AR) model of first order driven by a white noise process. The AR model was identified  
exploiting several reference blood glucose (BG) samples (collected frequently in parallel to the CGM signal),  
a procedure to recalibrate CGM data, and a linear time-invariant model of blood-to-interstitium glucose  
(BG-to-IG) kinetics. By resorting to simulation, this work shows that some assumptions made in the Breton and 
Kovatchev modeling approach may significantly affect the estimated sensor error and its statistical properties.

Method:
Three simulation studies were performed. The first simulation was devoted to assessing the influence of CGM  
data recalibration, whereas the second and third simulations examined the role of the BG-to-IG kinetic model. 
Analysis was performed by comparing the “original” (synthetically generated) time series of sensor errors vs its 
“reconstructed” version in both time and frequency domains.

Results:
Even small errors either in CGM data recalibration or in the description of BG-to-IG dynamics can severely 
affect the possibility of correctly reconstructing the statistical properties of sensor error. In particular, even if  
CGM sensor error is a white noise process, a spurious correlation among its samples originates from suboptimal 
recalibration or from imperfect knowledge of the BG-to-IG kinetics.

continued 
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Introduction

Continuous glucose monitoring (CGM) sensors allow 
collecting 7–14 days of information about glucose 
fluctuations and are recognized to be potentially very 
useful in the management of diabetes. In particular, 
several applications of CGM sensors, either in real time 
or retrospective, demonstrated that their use can improve 
glycemic control, e.g., by reducing glucose variability 
and occurrence of hypo/hyperglycemic episodes.1–4

As any measurement system, CGM sensors are affected by 
unpredictable errors. Tools such as continuous glucose–
error grid analysis are largely employed to quantitatively 
assess the accuracy of CGM sensors.5 In several situations, 
including real-time filtering and prediction6,7 and in the 
designing and testing (possibly in silico) of closed-loop 
controllers,8–10 there is the need of a more sophisticated 
description of sensor errors. In particular, the time series 
of sensor errors should be naturally modeled as the 
realization of a stochastic process.

Providing a quantitative model of the stochastic process 
generating CGM sensor errors is difficult for both 
experimental and methodological reasons. First of all, 
(some tens of) blood glucose (BG) samples, collected 
frequently in parallel to CGM, are needed as a reference. 
However, the use of BG references is not straightforward. 
In fact, because CGM sensors respond to interstitial glucose 
(IG) and not directly to BG, a model of the BG-to-IG 
dynamics is needed to account for signal distortion. 
Finally, calibration also comes into play. In fact, CGM 
sensors measure a current electrical signal whose 
conversion in glucose concentration may also be affected  
by errors.11–13 State-of-the-art of modeling sensor error 
time series is discussed in the next section, together with 
the discussion of some critical points, later specifically 
addressed by simulation.

Modeling of CGM Sensor Error

State of the Art
Only a few papers have explicitly considered the problem 
of modeling the time series of CGM sensor errors.  
Chase and colleagues,14 after having pointed out that 
no studies about sensor error were previously available, 
proposed to model sensor errors in the simplest way,  
i.e., a random white noise Gaussian process with a 
constant coefficient of variation. Breton and Kovatchev15 
proposed a more sophisticated model, where sensor error 
is not white and also non-Gaussian. In particular, after 
analysis of a data set from 28 type 1 diabetic subjects 
consisting of both CGM data (1-minute sampling) and 
BG references measured frequently in parallel (15-minute 
sampling), they concluded that the time series of the 
reconstructed CGM sensor errors can be described 
as realization of the output of an autoregressive (AR) 
filter of order 1 driven by white noise. The procedure 
adopted15 included two major steps: (a) CGM data were 
recalibrated by fitting a linear regression model against 
all the available BG references16 and (b) in order to take 
into account distortion due to BG-to-IG dynamics, data 
fit incorporated the linear time-invariant (LTI) model of 
BG-to-IG kinetics proposed elsewhere.17 Notably, in step 
b, a “population” value of the time constant τ of the 
model of BG-to-IG kinetics was determined and used  
for all the 136 individuals of the data set. The average 
autocorrelation function (ACF) and the average partial 
autocorrelation function (PACF) were then employed 
to assess the estimated sensor error time series and its 
statistical properties.

The contribution of Breton and Kovatchev15 is very 
important because, for the first time, the role of calibration 
and BG-to-IG distortion has been explicitly considered. 

Abstract cont.

Conclusions:
Modeling the statistical properties of CGM sensor errors from data collected in vivo is difficult because it requires 
perfect calibration and perfect knowledge of BG-to-IG dynamics. Results suggest that correct characterization 
of CGM sensor error is still an open issue and requires further development upon the pioneering contribution  
of Breton and Kovatchev.

J Diabetes Sci Technol 2010;4(1):4-14
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errors vs its “reconstructed” version in both time and 
frequency domains.

Role of Imperfect Calibration 
To better grasp some practical problems of CGM data 
calibration, Figure 1 shows data (BG measurements 
denoted by red stars, CGM output denoted by blue line) 
of 1 of the 28 subject data sets.15 The two signals are 
expected to be different because of the low-pass filtering 
distortion due to BG-to-IG dynamics. However, a 
calibration problem is also present. In particular, there is 
a mismatch in the “average” levels in the interval centered  
on hour 10 and, again, in a second interval centered on 
hour 31. Intuitively, an efficient (re)calibration procedure 
should compensate a systematic overestimation in the 
first interval and a systematic underestimation in the 
second one. In this case, trying to compensate calibration 
errors of different signs by multiplying the entire time 
series by a single scale factor, such as the method16 used 
in Breton and Kovatchev,15 is obviously suboptimal and 
cannot lead to perfectly calibrated CGM data.

However, the consequence of some of their assumptions  
on the finally derived model deserves attention. In fact,  
two assumptions of their modeling approach, i.e., 
perfectly recalibrated CGM data are obtained in step 
a and perfect knowledge of a LTI model of BG-to-IG 
kinetics is made available in step b, are critical and can 
severely affect the outcome of the analysis. As far as 
step a is concerned, the recalibration method16 improves 
CGM data calibration, but is not able to provide perfectly 
recalibrated data, e.g., it cannot deal with a possible 
time variance of the calibration parameters. Concerning 
step b, assuming that BG-to-IG kinetics is linear and 
time invariant for several days, as done implicitly by 
employing the LTI model of Rebrin and colleagues,17 is 
an unlikely assumption. Furthermore, assuming that 
parameter τ of the model of BG-to-IG dynamics is set 
to a “population” value does not allow dealing with 
the interindividual variability of BG-to-IG dynamics, an 
accepted fact also evidenced, on a subset of the same 
database, in Facchinetti and associates.18

Aim
The aim of this work was to show that the aforementioned 
assumptions have a serious influence on the quantitative 
results provided elsewhere.15 In particular, three simulation 
studies were performed. The first simulation was devoted 
to assessing the influence of CGM data recalibration.  
The second and third simulations allowed examining 
the role of the BG-to-IG kinetic model. Analysis was 
performed by comparing the “original” (synthetically 
generated) time series of sensor error versus its 

“reconstructed” version in both time and frequency 
domains. We showed that even small errors either in 
CGM data recalibration or in the description of BG-to-IG 
dynamics can severely affect the possibility of correctly 
reconstructing the statistical properties of the time series 
of sensor errors accordingly to the procedure proposed 
by Breton and Kovatchev.15 In particular, even if the “true” 
(synthetically generated) time series of CGM sensor error 
is a white process, a spurious correlation among the 
samples of its “reconstructed” version originates from 
suboptimal recalibration or from imperfect knowledge of 
the BG-to-IG kinetics.

Methods
Three simulation studies were performed. The first 
simulation was devoted to assessing the influence of 
CGM data recalibration, whereas the second and third 
simulations examined the role of the BG-to-IG kinetic 
model. Analysis was performed by comparing the 

“original” (synthetically generated) time series of sensor 

Figure 1. Representative subject data set.15 BG references (red stars) 
vs CGM data (blue line) profiles.

Using simulation, the original sensor error statistics 
can be distorted because of inaccurate (re)calibration.  
Using the frequently collected samples of BG in 1 
of the 28 type 1 subjects of Breton and Kovatchev,15 
we generated, by a smoothing spline procedure,19 a 
continuous profile BG(t). Then, by numerically integrating 
the LTI differential equation describing the BG-to-IG model

IG(t) = –
1
τ IG(t) + 

g
τ BG(t)

.               (1)

the IG concentration has been obtained. In this specific 
study, the static gain of system g has been considered 
equal to 1 and the time constant τ = 20 minutes (both 
values are mean values obtained in the BG-to-IG model 
identification study of Facchinetti and colleagues18). 
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Then, in order to simulate a noisy CGM time series, 
the IG profile is multiplied by a random time-varying 

“calibration error” s(t) and then corrupted by an additive 
sequence sampled from a zero mean white Gaussian 
noise process v(t) with variance σ 2, obtaining

SCGM(t) = (1 + s(t))IG(t) + v(t),              (2)

where SCGM(t) is the simulated CGM output at time t. 
The way in which the SCGM profile is created closely 
resembles the formulation proposed elsewhere.20 
Notably, when s(t) = 0, SCGM results “optimally calibrated.” 
The calibration error s(t) has been created using a triple 
integrator of a zero mean white noise w(t)

s(t + 1) = 3s(t) – 3s(t – 1) + s(t – 2) + w(t).       (3)

Examples of realization of 1-day profile s(t) are reported 
in Figure 2 (blue line). Of note is that the maximum 
excursion is of the order of 10% of the reference value. 
This situation corresponds to a calibration error condition 
similar to that reported in Figure 1. It is worth noting 
that the model of Equation (3) assumes that s(t) is zero 
mean. This assumption can be taken without any loss 
of generality because introduction of a bias term would 
make the results of our analysis even worse.

Finally, both BG and SCGM time series have been 
(under)sampled every 15 minutes in order to reproduce 
the study conditions of Breton and Kovatchev.15 
Data of a representative synthetic data set are shown in 
the first row of Figure 3. Here, a value of σ 2 = 4 mg2/dl2 
was considered, according to considerations reported 
elsewhere21 (however, the σ 2 value is not critical, and 
identical results could be obtained, e.g., by doubling 
or halving it). The left side of Figure 3 shows an 
8-hour window of simulated BG (red), IG (green), and 
SCGM (blue) time series. In the same 8-hour window, 
the right side of Figure 3 displays the original sensor 
error, v(t) in Equation (2), which was added to IG to 
simulate CGM data.

To reconstruct the sensor error time series v(t) with 
the procedure of Breton and Kovatchev,15 we first 
recalibrated15 SCGM data by exploiting the linear 
regression model.16 Then, we compared the obtained 
profile with the so-called surrogate interstitial glucose 
(SIG) profile,16 obtained by integrating Equation (1), 
using BG references as input and using the “true” value 
of τ (i.e., we assumed perfect knowledge of the BG-to-IG 
dynamics and no measurement error on BG references).  

SIG represents the “best” reconstruction of IG possible 
to obtain starting from BG references and a model of  
the BG-to-IG kinetics.17 Because no error on the BG-to-IG 
model is assumed, SIG corresponds exactly to IG in this 
first simulation. According to Breton and Kovatchev,15 
the difference between these two profiles (i.e., SCGM  
and SIG) is the “reconstructed” version of the time series of 
the sensor errors v(t).

Role of Imperfect Description of BG-to-IG Kinetics: 
Error in τ
The aim of the second simulation was to show that the 
original sensor error statistics can be distorted when the 
parameter τ of the LTI BG-to-IG model of Equation (1) 
is not exact, e.g., either because it was estimated with some 
errors from data (unavoidable in practice) or because a 
population, rather than an individually tuned, value was 
used.

Data were generated as in the previous subsection, with  
the only difference that no calibration error was present  
[s(t) = 0 and, as a consequence, the recalibration step was 
no longer necessary]. Data of the representative subject 
are shown in the first row of Figure 4 (note that the 
same error sequence of Figure 3 is used).

Figure 2. Simulated time-varying calibration error s(t). Ideal condition 
is the red line, and calibration error realizations with maximum 
excursion equal to 10 and 2% of the reference value are blue and black 
lines, respectively.
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Figure 3. Simulation of time-varying calibration error. First row—Left: true BG (red), IG (green), SCGM with s(t) <10% (blue), and SCGM with 
s(t) <2% (black) profiles. Right: true time series of sensor errors. Second row—Left: model fit of SIG (green) vs SCGM with s(t) <10% (blue). 
Right: reconstructed time series of sensor errors. Third row—Left: model fit of SIG (green) vs SCGM with s(t) <2% (black). Right: reconstructed 
time series of sensor errors.

v(t)
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Figure 4. Simulation of uncertainty of τ. First row—Left: true BG (red), IG (green), and SCGM (blue) time series. Right: true time series of sensor 
error. Second row—Left: model fit of SIG (green) vs SCGM (blue). Right: reconstructed time series of sensor error.

In this case, we studied the influence of using, in the 
procedure aiming at reconstructing the sensor error,  
a (slightly) incorrect value, i.e., 18 instead of 20 minutes,  
of parameter τ of Equation (1) characterizing the BG-to-IG 
kinetics. It is important to emphasize that the simulated 
error on τ (2 minutes) is lower than the intraindividual 
and interindividual variability of this parameter found  
on real data.18 Model fit and reconstructed sensor error 
time series are displayed in the second row of Figure 4.

Role of Imperfect Description of BG-to-IG Kinetics: 
Time Variance of τ

Finally, the third simulation considered BG-to-IG dynamics 
governed by Equation (1), where τ is a function of time, 
i.e., τ = τ(t). This situation describes a possible intra-
individual variability of BG-to-IG kinetics, very likely 
occurring in multiple-day CGM monitoring. In this 
simulation, τ was modeled as a sinusoidal oscillation 
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(with maximum amplitude of 2 minutes and a period of 
1 day) centered on a mean value of 20 minutes. As in the 
previous simulation, SCGM data error was assumed 
to be white and no calibration error was considered.  
Data of the representative subject are shown in Figure 5 
(first row). In order to reconstruct sensor errors, SIG was 

fitted against the SCGM profile using a LTI BG-to-IG 
model (second row of Figure 5, left).

For all three simulations, in order to characterize the 
statistical properties of the original and estimated sensor 
errors on the whole data set, both ACF and PACF have 

Figure 5. Simulation of time variance of τ. First row—Left: true BG (red), IG (green), and SCGM (blue) time series. Right: true time series of 
sensor error. Second row—Left: model fit of SIG (green) vs SCGM (blue). Right: reconstructed time series of sensor error.
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been assessed, as in Breton and Kovatchev.15 In addition, 
the average power spectral density (PSD) was computed.

Results

Role of Imperfect Calibration
Results in the time domain are shown in the second 
row of Figure 3. The left side of Figure 3 shows the 
comparison between SIG (green) and SCGM (blue) time  
series. The right side of Figure 3 displays the reconstructed 
sensor error v(t). Even with perfect knowledge of the 
BG-to-IG model, the original and reconstructed time  
series of sensor errors look very different. In particular, 
despite the use of recalibration as in Breton and Kovatchev,15 
the effect of calibration error was not eliminated 
completely: the time series of the reconstructed v(t) 
(second row, right) has a mean value of 11.9 mg/dl and  
a very visible low-frequency component.

Results in the frequency domain on original and 
reconstructed v(t) are reported in the first and second 
rows of Figure 6, respectively. Left, middle, and right 
sides of Figure 6 show ACF, PACF, and PSD, respectively 
(in both ACF and PACF plots, a time lag corresponds to 
15 minutes). While “true” sensor error time series lead 
to ACF, PACF, and PSD typical of white noise processes 
(first row), the “reconstructed” sensor error time series 
(second row) have quite different characteristics. In fact, 
the ACF plot shows a significant correlation until time  
lag = 10 (150 minutes), PACF shows that most of the 
correlation can be attributed between two samples that 
are distant only 1 time lag, and, finally, the PSD plot is  
very different from the likely constant spectrum of the 
white noise; in addition, the PSD shows that a spurious 
low-frequency component has been introduced.

Are these encouraging results a consequence of a too 
large calibration error? Similar results were attained by 
reperforming the simulation by reducing the maximum 
excursion of s(t) to 2% of the reference value (fivefold 
bias reduction, see Figure 2, black line). The left side in 
the first row of Figure 3 shows the new SCGM output 
(black line) in the same representative subject. The left 
and right sides in the third row of Figure 3 illustrate, in the 
same 8-hour window, the comparison between SIG (green) 
and SCGM (black) profiles and the reconstructed v(t), 
respectively. Also, in this case the reconstructed v(t) is 
quite different from the original, with a mean value of 
2.4 mg/dl. Looking at ACF, PACF, and PSD plots (third 
row of Figure 6), similar results were found for the 
previous simulation hold, including the presence of an 
elevated correlation and a low-frequency component.

Results of ACF, PACF, and PSD of these two simulations 
show that even if the original error has a “white” spectrum, 
the estimated sensor error has a “colored” spectrum. 
In particular, referring to the PACF analysis made in 
Breton and Kovatchev,15 the estimated sensor error can 
be modeled as an AR process. As a consequence, even 
when small (maximum 2%) time-varying calibration 
errors are present, the time series of sensor errors v(t) 
cannot be modeled using the methodology proposed in 
Breton and Kovatchev.15

Qualitatively identical results can be obtained by generating 
synthetic data starting from any of 28 subjects of the 
data set.15

Role of Imperfect Description of BG-to-IG Kinetics: 
Error in τ
By looking at the time-domain results in Figure 4, even 
if SIG and IG profiles are quite close (left), the time 
series of reconstructed sensor error (second row, right) 
differs significantly from that of the true one (first row, 
right). For instance, the excursion range is modified 
and, as evident from Figure 6 (fourth row), a significant 
spurious autocorrelation is detectable. In particular, 
the ACF plot shows a significant correlation until time 
lag = 3 (45 minutes), and, by looking at the PACF plot  
(middle), most of the correlation can be attributed at two 
sampled distant 1 time lag. The spurious low-frequency 
component is rather evident in PSD, with a peak at a 
time period of T = 4 hours. Interestingly, while the time 
series of the true synthetically generated sensor error is 
white noise, the time series of the reconstructed sensor 
error can be modeled (according to the PACF analysis 
of Breton and Kovatchev15) as an AR process of order 1 
(as in the previous subsection). This demonstrates that 
even in the presence of perfect calibration, a small error  
in parameter τ (due to either uncertain estimation from 
real data or use of a population instead of an individual 
value) influences the results of the methodology proposed 
in Breton and Kovatchev.15

Role of Imperfect Description of BG-to-IG Kinetics: 
Time Variance of τ
As expected, parameter identification returned the 
average value τ = 20 minutes. Visual inspection of the 
reconstructed time series of the sensor error (second 
row of Figure 5, right) and its statistical analysis by 
ACF, PACF, and PSD (fifth row of Figure 6) allow us to 
draw results very similar, also quantitatively, to those of 
the previous subsection. Notably, the PACF plot in the 
middle section of Figure 6 suggests that sensor error can 
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Figure 6. ACF (left), PACF (middle), and PSD (right) of true sensor error time series (first row) and of reconstructed sensor error time series: 
s(t) <10% (second row); s(t) <2% (third row); error in τ determination (fourth row); time-varying τ (fifth row). Freq, frequency.
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be modeled as an AR process of order 1. Again, a wrong 
conclusion on the structure of the time series of sensor 
error was drawn because of small deviations from the 
ideal assumptions required by the method of Breton and 
Kovatchev.15

Conclusions
Knowing the statistical properties of the time series 
of CGM sensor error is important in several practical 
applications. For instance, in a denoising and prediction 
context,6,7 the theory of optimal filtering requires a 
second-order statistical description of measurement 
errors.22 Also, having a model of sensor error can 
be useful in the design and implementation of both 
open- and closed-loop glucose control algorithms.8–10 
Unfortunately, obtaining a reliable model of the time series 
of CGM sensor error is difficult and, not surprisingly, 
only a few contributions are found in the literature. 
Among them, the work by Breton and Kovatchev15 has 
pointed out two fundamental aspects: experimentally, 
there is the need to collect, in addition to CGM data, 
several BG references at high-frequency sampling; and 
methodologically, both distortions introduced by BG-to-IG 
dynamics and problems of CGM data recalibration must 
be taken into account. Methodological challenges are,  
however, still open. As demonstrated in our work, even 
small errors in any of the aforementioned components 
can significantly modify the original statistics of the 
sensor error. In particular, we have shown by simulation 
that the first-order AR model they obtained15 could 
describe spurious low-frequency components in the 
reconstructed time series of sensor error introduced by 
either a deficient recalibration or an imperfect BG-to-IG 
kinetics description. In other words, what was possible 
to describe with a first-order AR model was due to error 
in modeling, not to a randomly generated error within the 
sensor.

Future developments of methodologies to reliably model 
time series of sensor error probably need to start with 
sophistication of the recalibration algorithms in order to 
deal with the possible time variance of the calibration 
factor during multiple day monitoring. Also, in order to 
avoid dealing with the inherent difficulties of describing 
BG-to-IG kinetics and its possible interindividual and 
intraindividual variability, suitable in vitro studies may 
be designed where reference and CGM are measured in 
parallel without any distortion.

In the end, it is worth remembering that calibration 
and BG-to-IG kinetics are probably the major sources of 
error affecting the accuracy of CGM readings, but other 

sporadic events, e.g., motion artifacts, loss of sensitivity  
of the sensor, or the inflammatory response, should also 
be considered and possibly integrated into a model of 
sensor error.
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