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Abstract
Background:
Closed-loop insulin delivery systems linking subcutaneous insulin infusion to real-time continuous glucose 
monitoring need to be evaluated in humans, but progress can be accelerated with the use of in silico testing. 
We present a simulation environment designed to support the development and testing of closed-loop insulin 
delivery systems in type 1 diabetes mellitus (T1DM).

Methods:
The principal components of the simulation environment include a mathematical model of glucose regulation 
representing a virtual population with T1DM, the glucose measurement model, and the insulin delivery model. 
The simulation environment is highly flexible. The user can specify an experimental protocol, define a population 
of virtual subjects, choose glucose measurement and insulin delivery models, and specify outcome measures. 
The environment provides graphical as well as numerical outputs to enable a comprehensive analysis of in 
silico study results. The simulation environment is validated by comparing its predictions against a clinical 
study evaluating overnight closed-loop insulin delivery in young people with T1DM using a model predictive 
controller.

Results:
The simulation model of glucose regulation is described, and population values of 18 synthetic subjects are 
provided. The validation study demonstrated that the simulation environment was able to reproduce the 
population results of the clinical study conducted in young people with T1DM.

Conclusions:
Closed-loop trials in humans should be preceded and concurrently guided by highly efficient and resource-
saving computer-based simulations. We demonstrate validity of population-based predictions obtained with 
our simulation environment.

J Diabetes Sci Technol 2010;4(1):132–144
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Introduction

Commercial availability of real-time continuous 
glucose monitoring (CGM) devices has promoted research 
toward closed-loop insulin delivery systems, also known 
as the artificial pancreas.1,2 The artificial pancreas consists 
of three components: a CGM device to measure glucose 
concentration in the subcutaneous (sc) tissue, a titrating 
algorithm to compute the amount of insulin to be delivered, 
and an insulin pump to deliver computed insulin doses 
subcutaneously. The closed-loop insulin delivery systems 
have the potential to revolutionize the treatment of type 
1 diabetes mellitus (T1DM) within a decade or less.3,4 
Clinical trials are currently underway. Promising results and 
early system prototypes have been reported.1,3,5 However, 
more extensive clinical testing is needed before closed-loop 
systems become commercially available and widespread. 

Preclinical proof-of-concept testing of closed-loop insulin 
delivery systems, often required by regulatory bodies, is  
typically carried out in animals, whereas further testing 
and optimization is performed in humans. Human and,  
to a lesser degree, animal testing is resource demanding, 
time-consuming, and restrained by ethical issues, 
hampering the fast-track development and efforts leading 
to commercialization of closed-loop systems. Testing in a 
computer (virtual) environment, known as in silico testing, 
can accelerate the development process while facilitating 
resource savings. 

In silico testing can be used to tune and evaluate closed-
loop algorithms in a timely fashion and to optimize the 
design of clinical studies. Importantly, vital information 
about limitations and safety of control algorithms can be 
obtained by testing unethical and hazardous scenarios.  
A critical feature of a computer simulation environment 
designed for testing control algorithms is its capability 
to simulate glucose–insulin dynamics in a cohort of 
in silico subjects, referred to as a virtual population, 
and to predict the outcome of real clinical studies.  
For simulation predictions to be reliable, this “virtual 
population” needs to be representative of the target 
population, including the observed between- and within-
subject variability of glucose responses. Although a useful 
prerequisite to clinical trials, simulation studies are not 
a substitute for clinical trials in humans. Human trials  
are of fundamental importance for the final assessment 
of efficacy, safety, and usability of closed-loop insulin 
delivery systems. A methodology and guidance for 
preclinical simulation-based testing of glucose controllers 
has been proposed.6

In this paper, we describe and validate a simulation 
environment to support the development of closed-loop 
insulin delivery systems. As a member of a larger 
consortium,4 we are developing an artificial pancreas 
system for young people with T1DM using commercially 
available devices.7,8 We use the simulation environment 
extensively to evaluate and optimize control algorithms 
and to assess safety, efficacy, and usability of the prototype 
closed-loop system in various high-risk scenarios and 
failure modes associated with the component devices. 
The simulation studies support the design of clinical 
studies in human subjects by allowing comparisons of 
various experimental protocols and device characteristics 
such as the CGM measurement error or the insulin 
pump delivery error.9 

Other simulation environments to support the development 
of glucose control algorithms have been reported.10–13 
Kovatchev and colleagues, also members of the Juvenile 
Diabetes Research Foundation-funded Artificial Pancreas 
Project consortium, developed a simulation environment 
and used it for in silico testing of closed-loop insulin 
delivery systems in T1DM.10 In  2008, their simulator 
was accepted by the Food and Drug Administration 
agency as a substitute for animal testing. Chase et al.,12,14 
Hovorka and colleagues.,11,15 and Van Herpe and associates13 
conducted simulation studies in the intensive care unit 
setting. 

Simulation Environment
Overview
The simulation environment was designed to support 
the development and evaluation of closed-loop insulin 
delivery systems. It mirrors the experimental setup of 
closed-loop studies and replicates the data flow between  
a subject with T1DM, a CGM device, a control algorithm, 
and an insulin pump. Figure 1 shows an overview of 
the simulation environment. 

A flexible design allows modification of the following 
components of the simulation environment: a virtual 
population with T1DM, a glucose measurement model, 
an insulin delivery model, a study protocol, and a set 
of outcome measures. Although other populations such 
as the critically ill have been implemented, the present 
description of the simulation environment is limited 
to subjects with T1DM using a model of the glucose 
regulation proposed by Hovorka and associates.16 
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Outcome Measures
A variety of statistical measures can be generated at  
the end of a simulated experiment. The details of those 
metrics are defined by the user as part of the experiment 
setup. For each measure, the user defines the variable 
and the time period to be used in the calculation. 
There are currently 30 different metrics implemented 
in the simulator. These include the mean; the median; 
the standard deviation; the standard deviation rate of 
change; the percentage of time spent within, above, and 
below a prespecified target glucose band; the incidence 

Figure 1. An overview of the simulation environment, which consists 
of a set of virtual subjects with T1DM, a glucose measurement model, 
and an insulin delivery model. The control algorithm resides outside 
the simulation environment but interacts with it.

Control algorithm

During a simulated closed-loop study at the beginning 
of each closed-loop cycle, the tested control algorithm 
receives sc glucose concentration generated by a model 
of glucose regulation confounded by a measurement 
error generated by the glucose measurement model. 
The control algorithm calculates the insulin infusion 
rate to achieve and maintain normoglycemia. Insulin is  
delivered via the insulin pump delivery model to mirror 
the insulin delivery error. A generic interface allows 
interaction with stand-alone control algorithms, which 
reside outside the simulation environment. 

Virtual Subject with Type 1 Diabetes
A virtual subject with T1DM is represented by a model 
of glucose regulation and its parameters. The simulation 
environment includes 18 synthetic subjects defined by  
18 parameter sets (see Figure 2).

Glucose Measurement Model
Two types of glucose measurement error are implemented: 
(i) a generic model represented as a random uncorrelated 
process with a zero mean and a constant coefficient of 
variation (CV) and (ii) an experimentally derived CGM 
error model. The latter is, at present, available for the 
FreeStyle Navigator® (FSN) CGM system to simulate 
overnight closed-loop studies. The experimentally derived 
CGM error model consists of two components: transient 
differences between sensor glucose and plasma glucose,  
also known as “dropouts,” and persistent differences 
associated with the FSN calibration error. 

Insulin Delivery Model
The insulin pump delivery error is assumed uncorrelated, 
with a zero mean and a constant CV for both the 
continuous insulin infusion and the insulin bolus 
bracketed by minimum and maximum values. 

Study Protocol
Protocols of simulated experiments specify duration of  
the experiment, duration of the run-in period, duration 
of the control cycle, frequency of glucose sampling,  
CGM calibration points, the time and size of meals, 
and the time and size of prandial insulin boluses. 
Unannounced meals and insulin boluses can be specified, 
which the control algorithm will not be aware of.  
Failure mode scenarios associated with closed-loop 
devices can also be specified, including insulin pump 
occlusion and CGM data transmission gaps. An example 
of an experimental protocol is shown in Figure 3. 

Figure 2. Schematic representation of the virtual population of 18 
subjects with T1DM.

Parameter set 1

Parameter set 2

Parameter set 3

Parameter set 4

Parameter set 18
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Usage 
In our research group, the simulation environment is 
used routinely in the development of prototype closed-
loop insulin delivery systems for subjects with T1DM. 
The most fundamental use is in evaluating modifications 
and assessing the impact of various physiological and 
operating conditions on the safety and efficacy of a 
glucose controller.9 Several study designs have been 
simulated by varying the duration of closed-loop cycle, 
the glucose sampling rate, the timing and the size of 
meals and insulin boluses, as well as varying the starting 
glucose levels. In order to simulate real-life scenarios, the 
meals and insulin boluses can be either announced or 
unannounced to the control algorithm. Simulated closed-
loop studies can also be conducted with varying levels  

Figure 3. Example of an in silico study protocol. The protocol is subdivided into sections. The first section, basic information, contains the 
duration and starting time of the in silico experiment, the time steps, and frequencies of various tasks such as sampling, closed-loop cycle, or logging the 
events. The meal section contains meal details, their timing, size (CHO contents), and whether the meal bolus should be advised by the controller. 
The third section, called other inputs, contains information about intravenous glucose bolus and infusion, enteral glucose infusion, and the details  
of rescue CHO treatment. The disturbances section provides information about any unannounced insulin bolus or meals. The system failures 
section includes the characteristics of system failure such as pump occlusion and the loss of sensor signal. In the starting glucose section, the user  
is able to specify plasma glucose at the start of the simulated experiment, while in the past insulin infusion section, insulin infusion rate prior to  
the start can be specified. The final two sections deal with the timing of sensor calibration and the sensor error characteristics.

of hypoglycemia; Kovatchev and coworkers’ low blood 
glucose index (LBGI) and high blood glucose index 
(HBGI);17 and Chassin and colleagues’ grading system.18

Two examples of an overnight closed-loop study are 
shown in Figure 4. A number of simulated closed-loop 
studies of a specified experimental protocol can be run 
in a defined population of synthetic subjects yielding 
population results. A batch of simulated studies will 
then correspond to a series of real-life clinical studies 
conducted in subjects with T1DM.

Implementation 
The simulation environment is implemented in Matlab® 
Version 7.8 (The Mathworks, Natick, MA). 
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of the CGM measurement error as well as various levels 
of insulin pump delivery error. Hypothetical failure 
modes, such as the insulin pump occlusion or failures of 
the glucose sensing device, can also be simulated, and 
their effect on closed-loop control can be evaluated.9 
In a published simulation study, we assessed the risk 
of hypoglycemia and hyperglycemia during simulated 
overnight closed-loop control with model predictive 
control (MPC)-based controller and FSN CGM system 
and compared it to the risk observed in the open-loop 
studies.19 

Model of Glucose Regulation in Type 1 
Diabetes Mellitus

Overview
The simulation model of glucose regulation in T1DM 
represents the input–output relationship between the sc 
insulin infusion on the input and sc glucose concentration 
on the output. Meal ingestion represents an additional 
input. The model combines five submodels: a submodel 
of insulin absorption and kinetics, a submodel of interstitial 
glucose kinetics, a submodel of enteral glucose absorption,  
a submodel of insulin action, and a submodel of glucose 
kinetics (see overview in Figure  5). The following 
sections provide a brief description of the submodels. 
Differential equations describing the submodels are given 
in Appendix A.

Submodel of Insulin Action
The insulin action submodel includes three remote 
effects of insulin on glucose kinetics: (i) the effect on 
glucose transport/distribution, (ii) glucose disposal, 
and (iii) endogenous glucose production. The model 
originated from our earlier work involving multiple- 
tracer experiments in healthy subjects.16,20 The model 
parameters include three insulin sensitivities corresponding 
to partitioned effects of insulin on glucose kinetics.

Submodel of Glucose Kinetics
The glucose kinetics is represented by a two-compartment 
submodel that describes the distribution, production, 
and utilization of glucose and its control by insulin.  
The insulin-independent glucose utilization is assumed to 
be a saturable process and is represented by a Michaelis–
Menten relationship. The validity of this submodel and 
the submodel of insulin action has been demonstrated  
in healthy subjects during intravenous glucose tolerance 
test.16 

Figure 4. Sample simulated closed-loop study using a generic 
glucose measurement model (panel A) and experimentally derived 
CGM model (panel B). The red continuous curve represents simulated 
plasma glucose, the green squares represent simulated CGM glucose, 
the blue piecewise constant curve represents the insulin infusion 
rate, the green horizontal lines indicate the target glucose range from 3.9 
to 8.0mmol/liter, the magenta and light blue horizontal lines mark  
mild at 3.5 mmol/liter and significant at 2.8 mmol/liter (panel A) or severe 
at 2.0 mmol/liter (panel B) hypoglycemia, respectively, the magenta and 
blue down arrows indicate the meal and prandial insulin bolus, and 
the red crosses indicate the CGM calibration points.
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Figure 5. An overview of the simulation model of glucose regulation 
in T1DM. Model inputs include the meal intake and sc insulin 
delivery. Model outputs include plasma glucose and sc glucose.
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Submodel of Subcutaneous Insulin Absorption and 
Kinetics
The submodel of sc insulin absorption and kinetics is 
represented by three compartments with the sc insulin 
depot divided into an accessible and nonaccessible 
compartment, with identical transfer rates between the two 
sc depots and between the sc and plasma compartments.

Submodel of Glucose Absorption from the Gut
The physiology of the gut absorption is represented by a 
two-compartment chain with identical fractional transfer 
rates. The model has been shown to be adequate in 
representing the glucose rate of appearance in plasma 
from the intestinal tract.21,22 The model includes two 
parameters: the carbohydrate (CHO) bioavailability and 
the time to peak of appearance of glucose from the 
gut. The glucose flux from the gut is assumed to be a 
saturable process.

Submodel of Interstitial Glucose Kinetics
The submodel of interstitial glucose kinetics is represented 
by two compartments (plasma and interstitial) with 
identical transfer-rate constants. The transfer-rate constant 
defines the time delay between the plasma and the 
interstitial glucose kinetics. 

Virtual Population of Subjects with Type 1 Diabetes 
Mellitus
The simulation environment includes 18 parameter sets 
defining a virtual population of 18 subjects with T1DM.  
A subset of the individual parameters has been estimated 

from experimental data collected in subjects with T1DM,16 
and others have been drawn from informed probability 
distributions. The virtual subjects are characterized by 
their daily insulin requirements (0.35 ± 0.14  U/day/kg),  
insulin-to-CHO ratio (1.7 ± 1.0  U per 10 g CHO), and body 
weight (74.9 ± 14.4 kg). The intra-individual variability 
of the glucoregulatory response is represented by super-
imposing sinusoidal oscillations of 5% amplitude and 3 h 
period on nominal values of selected model parameters. 
Each of those parameters had a different phase generated 
randomly from a uniform distribution U[0,3 h]. 

Model Parameters
Eight of the eighteen model parameters describing the 
simulation models have been derived from experimental 
data. The parameters are presented in Table 1. 

The remaining parameters presented in Table 2 have 
been sampled from informed prior distributions. 
The parameters are characterized by their sampling 
distribution and are classified as time invariant or 
oscillatory. 

Validation Study
A simulation study was performed with the aim to 
reproduce a protocol of a previously completed clinical 
study evaluating closed-loop insulin delivery in young 
people with T1DM. The simulated and clinical studies 
employed an identical closed-loop control algorithm. 
Results of the two studies were compared to validate the 
virtual population of subjects with T1DM. 

Table 1.
Model Parameters Estimated from Clinical Data Using Prior Lognormal Distribution.16

Symbol Quantity Meana Variability

F01 Noninsulin-dependent glucose flux (µmol kg-1 min-1) 11.1 oscillatory

EGP0 Endogenous glucose production extrapolated to zero insulin concentration (µmol kg-1 min-1) 16.9 oscillatory

k12 Transfer rate from nonaccessible to accessible glucose compartment (min-1) 0.060 oscillatory

SID Insulin sensitivity of glucose disposal (min-1 per mU liter-1) 5.05 x 10-4 oscillatory

SIE Insulin sensitivity of suppression of endogenous glucose production (per mU liter-1) 0.019 oscillatory

SIT Insulin sensitivity of glucose transport/distribution (min-1 per mU liter-1) 18.41 x 10-4 oscillatory

kb1 Activation rate of remote insulin effect on glucose distribution (min-1) 0.0034 oscillatory

kb2 Activation rate of remote insulin effect on glucose disposal (min-1) 0.056 oscillatory

kb3 Activation rate of remote insulin effect on endogenous glucose production (min-1) 0.024 oscillatory

aMean value of the marginal lognormal distribution.
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Methods
A virtual population of 18 subjects with T1DM was 
used to simulate overnight closed-loop study with MPC 
algorithm. The protocol of the simulated study reflected 
a clinical trial of a closed-loop insulin delivery conducted 
in 12 children and adolescents with T1DM7 (7  males, 
aged 13.1 ± 4.2 years, body mass index 21.9 ± 4.3 kg/m2, 
duration diabetes 6.8 ± 4.4 years, hemoglobin A1c 
8.7 ± 2.0%). See Figure 6 for study outline. 

The details of the in silico study protocol are shown in 
Figure 3. At 18:00, protocol included a meal containing 
the mean CHO intake recorded on the clinical study 
(87 g CHO) accompanied by a prandial insulin bolus 
calculated using the virtual subject’s insulin-to-CHO 
ratio. The insulin infusion rate between 17:00 and 20:00  
was calculated using the simulation model of a particular 
virtual subject assuming steady-state conditions at 
the start of the experiment. At 20:00, the closed-loop 
glucose control algorithm took over the insulin delivery, 
advising on the insulin infusion rate every 15 min. 
Closed-loop insulin delivery with the control algorithm 
continued for 12 h until the end of the experiment. 

The sc glucose measurement was simulated using the  
generic measurement error model with 2% CV. The pump 
delivery error model was assumed to be zero mean 
uncorrelated, with a constant CV of 5% for the continuous 
insulin infusion and the insulin bolus.

Statistical analysis was conducted with the use of SPSS, 
Version 15 (SPSS Inc., Chicago, IL) or Matlab Version 7.8.  
Significance level of 5% (p < .05) was used to 
declare statistical significance. Values are given as 
mean ± standard deviation or median (interquartile range) 
unless stated otherwise.

Control Algorithm 
The clinical and simulated studies used an adaptive 
control algorithm based on the MPC approach.27 
Every 15 min, real-time sensor glucose data were entered 
into the MPC algorithm, which calculated sc insulin 
infusion rates. The MPC algorithm adopts a compartment 
model of glucose kinetics23 describing the effect of sc 
rapid-acting insulin analogue and the CHO content of 
meals on sensor glucose excursions. The algorithm is 
initialized using subject’s weight, total daily insulin dose, 
and usual basal insulin requirements. These values feed 
into estimates of insulin sensitivity and glucose and 
insulin distribution volumes. In real-time, sensor glucose 
measurements are used to update two model parameters: 
an endogenous glucose flux correcting for errors in 
model-based predictions and CHO bioavailability. 
Several competing models differing in the rate of sc 
insulin absorption and the CHO absorption profile 
are run in parallel.28 Following estimation of model 
parameters, a combined model is used to forecast plasma 

Table 2.
Model Parameters Sampled from Informed Prior Distribution

Symbol Quantity Distribution Variability

VG Glucose distribution volume (liter kg-1) exp(VG) ~ N(ln(0.15),0.232)16 stationary

R_th Renal clearance threshold (mmol liter-1) R_th ~ N(9,1.52) stationary

R_cl Renal clearance rate (min-1) R_cl ~ N(0.01,0.0252)23 stationary

VI Insulin distribution volume (liter kg-1) VI ~ N(0.12,0.0122)16 stationary

ka Insulin absorption rate (min-1) ka ~ N(0.018,0.00452)24 oscillatory

ke Insulin elimination rate (min-1) ke ~ N(0.14,0.0352)16 oscillatory

Bio Bioavailability of CHO (%) Bio ~ U(70,120) stationarya

tmax Time-to-maximum of CHO absorption (min) exp(1/tmax) ~ N(‑3.689,0.252)25 stationary

ka_int
Transfer-rate constant between interstitial and 
plasma glucose compartment (min-1) exp(ka_int) ~ N(‑2.372,1.0922)26 oscillatory

aSubject to an additional 20% interoccasion variability.

Figure 6. Protocol of simulated overnight closed-loop study.
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glucose excursions over a 2.5 h receding prediction 
horizon. A  sequence of sc insulin infusion rates is  
calculated, leading to the desired target glucose, which is 
set between 5.8 and 7.3 mmol/liter to take into account 
inaccuracies of model-based predictions. The first infusion 
rate from the sequence of sc insulin infusion rates is 
delivered by the insulin pump subject to safety checks 
that can reduce the infusion rate to prevent insulin 
overdosing. 

Results
An example of a simulated closed-loop study is shown 
in the top panel of Figure 4. Comparison of the results 
obtained during the simulated and clinical studies is 
presented in Table 3. 

Plasma glucose at the start of the simulated study was 
designed to match that of the clinical study. Continuous 
glucose monitoring glucose at the start of closed-loop 
control and mean overnight CGM glucose were similar  
in both studies (Table 3 and Figure 7).

Similarly, the time spent in the target glucose range 
from 3.9 to 8.0 mmol/liter was not significantly different, 
and Kovatchev and colleagues’ LBGI and HBGI were 
also similar. The percentages of time spent in grades A 
and B of Chassin and associates’ grading system18 were 
similar, while the median percentage of time spent in 
grades E and F was 0% for both the simulated and the  
clinical studies. The insulin infusion rate advised by the 
algorithm was similar. 

Discussion
Closed-loop trials in humans with T1DM, undoubtedly an 
essential component of the development process, should be 
preceded and guided by highly efficient and resource-
saving computer-based simulations. Intensified research 
is underway to develop useful simulation tools.10,29,30 
Chassin and coworkers have developed a simulation 
environment and testing methodology29 using a model of 
glucose regulation originating from a multitracer-validated 
study16 and evaluated a glucose controller developed 
within the European Union funded Adicol project.31 
Another simulator was developed by the researchers  
from the University of Padova and the University of 
Virginia,10,30 building on model-independent quantification 
of glucose and insulin fluxes occurring during a meal.30 

Table 3.
Comparison between Simulated and Real Closed-Loop Experiments Using Clinical Data Collected  
in the APCam01 study, with Values as Mean ± Standard Deviation or Median (Interquartile Range)
Measure Simulations (N = 18) APCam01 (N = 12) P value

Starting glucosea (mmol/liter) 12.2 ± 4.0 10.6 ± 3.0 NSb

Overnight glucosea (mmol/liter) 7.6 ± 1.2 7.8 ± 1.4 NSb

Time in targetc (%) 69 (62–78) 63 (49–78) NSd

LBGIe (unitless) 0.5 (0.2–0.9) 0.3 (0–1.0) NSd

HBGIe (unitless) 3.4 (1.3–6.8) 3.7 (0.6–6.8) NSd

Grades A + B f (%) 49 (36–58) 52 (32–66) NSd

Grades E + F f (%) 0 (0–2) 0 (0–1) NSd

Insulin Infusion (U/h) 1.1 ± 0.4 1.3 ± 0.8 NSb

a Measured by CGM.
b Independent sample t-test.
c Target glucose range 3.9–8.0 mmol/liter (70–140 mg/dl).

d Mann–Whitney test.
e Kovatchev and colleagues’ LBGI and HBGI.17

f Chassin and associates’ grading system.18

Figure 7. Continuous glucose monitoring glucose during simulated 
experiments (orange curve, N = 18) and the APCam01 clinical study 
(grey curve, N = 12). The horizontal dashed lines represent the target 
glucose range from 3.9 to 8.0 mmol/liter. Median (interquartile range) 
is shown.

G
lu

co
se

 (m
m

o
l/

lit
er

)



140

Simulation Environment to Evaluate Closed-Loop Insulin Delivery Systems in Type 1 Diabetes Wilinska

www.journalofdst.orgJ Diabetes Sci Technol  Vol 4, Issue 1, January 2010

The simulator, based on a virtual population of 300 subjects, 
is reported to have been used to design clinical trials 
and evaluate glucose controllers. As far as we are aware, 
the simulation environment described by Kovatchev and 
colleagues,10 although tested extensively, has not been 
validated using clinical trials data. In silico studies have 
already proven useful and effective in the development 
of closed-loop systems for tight glycemic control in the 
intensive care units.11–13,15 

We describe a simulation environment designed specifically 
to support the development of closed-loop insulin delivery 
systems in T1DM. The main components of this environment 
are the mathematical model of glucose regulation 
representing virtual subjects with T1DM, a glucose 
measurement model, and a sc insulin delivery model. 
A realistic representation of the virtual population with 
the appropriate level of the intersubject and intrasubject 
variability observed in vivo is considered key to reliable 
simulations.10 Our virtual population consisting of 18 
in silico subjects with T1DM appears to display these 
characteristics. The intersubject variability is addressed 
through assigning a unique set of parameter values 
to an individual in silico subject. The subjects vary in 
their insulin sensitivity to glucose disposal, endogenous 
glucose production, and glucose transport, as well as in 
parameters characterizing glucose absorption from the 
gut (time to maximum absorption and bioavailability). 
The variability within subjects is represented by super-
imposing oscillations on selected model parameters. 

A comprehensive validation of the simulation environment 
is an essential requirement. The presented validation results 
can be considered as the first step toward full validation  
of our simulation environment. We were able to show 
that the results of the simulated closed-loop study were 
not significantly different from the results obtained during 
the clinical study, suggesting that the virtual population 
with T1DM is a good representation of the population 
of 12 young people with T1DM who participated in the  
clinical study. In order to extend the validation process, 
other study designs, populations, algorithms, and clinical 
results might be required.

Validation of simulation environments is essential to 
establish the validity of simulation-derived results and 
predictions. The validation process is not well defined, 
and the criteria that each simulation environment should 
meet have been debated by the scientific community. Steil 
and Reifman32 reported the views of leading researchers 
in the area of glycemia modeling on the subject of simulation 
model validity. Three essential criteria were identified: 

first, show that the model fits existing closed-loop data; 
second, show that the model can predict clinical closed-
loop results obtained in a population of subjects differing 
from those used for model identification; and third,  
show that, if the model has been identified on a specific 
subject, it can predict glucose profiles under different 
conditions from those used to identify it. 

The aim of the present simulation study was to satisfy 
the second of the reported criteria. The study results 
demonstrated that our simulation environment was able 
to reproduce the population results of the clinical study 
conducted in young people with T1DM. The performance  
of MPC-based closed-loop algorithm in both studies 
based on the mean overnight CGM glucose, the time 
spent in the target glucose range, the high and low blood 
glucose index, as well as the percentage of time spent 
in grades A + B and E + F of Chassin and associates’ 
grading scale was similar in both populations. We could 
therefore infer that our simulated study results are 
a good prediction of the real clinical study, with a 
matching experimental protocol, with a similar study 
population to the one participating in the clinical study. 

We acknowledge the relatively small size of our virtual 
population, and our future plans evolve around expanding 
the virtual population by employing “experimental in 
silico cloning,” the term proposed by Hovorka et al.,15

to create synthetic copies of real subjects who participated 
in clinical trials. 

The safety and efficacy of the closed-loop insulin delivery 
system is greatly influenced by errors associated with 
CGM devices. Another important feature of the presented 
simulation environment is the realistic, experimentally 
derived representation of FSN CGM error. The error 
model represents transient errors, often referred to as 

“dropouts,” as well as persistent errors associated with 
FSN calibration error. This realistic representation of 
CGM error allows for extensive in silico assessment of 
the safety and the usability of the closed-loop system,  
a necessary component of risk–benefit analysis required 
for regulatory approval of a medical device. Finally, the 
simulation environment is equipped with an extensive 
set of outcome measures, which, together with the 
graphical output, allow for a comprehensive assessment 
of individual as well as population in silico study results.

Computer-based simulations are now well established  
in the field of diabetes care. Long-term diabetes treatment 
and health policy outcomes have been accurately simulated 
and predicted by the Archimedes diabetes model.33,34 
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Educational simulators such as AIDA educational package35 
or Karlsburg Diabetes Management system36 provide 
clinicians and patients with an insight to glucose regulation, 
whilst advisory systems such as the Diabetes Advisory 
System37 support insulin dosing decisions. This type of 
simulator is based on an average patient model and is 
therefore not suited for evaluation of glucose control 
algorithms.

With increasing amounts of clinical data becoming 
available, our aim is to improve and refine the simulation 
model of glucose regulation as well as expand on the 
number of subjects comprising the virtual population 
with T1DM. These improvements should result in more 
realistic predictions and, consequently, should increase 
the level of confidence in this invaluable tool. In silico 
studies are already an integral part of the development of 
closed-loop insulin delivery system prototypes, and we 
envision them to become a widely accepted standard in 
the near future.

In conclusion, we present a simulation environment 
designed specifically to support the development of closed-
loop insulin delivery systems in T1DM. The software 
allows for a comprehensive assessment of individual as 
well as population in silico study results. The validity of 
population-based predictions generated by the simulation 
environment was demonstrated by comparison with a 
clinical study in young subjects with T1DM.
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Here we describe a submodel of insulin absorption and 
kinetics, a submodel of interstitial glucose kinetics, a 
submodel of enteral glucose absorption, a submodel of 
insulin action, and a submodel of glucose kinetics.

Submodel of Insulin Action
The submodel of insulin is described as a set of 
differential equations,
dx1

dt  = –ka1x1(t) + SITkb1I(t)      x1(0) = 0

dx2

dt  = –ka2x2(t) + SIDkb2I(t)      x2(0) = 0

dx3

dt  = –ka3x3(t) + SIEkb3I(t)      x3(0) = 0�

where I is plasma insulin concentration, and x1, x2, and 
x3 represent the remote effects of insulin on glucose 
distribution/transport, glucose disposal, and endogenous 
glucose production,16 respectively. SIT  =  ka1/kb1, SID  =  ka 2/
kb2, and SIE = ka3/kb3 are insulin sensitivities for transport, 
distribution, and endogenous glucose production, with 
kai ,  I  =  1,…,3, representing deactivation rate constants, 
and kbi , I = 1,…,3, representing activation rate constants.

Submodel of Glucose Kinetics
The submodel of glucose kinetics includes two 
compartments and is described as

Appendix

where EGP0 represents endogenous glucose production 
extrapolated to the zero insulin concentration.

The noninsulin-dependent glucose flux F c
01 is defined as 

follows:

.

FR is the renal glucose clearance above the glucose 
threshold of  R_thr:

FR = 
⎧
⎨
⎩

R_cl(G – R_thr)VG,   if G ≥ R_thr

0,                               otherwise

where R_cl is the renal clearance constant.

Submodel of Subcutaneous Insulin Absorption and 
Kinetics
The submodel of sc insulin absorption and kinetics is 
described as

dS1(t)
dt  = u(t) – kaS1(t)

dS2(t)
dt  = kaS1(t) – kaS2(t)

dI
dt  = kaS2(t)

VI
 – keI(t)

where S1 and S2 represent insulin masses in the 
accessible and nonaccessible compartments, u represents 
administration (bolus and infusion) of rapid-acting 
insulin, ka represents insulin absorption rate constant, 
VI is the volume of distribution of rapid-acting insulin, 
I is the insulin concentration in plasma, and ke represents 
the fractional elimination rate from plasma.

Submodel of Glucose Absorption from the Gut
The submodel of glucose absorption from the gut uses 
a chain of two compartments as described by a set of 
differential equations:

dG1(t)
dt  = –

G1(t)
tmax

 + Bio˙ D(t)   G1(0) = 0

dG2

dt
 = 

G1(t)
tmax

 – 
G2(t)
tmax

UG = 
G2

tmax

dQ1(t)
dt

 = –
⎡
⎢
⎣

F c
01

VGG(t)
 + x1(t)

⎡
⎢
⎣
Q1(t) + k12Q2(t) – FR + EGP + UG(t)   Q1(0) = Q1,0

dQ2(t)
dt  = x1(t)Q1(t) – [k12 + x2(t)]Q2(t)      Q2(0) = Q2,0

y(t) = G(t) = Q1(t)/VG

where Q1 and Q2 are masses of glucose in the accessible 
(where measurements are made) and nonaccessible 
glucose compartments, k12 represents the transfer-
rate constant from the nonaccessible to the accessible 
compartment, VG represents the glucose distribution 
volume in the accessible compartment, UG is the rate of 
glucose absorption from the gut, and y and G are the 
(measurable) plasma glucose concentration.

The endogenous glucose production, EGP, is defined as 
follows:

EGP = 
⎧
⎨
⎩

EGP0 [1 + x3(t)]   if EGP ≥ 0

0                          otherwise
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where G1 and G2 are the glucose masses in the accessible 
and nonaccessible compartments, tmax is the time-of-
maximum appearance rate of glucose in the accessible 
compartment, t is time of meal, D(t) represents the 
amount of CHO ingested at time t, Bio is the CHO 
bioavailability of the meal, and UG represents gut 
absorption rate.

Time-to-maximum appearance rate of glucose tmax is 
defined as follows:

tmax = 
⎧
⎨
⎩

tmax_ceil   if UG > UG_ceil

tmax       otherwise
   where tmax_ceil = 

G2

UG_ceil

where UG_ceil is the maximum glucose flux from the gut 
(mmol/kg-1·min-1) drawn from U [0.02, 0.035].

Submodel of Interstitial Glucose Kinetics
The submodel of the interstitial glucose kinetics uses a 
simple diffusion model:

dC(t)
dt  = ka_int [G(t) – C(t)]

where C is glucose concentration in the sc tissue, G is 
glucose concentration in the plasma, and ka_int is the 
transfer-rate constant.


